

I-Clique Metric Dimension of Graphs

Mojgan Afkhami¹ · Kazem Khashyarmanesh² · Mostafa Tavakoli³

Received: 15 April 2021 / Revised: 14 March 2022 / Accepted: 21 April 2022 / Published online: 24 May 2022 © The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2022

Abstract

For an ordered non-empty subset $S = \{v_1, \ldots, v_k\}$ of vertices in a connected graph G and an l-clique V' of G, the l-clique metric S-representation of V' is the vector $r_G^l(V'|S) = (d_G(V', v_1), \ldots, d_G(V', v_k))$ where $d_G(V', v_i) = \min\{d_G(v, v_i) : v \in V'\}$. A non-empty subset S of V(G) is an l-clique metric generator for G if all l-cliques of G have pairwise different l-clique metric S-representations. An l-clique metric generator of smallest order is an l-clique metric basis for G, its order being the l-clique metric dimension (l-CMD for short) cdim $_l(G)$ of G. In this paper, we propose this concept as an extension of the 1-clique metric dimension which is known as the metric dimension, and also study some its properties. Moreover, l-CMD for $\Gamma(\mathbb{Z}_n)$ and the corona product of two graphs is investigated. Furthermore, we prove that computing the l-CMD of connected graphs is NP-hard and present an integer linear programming model for finding this parameter.

Keywords *l*-Clique metric dimension · Corona product graph

Mathematics Subject Classification 05C12 · 05C25 · 05C76

Communicated by Sanming Zhou.

Mojgan Afkhami mojgan.afkhami@yahoo.com

> Kazem Khashyarmanesh khashyar@ipm.ir

Mostafa Tavakoli m_tavakoli@um.ac.ir

- ¹ Department of Mathematics, University of Neyshabur, P.O. Box 91136-899, Neyshabur, Iran
- ² Department of Pure Mathematics, Faculty of Mathematical Sciences and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, P.O. Box 1159-91775, Mashhad, Iran
- ³ Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran

1 Introduction

All graphs considered in this paper are undirected and simple.

If $u, v \in V(G)$, then $d_G(u, v)$ denotes the number of edges on a shortest u, v-path in G. A clique V' is a subset of vertices of a graph such that every two distinct vertices in the clique are adjacent. Also, V' is called an l-clique if |V'| = l. For a vertex u and an l-clique V' of G, the distance between V' and u, denoted by $d_G(u, V')$, is defined as min $\{d_G(u, v) : v \in V'\}$; in other words, $d_G(u, V') = \min\{d_G(u, v) : v \in V'\}$.

For an ordered non-empty subset $S = \{v_1, \ldots, v_k\}$ of vertices in a connected graph G and an l-clique V' of G, the l-clique metric S-representation of V' is the vector $r_G^l(V'|S) = (d_G(V', v_1), \ldots, d_G(V', v_k))$. A non-empty subset S of V(G) is an l-clique metric generator for G if all l-cliques of G have pairwise different l-clique metric S-representations. l-Clique metric generators for special cases l = 1 and l = 2 are known as metric generator and edge metric generator, respectively. An l-clique metric generator of smallest order is an l-clique metric basis for G, its order being the l-clique metric dimension (l-CMD for short) cdim $_l(G)$ of G.

Recall that the special case 1-clique metric dimension is called the metric dimension and denoted by $\dim(G)$ and also the special case 2-clique metric dimension is called the edge metric dimension and denoted by $\dim_e(G)$.

The concept of metric dimension was first introduced by Slater [21]. Since then lots of work has been done on this topic because of its wide range of applications in modeling of real world problems [13, 15]. For instance, Garey and Johnson [11], and Epstein et al. [10] studied NP-hardness of computing of metric dimension. Also, this invariant was investigated over the Cartesian product of graphs in [5], over the lexicographic product of graphs in [19], over the deleted lexicographic product of graphs in [9], and over the hierarchical product of graphs in [23]. Kelenc et al. [14] introduced the concept of edge metric dimension. In the present work, we expand the concept of metric dimension as *l*-clique metric dimension where *l* is a natural number. Note that in [12] resolving sets locate up to some fixed $l, l \ge 1$, vertices in a graph, while here resolving sets locate the *l*-cliques of a graph. The first section of this paper is dedicated to some properties of this parameter of graphs. In the second section, we compute *l*-CMD for $\Gamma(\mathbb{Z}_n)$. We also obtain the exact value of *l*-CMD of corona product of two graphs in the third section. [11, 14] showed the NP-completeness of *l*-CMD problems for l = 1 and l = 2, respectively. We prove the NP-completeness of *l*-CMD problems for $l \ge 3$ in the last section.

Throughout this paper, our notation is standard and taken mainly from [2].

2 Basic Results

In this section, we present some basic results on the *l*-clique metric dimension.

The following proposition gives the *l*-CMD of the complete graph K_n .

Proposition 2.1 *Let* $n \ge 2$ *. We have*

$$\operatorname{cdim}_{l}(K_{n}) = \begin{cases} 1 & l = n \\ n - 1 & \text{otherwise.} \end{cases}$$

Proof If l = n, then clearly $\operatorname{cdim}_l(K_n) = 1$. Let $l \in \{1, 2\}$. Then, by [14, Remark 1], we have $\operatorname{edim}(K_n) = \dim(K_n) = n - 1$. Hence, in this situation, $\operatorname{cdim}_l(K_n) = \operatorname{edim}(K_n) = \dim(K_n) = n - 1$. So we assume that $3 \le l \le n - 1$ and $n \ge 4$. Let *S* be a minimal *l*-clique metric generator of K_n . If $|S| \le n - 2$, then there exist two distinct vertices $x, y \in K_n \setminus S$. Consider two *l*-cliques L_1 and L_2 such that $x \in L_1, y \in L_2$ and $L_1 \setminus \{x\} = L_2 \setminus \{y\}$. Then one can see that the *l*-clique metric *S*-representations of L_1 and L_2 are the same, which is impossible. Now, let $S \subseteq V(K_n)$ with |S| = n - 1. Then, in this situation, for every two distinct cliques L_1 and L_2 , there exists $s \in S$ such that $s \in L_1 \setminus L_2$. Therefore the component which is corresponding to *s* in the *l*-clique metric *S*-representations of L_1 and L_2 is 0 and 1, respectively, which implies that *S* is an *l*-clique metric generator for K_n . Hence $\operatorname{cdim}_l(K_n) = n - 1$.

Recall that the *wheel graph* $W_{1,n}$ is the graph obtained from a cycle C_n and the graph K_1 by adding all the edges between the vertex of K_1 and every vertex of C_n .

The least integer greater than or equal to a number *m* is denoted by $\lceil m \rceil$. Also, greatest integer less than or equal to a number *m* is denoted by $\lfloor m \rfloor$.

In the following proposition, we investigate the *l*-CMD $\operatorname{cdim}_l(W_{1,n})$. Note that if l = 1, then $\operatorname{cdim}_l(W_{1,n}) = \operatorname{dim}(W_{1,n})$, which is determined in [3], as follows.

$$\dim(W_{1,n}) = \begin{cases} 3 & n = 3, 6\\ 2 & n = 4, 5\\ \lfloor \frac{2n+2}{5} \rfloor & n \ge 6. \end{cases}$$

Also, if l = 2, then $\operatorname{cdim}_{l}(W_{1,n}) = \operatorname{edim}(W_{1,n})$, which is

edim
$$(W_{1,n}) = \begin{cases} n & n = 3, 4\\ n-1 & n \ge 5, \end{cases}$$

see [14].

Proposition 2.2 Let $W_{1,n}$ be a wheel graph. Then

$$\operatorname{cdim}_{3}(W_{1,n}) = \begin{cases} 3 & n = 3\\ n - \lceil \frac{n}{3} \rceil & n \ge 4. \end{cases}$$

Proof By Proposition 2.1, we have $\operatorname{cdim}_3(W_{1,3}) = \operatorname{cdim}_3(K_4) = 3$ and $\operatorname{cdim}_4(W_{1,3}) = \operatorname{cdim}_4(K_4) = 1$. So assume that $n \ge 4$. Let $\{g_1, g_2, \ldots, g_n\}$ be the vertices of degree 3 in $W_{1,n}$. Clearly for each two distinct triangles L_1 and L_2 in $W_{1,n}$, either there exists $1 \le i \le n$ such that L_1 and L_2 have the common vertex g_i , or L_1 and L_2 have no common vertices from the set $\{g_1, g_2, \ldots, g_n\}$. In both of the situations, one can easily see that L_1 and L_2 have the same 3-clique metric S-representations if and only if their non-common vertices do not belong to S, where $S \subseteq V(W_{1,n})$. Now let S be a 3-clique metric basis of $W_{1,n}$. Clearly $S \subseteq \{g_1, g_2, \ldots, g_n\}$. We consider the following cases.

Case 1 n = 3k, where $k \ge 2$. Let *S* be a 3-clique metric basis of $W_{1,n}$. If there are two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$, say g_2 and g_3 , such that $g_2, g_3 \notin S$, then we should have $g_4, g_5 \in S$ and $g_{3\lfloor \frac{n}{3} \rfloor}, g_1 \in S$. So, if k = 2, then $\operatorname{cdim}_3(W_{1,6}) = 4$. Let k > 2. Since *S* is a 3-clique metric basis, without loss of generality, we may assume

that $g_6 \notin S, g_7, g_8 \in S, \ldots, g_{3\lfloor \frac{n}{3} \rfloor - 3} \notin S, g_{3\lfloor \frac{n}{3} \rfloor - 2}, g_{3\lfloor \frac{n}{3} \rfloor - 1} \in S$. Therefore, in this situation, $|S| = n - \lceil \frac{n}{3} \rceil$.

Now, assume that there exists a 3-clique metric basis of $W_{1,n}$, say S, such that for any two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$ at least one of them belongs to S. Without loss of generality, assume that $g_3 \notin S$. Since S is a 3-clique metric basis, we may assume that

$$S = \{g_1, g_2, \dots, g_n\} \setminus \{g_3, g_6, \dots, g_{3i}, \dots, g_{3\lfloor \frac{n}{2} \rfloor}\},\$$

where $1 \le i \le \lfloor \frac{n}{3} \rfloor$. Clearly, in this situation we again have $|S| = n - \lfloor \frac{n}{3} \rfloor$.

Note that in either of the above situationes, by the structure that we obtain for a 3-clique metric basis of $W_{1,n}$, it is easy to see that any subset of $\{g_1, g_2, \ldots, g_n\}$ with less that $n - \lceil \frac{n}{3} \rceil$ elements is not a 3-clique metric generator of $W_{1,n}$. Therefore, in this case the 3-CMD of $W_{1,n}$ is equal to $n - \lceil \frac{n}{3} \rceil$.

Case 2 n = 3k + 1 or n = 3k + 2, where $k \ge 1$. First we show that for any 3-clique metric basis of $W_{1,n}$, say S, there exist two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$ such that they do not belong to S. Assume on the contrary that for any two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$, at least one of them belongs to S. Without loss of generality, we may assume that $g_3 \notin S$. Since S is a 3-clique metric basis, we may assume that

$$S = \{g_1, g_2, \dots, g_n\} \setminus \{g_3, g_6, \dots, g_{3i}, \dots, g_{3\lfloor \frac{n}{2} \rfloor}\},\$$

where $1 \le i \le \lfloor \frac{n}{3} \rfloor$. Now consider the set $S' = S \setminus \{g_2\}$. One can easily see that S' is a 3-clique metric generator of $W_{1,n}$ with |S'| < |S|, which is a contradiction.

Now let *S* be a 3-clique metric basis of $W_{1,n}$. Then there are two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$, say g_2 and g_3 , such that $g_2, g_3 \notin S$. By using a similar discussion as we used in Case 1, we obtain that

$$S = \{g_1, g_2, \dots, g_n\} \setminus \{g_2, g_3, g_6, \dots, g_{3i}, \dots, g_{3\lfloor \frac{n}{2} \rfloor}\}$$

where $1 \le i \le \lfloor \frac{n}{3} \rfloor$ and $|S| = n - \lceil \frac{n}{3} \rceil$. Also, by the structure that we obtain for *S*, it is easy to see that any subset of $\{g_1, g_2, \ldots, g_n\}$ with less that $n - \lceil \frac{n}{3} \rceil$ elements, is not a 3-clique metric generator of $W_{1,n}$.

Therefore we have $\operatorname{cdim}_3(W_{1,n}) = n - \lceil \frac{n}{3} \rceil$, when $n \ge 4$.

Similarly to the wheel graph, the *fan graph*, which is denoted by $F_{1,n}$, is the graph that is obtained from a path P_n and the graph K_1 by adding all the edges between the vertex of K_1 and every vertex of P_n . In [4, 14], dim $(F_{1,n})$ and edim $(F_{1,n})$ are determined as follows:

$$\dim(F_{1,n}) = \begin{cases} 1 & n = 1 \\ 2 & n = 2, 3 \\ 3 & n = 6 \\ \lfloor \frac{2n+2}{5} \rfloor & \text{otherwise} \end{cases}$$

Deringer

and

$$\operatorname{edim}(F_{1,n}) = \begin{cases} n & n = 1, 2, 3\\ n-1 & n \ge 4. \end{cases}$$

In the following proposition, we investigate the *l*-CMD of $F_{1,n}$ in the case that l = 3.

Proposition 2.3 For the fan graph $F_{1,n}$ we have

$$\operatorname{cdim}_{3}(F_{1,n}) = \begin{cases} 1 & n = 1, 2\\ n - \lceil \frac{n}{3} \rceil - 1 & n = 3k, 3k + 2 \text{ for } k \ge 1\\ n - \lceil \frac{n}{3} \rceil & \text{otherwise.} \end{cases}$$

Proof Clearly if $n \in \{1, 2, 3\}$, we have $\operatorname{cdim}_3(F_{1,n}) = 1$. Let $\{g_1, g_2, \ldots, g_n\}$ be the vertices of the path P_n in the structure of $F_{1,n}$. Note that for each two distinct triangles L_1 and L_2 in $F_{1,n}$, they have the same 3-clique metric S-representations if and only if their non-common vertices do not belong to S, where $S \subseteq V(F_{1,n})$. Also clearly each 3-clique metric basis of $F_{1,n}$ is a subset of $\{g_1, g_2, \ldots, g_n\}$. Now we have the following cases:

Case 1 n = 3k, where $k \ge 2$. First we show that for any 3-clique metric basis of $F_{1,n}$, say *S*, there exist two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$ such that they do not belong to *S*. Assume on the contrary that for any two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$, at least one of them belongs to *S*. If $g_1 \notin S$, then by using a similar method as we used in the proof of Proposition 2.2, we get that

$$S = \{g_1, g_2, \dots, g_n\} \setminus \{g_1, g_4, \dots, g_{3i+1}, \dots, g_{3|\frac{n}{2}|-2}\},\$$

where $0 \le i \le \lfloor \frac{n}{3} \rfloor - 1$. But one can easily see that the set $S' = S \setminus \{g_{3 \lfloor \frac{n}{3} \rfloor - 1}\}$ is a 3-clique metric generator of $F_{1,n}$ with |S'| < |S|, which is a contradiction. Now, let $g_1 \in S$. Then we may assume that

$$S = \{g_1, g_2, \dots, g_n\} \setminus \{g_2, g_5, \dots, g_{3i+2}, \dots, g_{3\lfloor \frac{n}{3} \rfloor - 1}\},\$$

where $0 \le i \le \lfloor \frac{n}{3} \rfloor - 1$. Again we see that the set $S' = S \setminus \{g_{3 \lfloor \frac{n}{3} \rfloor}\}$ is a 3-clique metric generator of $F_{1,n}$ with |S'| < |S|, which is a contradiction. Therefore for any 3-clique metric basis of $F_{1,n}$, say *S*, there exist two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$ such that they do not belong to *S*. Now it is easy to see that

$$S = \{g_1, g_2, \dots, g_n\} \setminus \{g_1, g_2, g_5, \dots, g_{3i+2}, \dots, g_{3\lfloor \frac{n}{2} \rfloor - 1}\},\$$

where $0 \le i \le \lfloor \frac{n}{3} \rfloor - 1$ is a 3-clique metric generator of $F_{1,n}$, and any subset of $\{g_1, g_2, \ldots, g_n\}$ with cardinality less than $|S| = n - \lceil \frac{n}{3} \rceil - 1$ is not a 3-clique metric generator for $F_{1,n}$. Hence in this case we have $\operatorname{cdim}_3(F_{1,n}) = n - \lceil \frac{n}{3} \rceil - 1$.

Case 2 n = 3k + 1, where $k \ge 1$. Let *S* be a 3-clique metric basis. First assume that for any two adjacent vertices of the set $\{g_1, g_2, \dots, g_n\}$, at least one of them belongs

to *S*. If $g_1 \in S$, then if $g_2 \notin S$, then $S \setminus \{g_1\}$ is a 3-clique metric generator with less than |S| elements which is impossible. Also if $g_2 \in S$, then $S \setminus \{g_2\}$ is a 3-clique metric generator with less than |S| elements which is again impossible. So we have $g_1 \notin S$. In this situation, one can easily see that

$$S = \{g_1, g_2, \dots, g_n\} \setminus \{g_1, g_4, \dots, g_{3i+1}, \dots, g_{3\lfloor \frac{n}{3} \rfloor + 1}\},\$$

where $0 \le i \le \lfloor \frac{n}{3} \rfloor$ is a 3-clique metric basis for $F_{1,n}$, with $|S| = n - \lceil \frac{n}{3} \rceil$. Now, suppose that there exist two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$ such that they do not belong to *S*. In this situation, we again have $|S| = n - \lceil \frac{n}{3} \rceil$. Therefore in this case we have $\operatorname{cdim}_3(F_{1,n}) = n - \lceil \frac{n}{3} \rceil$.

Case 3 n = 3k + 2, where $k \ge 1$. Similar to Case 1, we can see that for any 3-clique metric basis of $F_{1,n}$, say S, there exist two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$ such that they do not belong to S. Now one can easily see that

$$S = \{g_1, g_2, \dots, g_n\} \setminus \{g_1, g_2, g_5, \dots, g_{3i+2}, \dots, g_{3|\frac{n}{2}|+2}\},\$$

where $0 \le i \le \lfloor \frac{n}{3} \rfloor$, is a 3-clique metric generator of $F_{1,n}$, and any subset of $\{g_1, g_2, \ldots, g_n\}$ with cardinality less than $|S| = n - \lceil \frac{n}{3} \rceil - 1$ is not a 3-clique metric generator for $F_{1,n}$. Hence in this case we have $\operatorname{cdim}_3(F_{1,n}) = n - \lceil \frac{n}{3} \rceil - 1$.

Proposition 2.4 Let G be a graph with n vertices such that the number of its l-cliques are t. Then if $t \ge 2$, we have $\operatorname{cdim}_l(G) \le \min\{n, \binom{t}{2}\}$. Otherwise $\operatorname{cdim}_l(G) = 1$.

Proof If l = 1 or $t \le 1$, then clearly we are done. So assume that $l \ge 2$. Let L_1, L_2, \ldots, L_t be the *l*-cliques of *G*. For each $1 \le i < j \le n$, consider a vertex $x_{i,j}$ which belongs to $L_i \setminus L_j$. Let $S = \{x_{i,j} \mid 1 \le i < j \le n\}$. Now one can see that *S* is an *l*-clique metric generator for *G* and $|S| \le {t \choose 2}$. Hence the result holds.

The next corollary follows from Proposition 2.4.

Corollary 2.5 *Let G be a graph with at most two l*-*cliques. Then* $cdim_l(G) = 1$.

Proposition 2.6 Let G be a graph with n vertices and L_1, L_2, \ldots, L_t be the l-cliques of G such that $L_i \notin \bigcup_{i\neq j, j=1}^t L_j$, for $1 \le i \le t-1$. Then $\operatorname{cdim}_l(G) \le t-1$.

Proof Let $x_i \in L_i \setminus \bigcup_{i \neq j, j=1}^{t} L_j$, for $1 \le i \le t-1$. Set $S = \{x_i \mid 1 \le i \le t-1\}$. Then the *i*th component of the *l*-clique metric *S*-representation of L_j is zero if and only if i = j, for $1 \le i \le t-1$. Moreover, none of the components of the *l*-clique metric *S*-representation of L_t is zero. Hence *S* is an *l*-clique metric generator of *G*, and so $\operatorname{cdim}_l(G) \le t-1$.

If we consider disconnected graphs, then *l*-CMD could be easily defined by considering the distance between two vertices in two different components as infinite. In fact we have the following result.

Remark 2.7 Let G be a disconnected graph with components G_1, \ldots, G_r . If $I = \{i \mid G_i \text{ has one } l - \text{clique}\}$ and $J = \{i \mid G_i \text{ has at least two } l - \text{cliques}\}$, then

$$\operatorname{cdim}_{l}(G) = \sum_{i \in J} \operatorname{cdim}_{l}(G_{i}) + \begin{cases} 0 & |I| \le 1\\ |I| - 1 & |I| > 1 \end{cases}$$

Recall that for two graphs H_1 and H_2 with disjoint vertex sets, the *join* $H_1 \lor H_2$ of the graphs H_1 and H_2 is the graph obtained from the union of H_1 and H_2 by adding new edges from each vertex of H_1 to every vertex of H_2 . The concept of join graph is generalized (in [17], it is called as a generalized composition graph). Assume that *G* is a graph on *k* vertices with $V(G) = \{v_1, v_2, \ldots, v_k\}$, and let H_1, H_2, \ldots, H_k be *k* pairwise disjoint graphs. The *G*-generalized join graph $G[H_1, H_2, \ldots, H_k]$ of H_1, H_2, \ldots, H_k is the graph formed by replacing each vertex v_i of *G* by the graph H_i and then joining each vertex of H_i to each vertex of H_j whenever $v_i \sim v_j$ in the graph *G*. Now, if the graph *G* consists of two adjacent vertices, then the *G*-generalized join graph $G[H_1, H_2]$ coincides with the join $H_1 \lor H_2$ of the graphs H_1 and H_2 .

Note that in the rest of this section, we assume that there exists at least a nontrivial H_i , with $1 \le i \le k$, in $G[H_1, H_2, ..., H_k]$.

In the following proposition, we study the *l*-CMD of the *G*-generalized join graph $G[H_1, H_2, ..., H_k]$, in the case that H_i 's are empty graphs.

Proposition 2.8 Assume that G is a connected graph on k vertices with $V(G) = \{v_1, v_2, ..., v_k\}$, and let $H_1, H_2, ..., H_k$ be k pairwise disjoint empty graphs. If $\{v_1, v_2, ..., v_t\}$, where $0 \le t \le k$ are the vertices in G such that each of them belongs to an l-clique, then

$$\sum_{i=1}^{t} |V(H_i)| - t \le \operatorname{cdim}_l(G[H_1, H_2, \dots, H_k]) \le \operatorname{cdim}_l(G) + \sum_{i=1}^{t} |V(H_i)| - t$$

Proof Let $\{v_{i_1}, v_{i_2}, \ldots, v_{i_t}\}$, where $0 \le t \le k$ be the vertices in *G* such that each of them belongs to at least one *l*-clique. If t = 0, then $\operatorname{cdim}_l(G[H_1, H_2, \ldots, H_k]) = \operatorname{cdim}_l(G) = 1$. So assume that t > 0. Let h_1, \ldots, h_t be arbitrary vertices in H_1, \ldots, H_t , respectively. Assume that *S* is an *l*-clique metric generator of the graph $G[H_1, H_2, \ldots, H_k]$. For each $1 \le i \le t$, we show that $V(H_i) \setminus \{h_i\} \subseteq S$. Suppose on the contrary that there exists $h'_i \in V(H_i)$ with $h'_i \ne h_i$ such that $h'_i \notin S$. Now consider two *l*-cliques L_1 and L_2 such that h_i is a vertex of L_1, h'_i is a vertex of L_2 and $L_1 \setminus \{h_i\} = L_2 \setminus \{h'_i\}$. Now, one can see that the *l*-clique metric *S*-representations of L_1 and L_2 are the same, which is a contradiction. Hence $V(H_i) \setminus \{h_i\} \subseteq S$, for each $1 \le i \le t$. Therefore we have

$$\sum_{i=1}^{t} |V(H_i)| - t \le \operatorname{cdim}_l(G[H_1, H_2, \dots, H_k])$$

Let G' be the induced subgraph on vertex set $\{h_1, \ldots, h_t, v_{t+1}, \ldots, v_k\}$. Clearly G' is isomorphic to G. Now, let S' be an *l*-clique metric basis for G'. Since, for each

 $h_j, h'_j \in V(H_j)$, where $t+1 \le j \le k$, we have $d(L, h_j) = d(L, h'_j)$, where L is an *l*-clique, $S' \cup \bigcup_{i=1}^{t} (V(H_i) \setminus \{h_i\})$ is an *l*-clique metric generator for $G[H_1, H_2, \dots, H_k]$. So

$$\operatorname{cdim}_{l}(G[H_{1}, H_{2}, \dots, H_{k}]) \leq \operatorname{cdim}_{l}(G) + \sum_{i=1}^{t} |V(H_{i})| - t.$$

In the following theorem, we determine the *l*-CMD of the *G*-generalized join graph $G[H_1, H_2, \ldots, H_n]$, in the case that H_i 's are empty graphs and *G* is a path P_n . In fact the following theorem shows examples where the bounds in Proposition 2.8 are reached.

Theorem 2.9 Assume that G is a path on $n \ge 2$ vertices with $V(G) = \{v_1, v_2, \ldots, v_n\}$, and let H_1, H_2, \ldots, H_n be n pairwise disjoint empty graphs. Then $\sum_{i=1}^n |V(H_i)| - n \le \operatorname{cdim}_l(G[H_1, H_2, \ldots, H_n]) \le \sum_{i=1}^n |V(H_i)| - n + 1$, when $l \in \{1, 2\}$. Also if $|V(H_i)| > 1$, for each $1 \le i \le n$, then we have

$$\operatorname{cdim}_{l}(G[H_{1}, H_{2}, \dots, H_{n}]) = \begin{cases} \sum_{i=1}^{n} |V(H_{i})| - n + 1 & n = 3, \ l = 1, 2\\ \sum_{i=1}^{n} |V(H_{i})| - n & n \neq 3, \ l = 1, 2\\ 1 & l \ge 3. \end{cases}$$

Proof If $l \ge 3$, then clearly $\operatorname{cdim}_l(G[H_1, H_2, \ldots, H_n]) = 1$. So let $l \in \{1, 2\}$. Let h_1, \ldots, h_n be arbitrary vertices in H_1, \ldots, H_n , respectively. Set $S = \bigcup_{i=1}^n (V(H_i) \setminus \{h_i\})$, where h_i is an arbitrary vertex in H_i . By Proposition 2.8, every *l*-clique metric generator of $G[H_1, H_2, \ldots, H_n]$ contains *S*. Also $S \cup \{h_1\}$ is an *l*-clique metric generator for $G[H_1, H_2, \ldots, H_n]$. Hence we have

$$\sum_{i=1}^{n} |V(H_i)| - n \le \operatorname{cdim}_l(G[H_1, H_2, \dots, H_n]) \le \sum_{i=1}^{n} |V(H_i)| - n + 1.$$

If n = 3, then we have $r_{G[H_1,H_2,H_3]}^1(h_1|S) = r_{G[H_1,H_2,H_3]}^1(h_3|S)$ and also we have $r_{G[H_1,H_2,H_3]}^2(h_1h_2|S) = r_{G[H_1,H_2,H_3]}^2(h_2h_3|S)$, which means that *S* is not an *l*-clique metric generator of $G[H_1, H_2, H_3]$, and as a consequence, $\operatorname{cdim}_l(G[H_1, H_2, H_3]) > |S| = \sum_{i=1}^3 |V(H_i)| - 3$. Set $S' = S \cup \{h_1\}$. Now, one can see that *S'* is an *l*-clique metric basis of $G[H_1, H_2, H_3]$, and so $\operatorname{cdim}_l(G[H_1, H_2, H_3]) = \sum_{i=1}^3 |V(H_i)| - 2$. Now, let $|V(H_i)| > 1$, for each $1 \le i \le n$ and, assume that $n \ne 3$. Then it is easy to see that *S* is an *l*-clique metric generator of $G[H_1, H_2, \dots, H_n]$, which implies that $\operatorname{cdim}_l(G[H_1, H_2, \dots, H_n]) = \sum_{i=1}^n |V(H_i)| - n$.

In the following theorem, we determine the *l*-CMD of the *G*-generalized join graph $G[H_1, H_2, ..., H_n]$, in the case that H_i 's are empty graphs and *G* is the complete graph K_n .

Theorem 2.10 Assume that $G \cong K_n$ with $V(G) = \{v_1, v_2, ..., v_n\}$, n > 2, and let $H_1, H_2, ..., H_n$ be n pairwise disjoint empty graphs such that the number of trivial H_i 's is r < n. Then we have

$$\operatorname{cdim}_{l}(G[H_{1}, H_{2}, \dots, H_{n}]) = \begin{cases} \sum_{i=1}^{n} |V(H_{i})| - 1 & 2 \le l \le n-1\\ \sum_{i=1}^{n} |V(H_{i})| - n + r - 1 & l = 1, r > 0\\ \sum_{i=1}^{n} |V(H_{i})| - n & l = 1, r = 0\\ \sum_{i=1}^{n} |V(H_{i})| - n & l = n. \end{cases}$$

Proof Assume that h_1, \ldots, h_n are arbitrary vertices in H_1, \ldots, H_n , respectively. Let $S = \bigcup_{i=1}^n (V(H_i) \setminus \{h_i\})$. By Proposition 2.8, every *l*-clique metric generator of $G[H_1, H_2, \ldots, H_n]$ contains *S*, which implies that $\operatorname{cdim}_l(G[H_1, H_2, \ldots, H_n]) \ge \sum_{i=1}^n |V(H_i)| - n$. First assume that l = 1. Since the places in which there is a 2, if exists, appears in the *l*-clique metric *S*-representation of each two distinct h_i and h_j , with $1 \le i \ne j \le n$, are different from each other, their *l*-clique metric *S*-representations are not equal. Without loss of generality, assume that $|V(H_1)| = \cdots = |V(H_r)| = 1$. Hence the *l*-clique metric *S*-representation of all h_i 's, for $1 \le i \le r$ is equal. So, in this situation, any *l*-clique metric generator of $G[H_1, H_2, \ldots, H_n]$ is of the form $S \cup \bigcup_{i=1, i \ne j}^r \{h_i\}$, for some $1 \le j \le r$. Hence we have $\operatorname{cdim}_1(G[H_1, H_2, \ldots, H_n]) = \sum_{i=1}^n |V(H_i)| - n + r - 1$, for 0 < r < n. Clearly if r = 0, then *S* is a 1-clique metric basis of $G[H_1, H_2, \ldots, H_n]$, and so $\operatorname{cdim}_1(G[H_1, H_2, \ldots, H_n]) = \sum_{i=1}^n |V(H_i)| - n$.

Now, assume that $l \ge 2$. Let S' be an *l*-clique metric generator and L be an arbitrary *l*-clique of $G[H_1, H_2, ..., H_n]$. For each $x \in S'$, we have

$$d_{G[H_1, H_2, \dots, H_n]}(L, x) = \begin{cases} 1 & x \notin L \\ 0 & x \in L. \end{cases}$$

So, for each two distinct *l*-cliques L_1 and L_2 , $L_1 \cap S' = L_2 \cap S'$ if and only if L_1 and L_2 have the same *l*-clique metric S'-representations. If l = n, then, for each two distinct *l*-cliques L_1 and L_2 , $L_1 \cap S = L_2 \cap S$ implies that $L_1 = L_2$. This implies that S is an *l*-clique metric basis, and so cdim_n (G[H₁, H₂, ..., H_n]) = $\sum_{i=1}^{n} |V(H_i)| - n$. Now, assume that $2 \le l \le n - 1$. If there are h_i and h_j with $1 \le i \ne j \le n$ such that they do not belong to an *l*-clique metric generator S', then consider two *l*-cliques L_1 and L_2 with $h_i \in L_1$, $h_j \in L_2$ and $L_1 \setminus \{h_i\} = L_2 \setminus \{h_j\}$. Since $L_1 \cap S' = L_2 \cap S'$, they have the same *l*-clique metric S'-representations, which is impossible. So in this situation, any *l*-clique metric generator is of the form $S \cup \bigcup_{i=1,i\ne j}^{n} V(H_i)$, for some $1 \le j \le n$. Thus we have cdim_l(G[H₁, H₂, ..., H_n]) = $\sum_{i=1}^{n} |V(H_i)| - 1$.

In the following theorem, we determine the *l*-CMD of the *G*-generalized join graph $G[H_1, H_2, ..., H_n]$, in the case that H_i 's are empty graphs and *G* is isomorphic to the cycle C_n , where n > 3. Note that the case n = 3 is obtained by Theorem 3.3.

Theorem 2.11 Assume that G is a cycle C_n with vertex set $V(G) = \{v_1, v_2, ..., v_n\}$, n > 3, and let $H_1, H_2, ..., H_n$ be n pairwise disjoint empty graphs. Then

$$\sum_{i=1}^{n} |V(H_i)| - n \le \operatorname{cdim}_l(G[H_1, H_2, \dots, H_n]) \le \sum_{i=1}^{n} |V(H_i)| - n + 2,$$

when $l \in \{1, 2\}$, and $\operatorname{cdim}_{l}(G[H_{1}, H_{2}, ..., H_{n}]) = 1$, for $l \geq 3$. Also, for n = 4and $l \in \{1, 2\}$, we have $\operatorname{cdim}_{l}(G[H_{1}, H_{2}, ..., H_{n}]) = \sum_{i=1}^{n} |V(H_{i})| - n + 2$, and if $|V(H_{i})| > 1$, for each $1 \leq i \leq n$, then we have $\operatorname{cdim}_{l}(G[H_{1}, H_{2}, ..., H_{n}]) = \sum_{i=1}^{n} |V(H_{i})| - n$, when n > 4 and $l \in \{1, 2\}$.

Proof Clearly if $l \ge 3$, then $\operatorname{cdim}_l(G[H_1, H_2, \ldots, H_n]) = 1$. So assume that $l \in \{1, 2\}$. Let h_1, \ldots, h_n be arbitrary vertices in H_1, \ldots, H_n , respectively, and $S = \bigcup_{i=1}^n (V(H_i) \setminus \{h_i\})$. By Proposition 2.8, every *l*-clique metric generator of $G[H_1, H_2, \ldots, H_n]$, contains *S*. Also $S \cup \{h_1, h_2\}$ is an *l*-clique metric generator of $G[H_1, H_2, \ldots, H_n]$. Hence $\sum_{i=1}^n |V(H_i)| - n \le \operatorname{cdim}_l(G[H_1, H_2, \ldots, H_n]) \le \sum_{i=1}^n |V(H_i)| - n + 2$. If n = 4, then one can see that $S \cup \{h_1, h_2\}$ is an *l*-clique metric basis of $G[H_1, H_2, \ldots, H_n]$. So $\operatorname{cdim}_l(G[H_1, H_2, H_3, H_4]) = \sum_{i=1}^4 |V(H_i)| - 2$.

Now, assume that $n \ge 5$. Let $|V(H_i)| > 1$, for each $1 \le i \le n$. Since $n \ge 5$ and $|V(H_i)| \ge 2$, for any two vertices $h_i, h_j \notin S$, the distance between h_i and any vertex belonging to $S \cap (V(H_{i-1}) \cup V(H_{i+1}))$ is one, while the distance between h_j and any vertex belonging to at least one of these two sets $S \cap V(H_{i-1})$ or $S \cap V(H_{i+1})$ is different than one. Thus, *S* is an 1-clique metric generator for $G[H_1, H_2, \ldots, H_n]$. Now, let L_1 and L_2 be two distinct 2-cliques. If $L_1 \cap S = \phi = L_2 \cap S$, then the places that 1 appears in their 2-clique metric *S*-representations are different. So, without loss of generality, assume that $s \in L_1 \cap S$. If $s \notin L_2$, then the corresponding components to *s* in the 2-clique metric *S*-representations of L_1 and L_2 are zero and nonzero, respectively. Thus, let $s \in L_2$. If $L_1 \subseteq S$ or $L_2 \subseteq S$, then clearly their 2-clique metric *S*-representations are that $L_1 \notin S$ and $L_2 \notin S$. Then one can see that the places of 1 in their 2-clique metric *S*-representations are different. So *S* is an 2-clique metric generator for $G[H_1, H_2, \ldots, H_n]$. Hence we have $\operatorname{cdim}_l(G[H_1, H_2, \ldots, H_n]) = \sum_{i=1}^n |V(H_i)| - n$.

3 *I*-Clique Metric Dimension of $\Gamma(\mathbb{Z}_n)$

Let *R* be a commutative ring with nonzero identity. We denote the set of all unit elements and zero divisors of *R* by U(R) and Z(R), respectively. Also by $Z^*(R)$ we denote the set $Z(R) \setminus \{0\}$. Sharma and Bhatwadekar [20] defined the comaximal graph of a commutative ring *R*. The *comaximal graph* of *R* is a simple graph whose vertices consists of all elements of *R*, and two distinct vertices *a* and *b* are adjacent if and only if aR + bR = R, where cR is the ideal generated by *c*, for $c \in R$. Let $\Gamma(R)$ be an induced subgraph of the comaximal graph with nonunit elements of *R* as vertices. The properties of the graph $\Gamma(R)$ were studied in [16, 22, 25].

For two integers *r* and *s*, the notation (r, s) stands for the greatest common divisor of *r* and *s*. Also we denote the elements of the ring \mathbb{Z}_n , where n > 1, by 0, 1, 2, ..., n-1.

For every nonzero element *a* in \mathbb{Z}_n , if (a, n) = 1, then *a* is a unit element; otherwise, $(a, n) \neq 1$, and so *a* is a zerodivisor. Therefore, $|U(\mathbb{Z}_n)| = \phi(n)$ and $|Z(\mathbb{Z}_n)| = n - \phi(n)$, where ϕ is the Euler's totient function.

An integer *d* is said to be a *proper divisor* of *n* if 1 < d < n and $d \mid n$. Now let d_1, d_2, \ldots, d_k be the distinct proper divisors of *n*. For $1 \le i \le k$, set

$$A_{d_i} := \{ x \in \mathbb{Z}_n \mid (x, n) = d_i \}.$$

Clearly, the sets $A_{d_1}, A_{d_2}, \ldots, A_{d_k}$ are pairwise disjoint and we have

$$Z^*(\mathbb{Z}_n) = A_{d_1} \cup A_{d_2} \cup \cdots \cup A_{d_k}$$

and

$$V(\Gamma(\mathbb{Z}_n)) = \{0\} \cup A_{d_1} \cup A_{d_2} \cup \cdots \cup A_{d_k}.$$

The following lemma is stated from [27].

Lemma 3.1 [27, Proposition 2.1] Let $1 \le i \le k$. Then $|A_{d_i}| = \phi(\frac{n}{d_i})$.

In this section, the induced subgraph of $\Gamma(\mathbb{Z}_n)$ on the set A_{d_i} is denoted by $\Gamma(A_{d_i})$, where $1 \le i \le k$.

The following lemma states some adjacencies in $\Gamma(\mathbb{Z}_n)$.

Lemma 3.2 The following statements hold:

- (i) Two distinct vertices x and y are adjacent in $\Gamma(\mathbb{Z}_n)$ if and only if $(x, y) \in U(\mathbb{Z}_n)$.
- (ii) For $1 \le i \le k$, $\Gamma(A_{d_i})$ is isomorphic to $\overline{K}_{\phi(\frac{n}{d_i})}$.
- (iii) For $1 \le i \ne j \le k$, a vertex of A_{d_i} is adjacent to a vertex of A_{d_j} if and only if $(d_i, d_j) = 1$.
- **Proof** (i) First suppose that x and y are adjacent vertices in $\Gamma(\mathbb{Z}_n)$. Assume on the contrary that $d = (x, y) \notin U(\mathbb{Z}_n)$. So we have $x\mathbb{Z}_n \subseteq d\mathbb{Z}_n$ and $y\mathbb{Z}_n \subseteq d\mathbb{Z}_n$. Thus $x\mathbb{Z}_n + y\mathbb{Z}_n \subseteq d\mathbb{Z}_n \neq \mathbb{Z}_n$, and this means that x and y are not adjacent, which is a contradiction. Now, let $u = (x, y) \in U(\mathbb{Z}_n)$. So there exist $r, s \in \mathbb{Z}$ such that $u = rx + sy \in x\mathbb{Z}_n + y\mathbb{Z}_n$. Therefore we have $x\mathbb{Z}_n + y\mathbb{Z}_n = \mathbb{Z}_n$, which implies that x and y are adjacent.
- (ii) For each two distinct elements $x, y \in A_{d_i}$, we have $(x, n) = d_i = (y, n)$. So $d_i \mid (x, y)$, which implies that $(x, y) \notin U(\mathbb{Z}_n)$. Hence by (i), we have that x and y are not adjacent. Therefore by Lemma 3.1, we have $\Gamma(A_{d_i}) \cong \overline{K}_{\phi(\frac{n}{L})}$.
- (iii) Let $i, j \in \{1, 2, ..., k\}$ with $i \neq j$. First assume that $x \in A_{d_i}$ and $y \in A_{d_j}$ are adjacent vertices. If $(d_i, d_j) = d \neq 1$, then (n, d) = d. Since $(x, n) = d_i$ and $(y, n) = d_j$, we have that $d \mid x, y$. Hence $Rx + Ry \subseteq Rd \neq R$, which is impossible. Now suppose that $(d_i, d_j) = 1$. Let $x \in A_{d_i}$ and $y \in A_{d_j}$ be arbitrary vertices. If $d = (x, y) \notin U(\mathbb{Z}_n)$, then $t = (d, n) \neq 1$. Since $t \mid x, y, n$, we have $t \mid (d_i, d_j)$ and this is impossible. Hence $(x, y) \in U(\mathbb{Z}_n)$ which means that x and y are adjacent.

Now, we introduce a simple graph G_n , which plays an important role in the structure of $\Gamma(\mathbb{Z}_n)$. The graph G_n is the simple graph with vertex set $\{d_1, d_2, \ldots, d_k\}$, where d_i 's, $1 \le i \le k$, are the proper divisors of n, and two distinct vertices d_i and d_j are adjacent if and only if $(d_i, d_j) = 1$.

Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_l^{\alpha_l}$ be the factorization of *n* to its prime powers, where $t, \alpha_1, \dots, \alpha_t$ are positive integers and p_1, \dots, p_t are distinct prime numbers. Every divisor of *n* is of the form $p_1^{\beta_1} p_2^{\beta_2} \dots p_t^{\beta_t}$, for some integers β_1, \dots, β_t , where $0 \le \beta_i \le \alpha_i$ for each $i \in \{1, 2, \dots, t\}$. Hence the number of proper divisors of *n* is equal to $\prod_{i=1}^{t} (n_i + 1) - 2$. Therefore we have $k = |V(G_n)| = \prod_{i=1}^{t} (n_i + 1) - 2$.

Let $\Gamma^*(\mathbb{Z}_n) = \Gamma(\mathbb{Z}_n) \setminus \{0\}$. Consider the graph G_n and replace each vertex d_i of G_n by $\Gamma[A_{d_i}]$. In view of Lemma 3.1, we have

$$\Gamma^*(\mathbb{Z}_n) = G_n\left[\overline{K}_{\phi\left(\frac{n}{d_1}\right)}, \overline{K}_{\phi\left(\frac{n}{d_2}\right)}, \dots, \overline{K}_{\phi\left(\frac{n}{d_k}\right)}\right].$$

Now, since the zero element is adjacent to none of the vertices of $\Gamma^*(\mathbb{Z}_n)$, we have

$$\Gamma(\mathbb{Z}_n) = (K_1 \cup \Gamma^*(\mathbb{Z}_n)).$$

In the following theorem, we study the *l*-CMD of $\Gamma(\mathbb{Z}_n)$.

Theorem 3.3 Assume that $\{d_1, d_2, ..., d_t\}$, where $1 \le t \le k$, are those vertices of G_n that each of them belongs to an *l*-clique. Then for l = 1 we have

$$\sum_{i=1}^{k} \phi\left(\frac{n}{d_i}\right) - k + r \le \operatorname{cdim}_l(\Gamma(\mathbb{Z}_n)) \le \operatorname{cdim}_l(G_n) + \sum_{i=1}^{k} \phi\left(\frac{n}{d_i}\right) - k + r$$

and for l > 1,

$$\sum_{i=1}^{t} \phi\left(\frac{n}{d_i}\right) - t \le \operatorname{cdim}_l(\Gamma(\mathbb{Z}_n)) \le \operatorname{cdim}_l(G_n) + \sum_{i=1}^{t} \phi\left(\frac{n}{d_i}\right) - t,$$

where *r* is the number of isolated vertices of G_n .

Proof Note that the graph G_n is not connected in general. Let r be the number of isolated vertices of G_n . Since 0 is the isolated vertex of $\Gamma(\mathbb{Z}_n)$, we assume that $0, a_1, \ldots, a_r$ are the isolated vertices of $\Gamma(\mathbb{Z}_n)$. By Remark 2.7, we have

$$\operatorname{cdim}_1(\Gamma(\mathbb{Z}_n)) = \operatorname{cdim}_1(\Gamma(\mathbb{Z}_n) \setminus \{0, a_1, \dots, a_r\}) + r.$$

Now, the results follow from Proposition 2.8 and Remark 2.7.

Example 3.4 Consider the ring \mathbb{Z}_{12} . We have $d_1 = 2, d_2 = 3, d_3 = 4$, and $d_4 = 6$. Then G_{12} is the graph $2 \sim 3 \sim 4 \cup \{6\}$, which is isomorphic to $P_3 \cup K_1$. Hence we have

$$\Gamma(\mathbb{Z}_{12}) = K_1 \cup G_{12}[\overline{K}_2, \overline{K}_2, \overline{K}_2, K_1]$$

and, by Theorems 2.9 and 3.3, we have

$$\operatorname{cdim}_{l}(\Gamma(\mathbb{Z}_{12})) = \begin{cases} 5 & l = 1 \\ 4 & l = 2 \\ 1 & l \ge 3. \end{cases}$$

In the rest of this section, we discuss the CMD of $\Gamma(\mathbb{Z}_n)$, for (i) $n = p^t$, (ii) n = pqand (iii) $n = p^2q$, where p and q are distinct prime numbers and t is a positive integer.

(i) Let $n = p^t$. Then $\Gamma(\mathbb{Z}_{p^t})$ is an empty graph with $p^t - \phi(p^t) = p^{t-1}$ vertices, and so $\Gamma(\mathbb{Z}_{p^t}) = \overline{K_{p^{t-1}}}$. Now, by Remark 2.7 we have

$$\operatorname{cdim}_{l}(\Gamma(\mathbb{Z}_{p^{t}})) = \begin{cases} p^{t-1} - 1 & l = 1\\ 1 & l \ge 2. \end{cases}$$

(ii) Let n = pq, where p and q are distinct prime numbers. Since the only proper divisors of n are p and q, the graph G_{pq} is $p \sim q$. So we have

$$\Gamma(\mathbb{Z}_{pq}) = K_1 \cup G_{pq}[\overline{K}_{\phi(q)}, \overline{K}_{\phi(p)}].$$

Now, by Theorem 2.9, we have

$$\operatorname{cdim}_{l}(\Gamma(\mathbb{Z}_{pq})) = \begin{cases} p+q-4 & l=1,2\\ 1 & l \ge 3. \end{cases}$$

(iii) Let $n = p^2 q$, where p and q are distinct prime numbers. Since p, q, and pq are the proper divisors of n, the graph G_{p^2q} is $p \sim q \sim p^2 \cup \{pq\}$. Hence we have

$$\Gamma(\mathbb{Z}_{p^2q}) = K_1 \cup G_{p^2q}[\overline{K}_{\phi(pq)}, \overline{K}_{\phi(p^2)}, \overline{K}_{\phi(q)}, \overline{K}_{\phi(p)}].$$

Since $\phi(pq) = pq - p - q + 1$ and $\phi(p^2) = p^2 - p$, by Theorem 2.9 and Remark 2.7,

$$\operatorname{cdim}_{l}(\Gamma(\mathbb{Z}_{p^{2}q})) = \begin{cases} p^{2} + pq - p - 3 & l = 1\\ p^{2} + pq - 2p - 2 & l = 2\\ 1 & l \ge 3. \end{cases}$$

4 I-Clique Metric Dimension Over Corona Product

Let *G* and *H* be two graphs with the vertex sets $\{g_1, \ldots, g_n\}$ and $\{h_1, \ldots, h_m\}$, respectively. The corona of *G* and *H*, denoted by $G \circ H$, is the graph whose vertex and edge

sets are defined as below:

$$V(G \circ H) = V(G) \cup (\bigcup_{i=1}^{n} \{h_{1_{i}}, \dots, h_{m_{i}}\}),$$

$$E(G \circ H) = E(G) \cup \{h_{j_{i}}h_{l_{i}} : h_{j}h_{l} \in E(H) \& 1 \le i \le n\}$$

$$\cup \{g_{i}h_{j_{i}} : 1 \le j \le m, 1 \le i \le n\}.$$

The metric dimension (1-CMD) of corona product graphs was investigated in [26]. After that Peterin and Yero studied the edge metric dimension (2-CMD) over corona product in [18]. In this section, we give a formula for the *l*-CMD of corona product of two graphs *G* and *H* for $l \ge 3$. In what follows, we say the vertex *v* distinguishes two *l*-cliques *U* and *W* if $d(v, U) \neq d(v, W)$.

Theorem 4.1 Let G and H be two connected graphs of order n and m, respectively, and $l \ge 3$ be an integer number. If $\{V_1(H), \ldots, V_k(H)\}$ is the (l-1)-clique set of H, then

$$\operatorname{cdim}_{l}(G \circ H) = \begin{cases} \operatorname{cdim}_{l}(G) & \text{if } \omega(H) < l - 1\\ \operatorname{dim}(G) & \text{if } k = 1 \text{ and } \omega(G) < l \end{cases},$$

where $\omega(G)$ and $\omega(H)$ are the clique numbers of G and H, respectively.

Proof Let $V(G) = \{g_1, \ldots, g_n\}$ and H_i be the *i*-th copy of H in $G \circ H$, $1 \le i \le n$. Then $G \circ H$ is obtained by joining each vertex of the *i*-copy of H to the *i*-th vertex, g_i , of G.

Let S_G be an *l*-clique metric basis of G and $\{V_1(G), \ldots, V_t(G)\}$ be the *l*-clique set of G. Also, let $V_{j_i}(H)$ denote the *i*-the copy of $V_j(H)$ in $G \circ H$, for $1 \le i \le n$ and $1 \le j \le k$. Thus, it is clear that $V'_{j_i}(H) = V_{j_i}(H) \cup \{g_i\}, 1 \le i \le n$, is an *l*-clique in $G \circ H$.

First, we prove that if $\omega(H) < l - 1$ (or k = 0), then $\operatorname{cdim}_l(G \circ H) = \operatorname{cdim}_l(G)$. To do this, we prove that S_G is also an *l*-clique metric basis of $G \circ H$. Clearly S_G is an *l*-clique metric generator for $G \circ H$ and so $\operatorname{cdim}_l(G \circ H) \leq \operatorname{cdim}_l(G)$. Suppose that S is an *l*-clique metric basis of $G \circ H$. We claim that $|S \cap V(H_i)| \leq 1$ for $1 \leq i \leq n$. To prove this claim, suppose, on the contrary that there exist $u, z \in S \cap V(H_i)$. Then $S' = S \setminus \{u\}$ is not an *l*-clique metric generator for $G \circ H$. Thus there exist two *l*-cliques U and W in $G \circ H$ such that $d_{G \circ H}(v, U) = d_{G \circ H}(v, W)$ for each $v \in S'$. Hence $d_{G \circ H}(z, U) = d_{G \circ H}(z, W)$. On the other hand, since $\omega(H) < l - 1$, then $d_{G \circ H}(z, U) = d_{G \circ H}(u, W) = d_G(g_i, U) + 1 = d_G(g_i, W) + 1$. Also, since $\omega(H) < l - 1$, then $d_{G \circ H}(u, U) = d_{G \circ H}(u, W) = d_G(g_i, U) + 1 = d_G(g_i, W) + 1$. Therefore S is not an *l*-clique metric generator for $G \circ H$ which is a contradiction.

Now suppose that $u \in S \cap V(H_i)$. Then $S' = (S - \{u\}) \cup \{g_i\}$ is also an *l*-clique metric basis of $G \circ H$. Because $d_{G \circ H}(u, V_j(G)) = d_G(g_i, V_j(G)) + 1$ for each $1 \leq j \leq t$. By repeating this technique, we reach an *l*-clique metric basis S'' of $G \circ H$ with this property that all vertices of S'' are in G. Therefore, $\operatorname{cdim}_l(G \circ H) \geq \operatorname{cdim}_l(G)$.

Now, suppose that $\omega(G) < l, k = 1$ and $V_1(H)$ is the (l - 1)-clique of H. Let S_G be a 1-clique metric basis of G. We claim that S_G is an l-clique metric generator for $G \circ H$. Then, since $d_{G \circ H}(V'_{1i}(H), v) = d_G(g_i, v)$ for each $v \in S_G$, then every pair

of *l*-cliques $V_{1_i}(H)$'s, $1 \le i \le n$, is distinguished by a vertex of S_G . Therefore, S_G is an *l*-clique metric generator for $G \circ H$ and so $\operatorname{cdim}_l(G \circ H) \le |S_G| = \dim(G)$. Then, it is sufficient to show that $\operatorname{cdim}_l(G \circ H) \ge \dim(G)$. To do this, suppose that S' is an *l*-clique metric basis of $G \circ H$. By the above argument, if $|S' \cap V(G)| = |S'|$, then we have nothing to prove. Otherwise, there exists $v \in S'$ such that $v \in V_{1_i}$ for an $i \in \{1, \ldots, n\}$. Since $d_G(v, V'_{1_j}) = d_G(g_i, V'_{1_j}) + 1$ for $i \ne j \in \{1, \ldots, n\}$, then $S'' = (S - v) \cup \{g_i\}$ is also an *l*-clique metric basis of $G \circ H$. We use this technique to reach an *l*-clique metric basis S''' of $G \circ H$ with this property that $|S''' \cap V(G)| = |S'''|$. Therefore, $\operatorname{cdim}_l(G \circ H) \ge \operatorname{dim}(G)$.

The concept of global forcing sets for maximal matchings was presented in [24]. Here we need to introduce an extension of the idea of global forcing sets for l-cliques of a graph.

A global forcing set for *l*-cliques of a graph *G* is a subset *S* of V(G) with this property that $V_1 \cap S \neq V_2 \cap S$ for any two *l*-cliques V_1 and V_2 of *G*. A global forcing set for *l*-cliques of *G* with minimum cardinality is called a minimum global forcing set for *l*-cliques of *G*, and its cardinality, denoted by φ_l , is the global forcing number for *l*-cliques of *G*.

We can find a global forcing set for *l*-cliques of G by the following ILP.

Let *G* be a graph with $V(G) = \{v_1, \ldots, v_n\}$ and let $\{V_1, \ldots, V_k\}$ be the set of all *l*-cliques of *G*. Let $D_G = [d_{ij}]$ be a $k \times n$ matrix, where $d_{ij} = 1$ if $v_j \in V_i$, and $d_{ij} = 0$ otherwise. Let $F : \{0, 1\}^n \to \mathbb{N}_0$ be defined by

$$F(x_1,\ldots,x_n)=x_1+\cdots+x_n.$$

Then our goal is to determine min F subject to the constraints

$$|d_{i1} - d_{j1}|x_1 + |d_{i2} - d_{j2}|x_2 + \dots + |d_{in} - d_{jn}|x_n > 0, \quad 1 \le i < j \le k.$$

Note that if x'_1, \ldots, x'_n is a set of values for which *F* attains its minimum, then $S = \{v_i : x'_i = 1\}$ is a minimum global forcing set for *l*-cliques of *G*.

Theorem 4.2 Let G and H be two connected graphs with |V(G)| = n, and $l \ge 3$ be an integer number. If $\{V_1(H), \ldots, V_k(H)\}$ is the (l-1)-clique set of H and $\omega(H) = l-1$, then for $k \ge 2$ we have

$$\operatorname{cdim}_{l}(G \circ H) = n \cdot \varphi_{l-1}(H).$$

Proof Let *S* be an *l*-clique metric generator for $G \circ H$. Suppose, on the contrary that there exists H_i , a copy of *H* in $G \circ H$, that $|S \cap V(H_i)| < \varphi_{l-1}(H)$. Then there exist two (l-1)-cliques $V_{j_i}(H)$ and $V_{q_i}(H)$ in H_i such that $S \cap V_{j_i}(H) = S \cap V_{q_i}(H)$. Hence $d_{G \circ H}(u, V_{j_i}(H)) = d_{G \circ H}(u, V_{q_i}(H)) = 0$ for each $u \in S \cap V_{j_i}(H)$, and $d_{G \circ H}(u, V_{j_i}(H)) = d_{G \circ H}(u, V_{q_i}(H)) = 1$ for each $u \in S \cap (V(H_i) \setminus V_{j_i}(H))$. On the other hand, it is not difficult to check that $d_{G \circ H}(u, V_{j_i}(H)) = d_{G \circ H}(u, V_{q_i}(H))$ for each $u \in S \setminus V(H_i)$. Thus, $d_{G \circ H}(u, V_{j_i}(H)) = d_{G \circ H}(u, V_{q_i}(H))$ for each $u \in S$, which is contrary to our assumption. Therefore, $\operatorname{cdim}_l(G \circ H) \ge n \cdot \varphi_{l-1}(H)$. 2880

It remains to prove that $\operatorname{cdim}_{l}(G \circ H) \leq n \cdot \varphi_{l-1}(H)$. Let S_{H} be a minimum global forcing set for (l-1)-cliques of H, and let $S_{H_{i}}$ be the *i*-th copy of S_{H} in $G \circ H$. Then, it is easy to check that $S' = \bigcup_{i=1}^{n} S_{H_{i}}$ is an *l*-clique metric generator for $G \circ H$. Therefore, $\operatorname{cdim}_{l}(G \circ H) \leq n \cdot \varphi_{l-1}(H)$.

5 Complexity Issues

The clique problem is the optimization problem of finding a clique of maximum size in a graph. As a decision problem, we ask simply whether a clique of a given size k exists in the graph.

Theorem 5.1 [8] *The clique problem is NP-complete.*

Therefore, the problem of finding all *l*-cliques in a graph is *NP*-hard. Hence, throughout this section we are assuming that all the *l*-cliques of the graph are given.

In this section, we prove the *l*-CMD problem is NP-complete. Recall that for l = 1, 2, l-CMD problems are the metric dimension and the edge metric dimension problems, respectively. On the other hand, Garey and Johnson [11] proved that the decision version of the metric dimension problem is NP-complete on connected graphs. Also, NP-completeness of computing the edge metric dimension of connected graphs was proved in [14]. Moreover, Epstein, Levin, and Woeginger showed that for split graphs, bipartite graphs, co-bipartite graphs, and line graphs of bipartite graphs, the problem of computing the metric dimension of the graph is NP-hard [10]. Then, we prove NP-completeness of computing the *l*-CMD of connected graphs for $L \ge 3$. Let us start with the below decision problem.

l-CMD problem: For a given positive integer *l*. Let *G* be a connected graph with *n* where $n \ge 3$, *X* be the set of all distinct *l*-cliques of *G*, and let *r* be a positive integer such that $1 \le r \le n - 1$. Is $\operatorname{cdim}_{l}(G) \le r$?

Note that the *l*-CMD problem is the decision version of the problem of computing $\operatorname{cdim}_{l}(G)$ for a given connected graph *G*.

Our proof for showing that the NP-completeness of l-CMD problem is based on a reduction from the metric dimension problem on connected bipartite graphs. We recommend [7] for more details on the reduction technique. Now, we are ready to prove that the l-CMD problem is NP-complete.

Theorem 5.2 *The l-CMD problem, for* $l \ge 3$ *, is NP-complete.*

Proof Note that the *l*-CMD problem is clearly in NP because we can check its feasibility as a *l*-clique metric generator in polynomial time.

For showing NP-hardness of this problem, we present a reduction from the metric dimension for connected bipartite graphs.

Let *G* be a connected bipartite graph where $V(G) = \{g_1, \ldots, g_n\}$. Now, we construct graph *G'* from *G* by taking one copy of *G* and *n* copies of the complete graph K_{l-1} and by joining each vertex of the *i*-th copy of K_{l-1} to the *i*-th vertex of *G*, $i = 1, \ldots, n$. In other words, $G' = G \circ K_{l-1}$. For more illustration, see an example of *G* and *G'* in Fig. 1. Since *G* is bipartite, then $\omega(G) < 3$. Thus by Theorem 4.1, $\operatorname{cdim}_l(G') = \operatorname{cdim}_l(G \circ H) = \operatorname{dim}(G)$. Moreover, it is easy to see that constructing *G'*

Fig. 1 The graph G' constructed from G for l = 3

from *G* can be done in polynomial time. Therefore, if there exists a polynomial-time algorithm for computing $\operatorname{cdim}_l(G')$, then there exists a polynomial-time algorithm for computing $\operatorname{dim}(G)$.

An integer linear programming (ILP) model for the classical metric dimension problem was presented in [6]. Motivated by this work and using its notations, we consider here an IPL model for computing $cdim_l(G)$ for a given connected graph Gand its *l*-cliques. Let G = (V, E) be a connected graphs with $V = \{u_1, \ldots, u_n\}$. Let V_1, \ldots, V_k be the *l*-cliques of G. Also, suppose that $D_G = [d_{ij}]$ is a $k \times n$ matrix such that $d_{ij} = d_G(V_i, u_j)$ for $i \in \{1, \ldots, k\}$ and $j \in \{1, \ldots, n\}$. Consider the binary decision variables x_i for $i \in \{1, \ldots, n\}$ where $x_i \in \{0, 1\}$. By x_i , we mean the vertex u_i is a member of an *l*-clique metric generator of G and $x_i = 0$ for otherwise. we define the objective function F by

$$F(x_1,\ldots,x_n)=x_1+\cdots+x_n.$$

Minimize F subject to the following constraints

$$|d_{i1} - d_{j1}|x_1 + |d_{i2} - d_{j2}|x_2 + \dots + |d_{in} - d_{jn}|x_n > 0, \quad 1 \le i < j \le k$$

is equivalent to finding a basis in the sense that if x'_1, \ldots, x'_n is a set of values for which *F* attains its minimum, then $W = \{u_i \mid x'_i = 1\}$ is a basis for *G*.

For example, consider graph *G* shown in Fig. 2 with 3-cliques $V_1 = \{u_1, u_2, u_3\}$ and $V_2 = \{u_3, u_4, u_5\}$. Then, $D_G = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}$. Therefore, minimize $F(x_1, x_2, x_3) = x_1 + x_2 + x_3 + x_4 + x_5$ subject to the constraints $x_1 + x_2 + x_4 + x_5 > 0, x_1, x_2, x_3, x_4, x_5 \in \{0, 1\}$. Thus *F* attains its minimum for $x_1 = 1, x_2 = x_3 = x_4 = x_5 = 0$, hence $W = \{u_1\}$ is a 3-clique metric basis for *G*.

Acknowledgements The authors are very grateful to the referees for their comments and suggestions.

References

- Afkhami, M., Barati, Z., Khashyarmanesh, K.: On the Laplacian spectrum of the comaximal graphs (submitted)
- Bondy, J.A., Murty, U.S.R.: Graph theory, Graduate Texts in Mathematics, vol. 244. Springer, New York (2008)
- Buszkowski, P.S., Chartrand, G., Poisson, C., Zhang, P.: On K-dimensional graphs and their bases. Periodico Mathematica Hungarica 46, 9–15 (2003)
- Caceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., Wood, D.R.: On the metric dimension of some families of graphs. Electron. Notes Discret. Math. 22, 129–133 (2005)
- Caceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., Wood, D.R.: On the metric dimension of cartesian products of graphs. SIAM J. Discret. Math. 21(2), 423–441 (2007)
- Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discret. Appl. Math. 105, 99–113 (2000)
- Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill book company, The MIT Press (2003)
- Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)
- Das, K.C., Tavakoli, M.: Bounds for metric dimension and defensive k-alliance of graphs under deleted lexicographic product. Trans. Comb. 9(1), 31–39 (2020)
- Epstein, L.L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: hard and easy cases. Algorithmica 72, 1130–1171 (2015)
- Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)
- 12. Hakanen, A., Laihonen, T.: On *l*-metric dimensions in graphs. Fund. Inform. 162, 143–160 (2018)
- Johnson, M.: Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Stat. 3, 203–236 (1993)
- Kelenc, A., Tratnik, N., Yero, I.G.: Uniquely identifying the edges of a graph: the edge metric dimension. Discret. Appl. Math. 256, 204–220 (2018)
- Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discret. Appl. Math. 70, 217–229 (1996)
- Maimani, H.R., Salimi, M., Sattari, A., Yassemi, S.: Comaximal graph of commutative rings. J. Algebra 319, 1801–1808 (2008)
- Schwenk, A.J.: Computing the characteristic polynomial of a graph. In: Graphs and Combinatorics. Lecture Notes in Math., vol. 406, pp. 153–172. Springer, Berlin (1974)
- Peterin, I., Yero, I.G.: Edge metric dimension of some graph operations. Bull. Malays. Math. Sci. Soc. (2019). https://doi.org/10.1007/s40840-019-00816-7
- Saputro, S.W., Simanjuntak, R., Uttunggadewa, S., Assiyatun, H., Baskoro, E.T., Salman, A.N.M., Bača, M.: The metric dimension of the lexicographic product of graphs. Discret. Math. 313, 1045– 1051 (2013)
- Sharma, P.K., Bhatwadekar, S.M.: A note on graphical representation of rings. J. Algebra 176, 124–127 (1995)
- 21. Slater, P.J.: Leaves of trees. Congr. Numer. 14, 549–559 (1975)
- Slavko, M.M., Petrovic, Z.Z.: On the structure of comaximal graphs of commutative rings with identity. Bull. Aust. Math. Soc. 83, 11–21 (2011)

- Tavakoli, M., Rahbarnia, F., Ashrafi, A.R.: Distribution of some graph invariants over hierarchical product of graphs. Appl. Math. Comput. 220, 405–413 (2013)
- Vukičević, D., Zhao, S., Sedlar, J., Xu, S.-J., Došlić, T.: Global forcing number for maximal matchings. Discret. Math. 341, 801–809 (2018)
- Wang, H.J.: Graphs associated to co-maximal ideals of commutative rings. J. Algebra 320, 2917–2933 (2008)
- Yero, I.G., Kuziak, D., Rodríguez-Velázquez, J.A.: On the metric dimension of corona product graphs. Comput. Math. Appl. 61, 2793–2798 (2011)
- 27. Young, M.: Adjacency matrices of zero-divisor graphs of integers modulo n. Involve 8, 753-761 (2015)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.