

*l***-Clique Metric Dimension of Graphs**

Mojgan Afkhami1 · Kazem Khashyarmanesh2 · Mostafa Tavakoli3

Received: 15 April 2021 / Revised: 14 March 2022 / Accepted: 21 April 2022 / Published online: 24 May 2022 © The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2022

Abstract

For an ordered non-empty subset $S = \{v_1, \ldots, v_k\}$ of vertices in a connected graph *G* and an *l*-clique *V*^{\prime} of *G*, the *l*-clique metric *S*-representation of *V*^{\prime} is the vector $r_G^l(V'|S) = (d_G(V', v_1), \dots, d_G(V', v_k))$ where $d_G(V', v_i) = \min\{d_G(v, v_i) : v \in G\}$ V' }. A non-empty subset *S* of $V(G)$ is an *l*-clique metric generator for *G* if all *l*cliques of *G* have pairwise different *l*-clique metric *S*-representations. An *l*-clique metric generator of smallest order is an *l*-clique metric basis for *G*, its order being the *l*-clique metric dimension (*l*-CMD for short) cdim_{*l*}(*G*) of *G*. In this paper, we propose this concept as an extension of the 1-clique metric dimension which is known as the metric dimension, and also study some its properties. Moreover, *l*-CMD for $\Gamma(\mathbb{Z}_n)$ and the corona product of two graphs is investigated. Furthermore, we prove that computing the *l*-CMD of connected graphs is NP-hard and present an integer linear programming model for finding this parameter.

Keywords *l*-Clique metric dimension · Corona product graph

Mathematics Subject Classification 05C12 · 05C25 · 05C76

Communicated by Sanming Zhou.

B Mojgan Afkhami mojgan.afkhami@yahoo.com

> Kazem Khashyarmanesh khashyar@ipm.ir

Mostafa Tavakoli m_tavakoli@um.ac.ir

- ¹ Department of Mathematics, University of Neyshabur, P.O. Box 91136-899, Neyshabur, Iran
- ² Department of Pure Mathematics, Faculty of Mathematical Sciences and Center of Excellence in Analysis on Algebraic Structures, Ferdowsi University of Mashhad, P.O. Box 1159-91775, Mashhad, Iran
- ³ Department of Applied Mathematics, Faculty of Mathematical Sciences, Ferdowsi University of Mashhad, P. O. Box 1159-91775, Mashhad, Iran

1 Introduction

All graphs considered in this paper are undirected and simple.

If $u, v \in V(G)$, then $d_G(u, v)$ denotes the number of edges on a shortest u, v -path in G . A clique V' is a subset of vertices of a graph such that every two distinct vertices in the clique are adjacent. Also, *V'* is called an *l*-clique if $|V'| = l$. For a vertex *u* and an *l*-clique *V*^{\prime} of *G*, the distance between *V*^{\prime} and *u*, denoted by $d_G(u, V')$, is defined as $\min\{d_G(u, v) : v \in V'\}$; in other words, $d_G(u, V') = \min\{d_G(u, v) : v \in V'\}$.

For an ordered non-empty subset $S = \{v_1, \ldots, v_k\}$ of vertices in a connected graph *G* and an *l*-clique *V*^{\prime} of *G*, the *l-clique metric S-representation* of *V*^{\prime} is the vector $r_G^l(V'|S) = (d_G(V', v_1), \ldots, d_G(V', v_k))$. A non-empty subset *S* of *V*(*G*) is an *lclique metric generator* for *G* if all *l*-cliques of *G* have pairwise different *l*-clique metric *S*-representations. *l*-Clique metric generators for special cases $l = 1$ and $l = 2$ are known as *metric generator* and *edge metric generator*, respectively. An *l*-clique metric generator of smallest order is an *l*-*clique metric basis* for *G*, its order being the *l*-*clique metric dimension* (*l*-CMD for short) cdim_{*l*}(*G*) of *G*.

Recall that the special case 1-clique metric dimension is called the metric dimension and denoted by $\dim(G)$ and also the special case 2-clique metric dimension is called the edge metric dimension and denoted by $\dim_e(G)$.

The concept of metric dimension was first introduced by Slater [\[21](#page-17-0)]. Since then lots of work has been done on this topic because of its wide range of applications in modeling of real world problems [\[13](#page-17-1), [15\]](#page-17-2). For instance, Garey and Johnson [\[11](#page-17-3)], and Epstein et al. [\[10](#page-17-4)] studied NP-hardness of computing of metric dimension. Also, this invariant was investigated over the Cartesian product of graphs in [\[5](#page-17-5)], over the lexicographic product of graphs in [\[19](#page-17-6)], over the deleted lexicographic product of graphs in [\[9](#page-17-7)], and over the hierarchical product of graphs in [\[23\]](#page-18-0). Kelenc et al. [\[14\]](#page-17-8) introduced the concept of edge metric dimension. In the present work, we expand the concept of metric dimension as*l*-clique metric dimension where *l* is a natural number. Note that in [\[12\]](#page-17-9) resolving sets locate up to some fixed $l, l \geq 1$, vertices in a graph, while here resolving sets locate the *l*-cliques of a graph. The first section of this paper is dedicated to some properties of this parameter of graphs. In the second section, we compute *l*-CMD for $\Gamma(\mathbb{Z}_n)$. We also obtain the exact value of *l*-CMD of corona product of two graphs in the third section. [\[11](#page-17-3), [14\]](#page-17-8) showed the NP-completeness of *l*-CMD problems for $l = 1$ and $l = 2$, respectively. We prove the NP-completeness of *l*-CMD problems for $l > 3$ in the last section.

Throughout this paper, our notation is standard and taken mainly from [\[2\]](#page-17-10).

2 Basic Results

In this section, we present some basic results on the *l*-clique metric dimension.

The following proposition gives the *l*-CMD of the complete graph *Kn*.

Proposition 2.1 *Let* $n \geq 2$ *. We have*

$$
cdim_l(K_n) = \begin{cases} 1 & l = n \\ n - 1 & \text{otherwise.} \end{cases}
$$

Proof If $l = n$, then clearly cdim_{*l*}(K_n) = 1. Let $l \in \{1, 2\}$. Then, by [\[14,](#page-17-8) Remark 1], we have $edim(K_n) = dim(K_n) = n - 1$. Hence, in this situation, $cdim_l(K_n) =$ edim(K_n) = dim(K_n) = $n-1$. So we assume that $3 \le l \le n-1$ and $n \ge 4$. Let *S* be a minimal *l*-clique metric generator of K_n . If $|S| \leq n-2$, then there exist two distinct vertices $x, y \in K_n \backslash S$. Consider two *l*-cliques L_1 and L_2 such that $x \in L_1, y \in L_2$ and $L_1 \backslash \{x\} = L_2 \backslash \{y\}$. Then one can see that the *l*-clique metric *S*-representations of *L*₁ and *L*₂ are the same, which is impossible. Now, let $S \subseteq V(K_n)$ with $|S| = n - 1$. Then, in this situation, for every two distinct cliques L_1 and L_2 , there exists $s \in S$ such that $s \in L_1 \backslash L_2$. Therefore the component which is corresponding to *s* in the *l*-clique metric *S*-representations of L_1 and L_2 is 0 and 1, respectively, which implies that *S* is an *l*-clique metric generator for K_n . Hence $\text{cdim}_l(K_n) = n - 1$.

Recall that the *wheel graph* $W_{1,n}$ is the graph obtained from a cycle C_n and the graph K_1 by adding all the edges between the vertex of K_1 and every vertex of C_n .

The least integer greater than or equal to a number m is denoted by $\lceil m \rceil$. Also, greatest integer less than or equal to a number m is denoted by $|m|$.

In the following proposition, we investigate the *l*-CMD cdim_{*l*}($W_{1,n}$). Note that if $l = 1$, then cdim_{*l*}($W_{1,n}$) = dim($W_{1,n}$), which is determined in [\[3\]](#page-17-11), as follows.

$$
\dim(W_{1,n}) = \begin{cases} 3 & n = 3, 6 \\ 2 & n = 4, 5 \\ \lfloor \frac{2n+2}{5} \rfloor & n \ge 6. \end{cases}
$$

Also, if $l = 2$, then $\text{cdim}_{l}(W_{1,n}) = \text{edim}(W_{1,n})$, which is

$$
edim(W_{1,n}) = \begin{cases} n & n = 3, 4 \\ n - 1 & n \ge 5, \end{cases}
$$

see [\[14](#page-17-8)].

Proposition 2.2 *Let W*1,*ⁿ be a wheel graph. Then*

$$
cdim_3(W_{1,n}) = \begin{cases} 3 & n = 3 \\ n - \lceil \frac{n}{3} \rceil & n \ge 4. \end{cases}
$$

Proof By Proposition [2.1,](#page-1-0) we have cdim₃($W_{1,3}$) = cdim₃(K_4) = 3 and cdim₄($W_{1,3}$) = cdim₄(K_4) = 1. So assume that $n \geq 4$. Let { g_1, g_2, \ldots, g_n } be the vertices of degree 3 in $W_{1,n}$. Clearly for each two distinct triangles L_1 and L_2 in $W_{1,n}$, either there exists $1 \leq i \leq n$ such that L_1 and L_2 have the common vertex g_i , or L_1 and L_2 have no common vertices from the set ${g_1, g_2, \ldots, g_n}$. In both of the situations, one can easily see that *L*¹ and *L*² have the same 3-clique metric *S*-representations if and only if their non-common vertices do not belong to *S*, where $S \subseteq V(W_{1,n})$. Now let *S* be a 3-clique metric basis of $W_{1,n}$. Clearly $S \subseteq \{g_1, g_2, \ldots, g_n\}$. We consider the following cases.

Case 1 $n = 3k$, where $k \ge 2$. Let *S* be a 3-clique metric basis of $W_{1,n}$. If there are two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$, say g_2 and g_3 , such that $g_2, g_3 \notin S$, then we should have g_4 , $g_5 \in S$ and $g_3\frac{n}{3}$, $g_1 \in S$. So, if $k = 2$, then cdim₃($W_{1,6}$) = 4. Let $k > 2$. Since S is a 3-clique metric basis, without loss of generality, we may assume that *g*₆ ∉ *S*, *g*₇, *g*₈ ∈ *S*,..., *g*₃_{*l*}^{*n*}₃*−*3 ∉ *S*, *g*₃_{*l*}^{*n*}₃*−*2, *g*₃_l^{*n*}_{*n*}₃*−*1 ∈ *S*. Therefore, in this situation, $|S| = n - \lceil \frac{n}{3} \rceil$.

Now, assume that there exists a 3-clique metric basis of *W*1,*n*, say *S*, such that for any two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$ at least one of them belongs to *S*. Without loss of generality, assume that $g_3 \notin S$. Since *S* is a 3-clique metric basis, we may assume that

$$
S = \{g_1, g_2, \ldots, g_n\} \setminus \{g_3, g_6, \ldots, g_{3i}, \ldots, g_{3\lfloor \frac{n}{3} \rfloor}\},
$$

where $1 \le i \le \lfloor \frac{n}{3} \rfloor$. Clearly, in this situation we again have $|S| = n - \lceil \frac{n}{3} \rceil$.

Note that in either of the above situationes, by the structure that we obtain for a 3-clique metric basis of $W_{1,n}$, it is easy to see that any subset of $\{g_1, g_2, \ldots, g_n\}$ with less that $n - \lceil \frac{n}{3} \rceil$ elements is not a 3-clique metric generator of $W_{1,n}$. Therefore, in this case the 3-CMD of $W_{1,n}$ is equal to $n - \lceil \frac{n}{3} \rceil$.

Case 2 $n = 3k + 1$ or $n = 3k + 2$, where $k \ge 1$. First we show that for any 3-clique metric basis of $W_{1,n}$, say *S*, there exist two adjacent vertices of the set { g_1, g_2, \ldots, g_n } such that they do not belong to *S*. Assume on the contrary that for any two adjacent vertices of the set ${g_1, g_2, \ldots, g_n}$, at least one of them belongs to *S*. Without loss of generality, we may assume that $g_3 \notin S$. Since *S* is a 3-clique metric basis, we may assume that

$$
S = \{g_1, g_2, \ldots, g_n\} \setminus \{g_3, g_6, \ldots, g_{3i}, \ldots, g_{3\lfloor \frac{n}{3} \rfloor}\},\
$$

where $1 \le i \le \lfloor \frac{n}{3} \rfloor$. Now consider the set $S' = S \setminus \{g_2\}$. One can easily see that *S*⁻ is a 3-clique metric generator of $W_{1,n}$ with $|S'| < |S|$, which is a contradiction.

Now let *S* be a 3-clique metric basis of $W_{1,n}$. Then there are two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$, say g_2 and g_3 , such that $g_2, g_3 \notin S$. By using a similar discussion as we used in Case 1, we obtain that

$$
S = \{g_1, g_2, \ldots, g_n\} \setminus \{g_2, g_3, g_6, \ldots, g_{3i}, \ldots, g_{3\lfloor \frac{n}{3} \rfloor}\}\
$$

where $1 \le i \le \lfloor \frac{n}{3} \rfloor$ and $|S| = n - \lceil \frac{n}{3} \rceil$. Also, by the structure that we obtain for *S*, it is easy to see that any subset of $\{g_1, g_2, \ldots, g_n\}$ with less that $n - \lceil \frac{n}{3} \rceil$ elements, is not a 3-clique metric generator of *W*1,*n*.

Therefore we have $\text{cdim}_3(W_{1,n}) = n - \lceil \frac{n}{3} \rceil$, when $n \ge 4$.

Similarly to the wheel graph, the *fan graph*, which is denoted by *F*1,*n*, is the graph that is obtained from a path P_n and the graph K_1 by adding all the edges between the vertex of K_1 and every vertex of P_n . In [\[4,](#page-17-12) [14\]](#page-17-8), dim($F_{1,n}$) and edim($F_{1,n}$) are determined as follows:

$$
\dim(F_{1,n}) = \begin{cases} 1 & n = 1 \\ 2 & n = 2, 3 \\ 3 & n = 6 \\ \lfloor \frac{2n+2}{5} \rfloor & \text{otherwise} \end{cases}
$$

and

$$
edim(F_{1,n}) = \begin{cases} n & n = 1, 2, 3 \\ n - 1 & n \ge 4. \end{cases}
$$

In the following proposition, we investigate the *l*-CMD of $F_{1,n}$ in the case that $l = 3$.

Proposition 2.3 *For the fan graph F*1,*ⁿ we have*

$$
cdim_3(F_{1,n}) = \begin{cases} 1 & n = 1, 2 \\ n - \lceil \frac{n}{3} \rceil - 1 & n = 3k, 3k + 2 \text{ for } k \ge 1 \\ n - \lceil \frac{n}{3} \rceil & \text{otherwise.} \end{cases}
$$

Proof Clearly if $n \in \{1, 2, 3\}$, we have cdim₃($F_{1,n}$) = 1. Let {*g*₁, *g*₂, ..., *g_n*} be the vertices of the path P_n in the structure of $F_{1,n}$. Note that for each two distinct triangles L_1 and L_2 in $F_{1,n}$, they have the same 3-clique metric *S*-representations if and only if their non-common vertices do not belong to *S*, where $S \subseteq V(F_{1,n})$. Also clearly each 3-clique metric basis of $F_{1,n}$ is a subset of $\{g_1, g_2, \ldots, g_n\}$. Now we have the following cases:

Case 1 $n = 3k$, where $k \ge 2$. First we show that for any 3-clique metric basis of $F_{1,n}$, say *S*, there exist two adjacent vertices of the set { g_1, g_2, \ldots, g_n } such that they do not belong to *S*. Assume on the contrary that for any two adjacent vertices of the set ${g_1, g_2, \ldots, g_n}$, at least one of them belongs to *S*. If $g_1 \notin S$, then by using a similar method as we used in the proof of Proposition [2.2,](#page-2-0) we get that

$$
S = \{g_1, g_2, \ldots, g_n\} \setminus \{g_1, g_4, \ldots, g_{3i+1}, \ldots, g_{3\lfloor \frac{n}{3} \rfloor - 2}\},\
$$

where $0 \le i \le \lfloor \frac{n}{3} \rfloor - 1$. But one can easily see that the set $S' = S \setminus \{g_{3\lfloor \frac{n}{3} \rfloor - 1}\}\$ is a 3-clique metric generator of $F_{1,n}$ with $|S'| < |S|$, which is a contradiction. Now, let $g_1 \in S$. Then we may assume that

$$
S = \{g_1, g_2, \ldots, g_n\} \setminus \{g_2, g_5, \ldots, g_{3i+2}, \ldots, g_{3\lfloor \frac{n}{3} \rfloor - 1}\},\
$$

where $0 \le i \le \lfloor \frac{n}{3} \rfloor - 1$. Again we see that the set $S' = S \setminus \{g_{3\lfloor \frac{n}{3} \rfloor}\}\$ is a 3-clique metric generator of $F_{1,n}$ with $|S'| < |S|$, which is a contradiction. Therefore for any 3-clique metric basis of $F_{1,n}$, say *S*, there exist two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$ such that they do not belong to *S*. Now it is easy to see that

$$
S = \{g_1, g_2, \ldots, g_n\} \setminus \{g_1, g_2, g_5, \ldots, g_{3i+2}, \ldots, g_{3\lfloor \frac{n}{3} \rfloor - 1}\},\
$$

where $0 \le i \le \lfloor \frac{n}{3} \rfloor - 1$ is a 3-clique metric generator of $F_{1,n}$, and any subset of ${g_1, g_2, \ldots, g_n}$ with cardinality less than $|S| = n - \lceil \frac{n}{3} \rceil - 1$ is not a 3-clique metric generator for $F_{1,n}$. Hence in this case we have $\text{cdim}_3(\tilde{F}_{1,n}) = n - \lceil \frac{n}{3} \rceil - 1$.

Case 2 $n = 3k + 1$, where $k \ge 1$. Let *S* be a 3-clique metric basis. First assume that for any two adjacent vertices of the set ${g_1, g_2, \ldots, g_n}$, at least one of them belongs

to *S*. If $g_1 \in S$, then if $g_2 \notin S$, then $S \setminus \{g_1\}$ is a 3-clique metric generator with less than |*S*| elements which is impossible. Also if $g_2 \in S$, then $S \setminus \{g_2\}$ is a 3-clique metric generator with less than |*S*| elements which is again impossible. So we have $g_1 \notin S$. In this situation, one can easily see that

$$
S = \{g_1, g_2, \ldots, g_n\} \setminus \{g_1, g_4, \ldots, g_{3i+1}, \ldots, g_{3\lfloor \frac{n}{3} \rfloor + 1}\},\
$$

where $0 \le i \le \lfloor \frac{n}{3} \rfloor$ is a 3-clique metric basis for $F_{1,n}$, with $|S| = n - \lceil \frac{n}{3} \rceil$. Now, suppose that there exist two adjacent vertices of the set ${g_1, g_2, \ldots, g_n}$ such that they do not belong to *S*. In this situation, we again have $|S| = n - \lceil \frac{n}{3} \rceil$. Therefore in this case we have cdim₃($F_{1,n}$) = $n - \lceil \frac{n}{3} \rceil$.

Case 3 $n = 3k + 2$, where $k \ge 1$. Similar to Case 1, we can see that for any 3-clique metric basis of $F_{1,n}$, say *S*, there exist two adjacent vertices of the set $\{g_1, g_2, \ldots, g_n\}$ such that they do not belong to *S*. Now one can easily see that

$$
S = \{g_1, g_2, \ldots, g_n\} \setminus \{g_1, g_2, g_5, \ldots, g_{3i+2}, \ldots, g_{3\lfloor \frac{n}{3} \rfloor + 2}\},\
$$

where $0 \le i \le \lfloor \frac{n}{3} \rfloor$, is a 3-clique metric generator of $F_{1,n}$, and any subset of ${g_1, g_2, \ldots, g_n}$ with cardinality less than $|S| = n - \lceil \frac{n}{3} \rceil - 1$ is not a 3-clique metric generator for $F_{1,n}$. Hence in this case we have $\text{cdim}_3(\tilde{F}_{1,n}) = n - \lceil \frac{n}{3} \rceil - 1.$

Proposition 2.4 *Let G be a graph with n vertices such that the number of its l-cliques are t. Then if t* ≥ 2 *, we have* $\text{cdim}_{l}(G) \leq \min\{n, \binom{l}{2}\}$ 2 $\bigg\}$. *Otherwise* cdim_{*l*}(*G*) = 1.

Proof If $l = 1$ or $t \leq 1$, then clearly we are done. So assume that $l \geq 2$. Let L_1, L_2, \ldots, L_t be the *l*-cliques of *G*. For each $1 \leq i \leq j \leq n$, consider a vertex $x_{i,j}$ which belongs to $L_i \setminus L_j$. Let $S = \{x_{i,j} \mid 1 \leq i < j \leq n\}$. Now one can see that *S* is an *l*-clique metric generator for *G* and $|S| \le \left(\frac{t}{2}\right)$ 2 $\Big)$. Hence the result holds.

The next corollary follows from Proposition [2.4.](#page-5-0)

Corollary 2.5 Let G be a graph with at most two l-cliques. Then $\text{cdim}_{l}(G) = 1$.

Proposition 2.6 *Let G be a graph with n vertices and L*1, *L*2,..., *Lt be the l-cliques of G such that* $L_i \nsubseteq \bigcup_{i \neq j, j=1}^t L_j$, *for* $1 \leq i \leq t-1$ *. Then* $\text{cdim}_l(G) \leq t-1$ *.*

Proof Let $x_i \in L_i \setminus \bigcup_{i \neq j, j = 1}^t L_j$, for $1 \leq i \leq t - 1$. Set $S = \{x_i \mid 1 \leq i \leq t - 1\}$. Then the *i*th component of the *l*-clique metric *S*-representation of *L ^j* is zero if and only if $i = j$, for $1 \le i \le t - 1$. Moreover, none of the components of the *l*-clique metric *S*-representation of L_t is zero. Hence *S* is an *l*-clique metric generator of *G*, and so $\text{cdim}_{l}(G) \leq t - 1$.

If we consider disconnected graphs, then *l*-CMD could be easily defined by considering the distance between two vertices in two different components as infinite. In fact we have the following result.

Remark 2.7 Let *G* be a disconnected graph with components G_1, \ldots, G_r . If $I = \{i \mid$ G_i has one *l*−clique} and $J = \{i \mid G_i\}$ has at least two *l*−cliques}, then

$$
cdim_{l}(G) = \sum_{i \in J} cdim_{l}(G_{i}) + \begin{cases} 0 & |I| \leq 1 \\ |I| - 1 & |I| > 1 \end{cases}.
$$

Recall that for two graphs H_1 and H_2 with disjoint vertex sets, the *join* $H_1 \vee H_2$ of the graphs H_1 and H_2 is the graph obtained from the union of H_1 and H_2 by adding new edges from each vertex of H_1 to every vertex of H_2 . The concept of join graph is generalized (in [\[17\]](#page-17-13), it is called as a generalized composition graph). Assume that *G* is a graph on *k* vertices with $V(G) = \{v_1, v_2, \ldots, v_k\}$, and let H_1, H_2, \ldots, H_k be *k* pairwise disjoint graphs. The *G*-*generalized join graph* $G[H_1, H_2, \ldots, H_k]$ of H_1, H_2, \ldots, H_k is the graph formed by replacing each vertex v_i of *G* by the graph H_i and then joining each vertex of H_i to each vertex of H_j whenever $v_i \sim v_j$ in the graph *G*. Now, if the graph *G* consists of two adjacent vertices, then the *G*-generalized join graph $G[H_1, H_2]$ coincides with the join $H_1 \vee H_2$ of the graphs H_1 and H_2 .

Note that in the rest of this section, we assume that there exists at least a nontrivial *H_i*, with $1 \le i \le k$, in $G[H_1, H_2, \ldots, H_k]$.

In the following proposition, we study the *l*-CMD of the *G*-generalized join graph $G[H_1, H_2, \ldots, H_k]$, in the case that H_i 's are empty graphs.

Proposition 2.8 Assume that G is a connected graph on k vertices with $V(G)$ = $\{v_1, v_2, \ldots, v_k\}$ *, and let* H_1, H_2, \ldots, H_k *be k pairwise disjoint empty graphs. If* ${v_1, v_2, \ldots, v_t}$ *, where* $0 \le t \le k$ are the vertices in G such that each of them *belongs to an l-clique, then*

$$
\sum_{i=1}^{t} |V(H_i)| - t \leq \mathrm{cdim}_l(G[H_1, H_2, \ldots, H_k]) \leq \mathrm{cdim}_l(G) + \sum_{i=1}^{t} |V(H_i)| - t.
$$

Proof Let $\{v_{i_1}, v_{i_2}, \ldots, v_{i_t}\}$, where $0 \le t \le k$ be the vertices in *G* such that each of them belongs to at least one *l*-clique. If $t = 0$, then $\text{cdim}_{l}(G[H_1, H_2, \ldots, H_k]) =$ cdim_l(*G*) = 1. So assume that $t > 0$. Let h_1, \ldots, h_t be arbitrary vertices in H_1, \ldots, H_t , respectively. Assume that *S* is an *l*-clique metric generator of the graph $G[H_1, H_2, \ldots, H_k]$. For each $1 \leq i \leq t$, we show that $V(H_i) \setminus \{h_i\} \subseteq S$. Suppose on the contrary that there exists $h'_i \in V(H_i)$ with $h'_i \neq h_i$ such that $h'_i \notin S$. Now consider two *l*-cliques L_1 and L_2 such that h_i is a vertex of L_1 , h'_i is a vertex of L_2 and $L_1 \setminus \{h_i\} = L_2 \setminus \{h'_i\}$. Now, one can see that the *l*-clique metric *S*-representations of L_1 and L_2 are the same, which is a contradiction. Hence $V(H_i)\setminus\{h_i\}\subseteq S$, for each $1 \leq i \leq t$. Therefore we have

$$
\sum_{i=1}^{t} |V(H_i)| - t \leq \mathrm{cdim}_{l}(G[H_1, H_2, \ldots, H_k]).
$$

Let *G*^{\prime} be the induced subgraph on vertex set $\{h_1, \ldots, h_t, v_{t+1}, \ldots, v_k\}$. Clearly *G*^{\prime} is isomorphic to G . Now, let S' be an *l*-clique metric basis for G' . Since, for each

 \Box

 $h_j, h'_j \in V(H_j)$, where $t+1 \leq j \leq k$, we have $d(L, h_j) = d(L, h'_j)$, where *L* is an *l*clique, $S' \cup \bigcup_{i=1}^{t} (V(H_i) \setminus \{h_i\})$ is an *l*-clique metric generator for $G[H_1, H_2, \ldots, H_k]$. So

$$
cdim_{l}(G[H_{1}, H_{2},..., H_{k}]) \leq cdim_{l}(G) + \sum_{i=1}^{t} |V(H_{i})| - t.
$$

In the following theorem, we determine the *l*-CMD of the *G*-generalized join graph $G[H_1, H_2, \ldots, H_n]$, in the case that H_i 's are empty graphs and *G* is a path P_n . In fact the following theorem shows examples where the bounds in Proposition [2.8](#page-6-0) are reached.

Theorem 2.9 Assume that G is a path on $n \geq 2$ vertices with $V(G) = \{v_1, v_2, \ldots, v_n\}$, *and let H*₁, *H*₂,..., *H_n be n pairwise disjoint empty graphs. Then* $\sum_{i=1}^{n} |V(H_i)|$ – $\sum_{i=1}^{n} |V(H_i)|$ $n \leq \text{cdim}_{l}(G[H_1, H_2, \ldots, H_n]) \leq \sum_{i=1}^{n} |V(H_i)| - n + 1$ *, when* $l \in \{1, 2\}$ *. Also if* $|V(H_i)| > 1$, for each $1 \leq i \leq n$, then we have

$$
\operatorname{cdim}_l(G[H_1, H_2, \dots, H_n]) = \begin{cases} \sum_{i=1}^n |V(H_i)| - n + 1 & n = 3, \ l = 1, 2 \\ \sum_{i=1}^n |V(H_i)| - n & n \neq 3, \ l = 1, 2 \\ 1 & l \geq 3. \end{cases}
$$

Proof If $l \geq 3$, then clearly cdim_{*l*}(*G*[*H*₁, *H*₂,..., *H_n*]) = 1. So let $l \in$ $\bigcup_{i=1}^{n} (V(H_i)\setminus\{h_i\})$, where h_i is an arbitrary vertex in H_i . By Proposition [2.8,](#page-6-0) every *l*- $\{1, 2\}$. Let h_1, \ldots, h_n be arbitrary vertices in H_1, \ldots, H_n , respectively. Set $S =$ clique metric generator of $G[H_1, H_2, \ldots, H_n]$ contains *S*. Also $S \cup \{h_1\}$ is an *l*-clique metric generator for $G[H_1, H_2, \ldots, H_n]$. Hence we have

$$
\sum_{i=1}^{n} |V(H_i)| - n \leq cdim_l(G[H_1, H_2, \dots, H_n]) \leq \sum_{i=1}^{n} |V(H_i)| - n + 1.
$$

If $n = 3$, then we have $r_{G[H_1, H_2, H_3]}^1(h_1|S) = r_{G[H_1, H_2, H_3]}^1(h_3|S)$ and also we have $r_{G[H_1, H_2, H_3]}^2(h_1h_2|S) = r_{G[H_1, H_2, H_3]}^2(h_2h_3|S)$, which means that *S* is not an *l*-clique metric generator of $G[H_1, H_2, H_3]$, and as a consequence, $\text{cdim}_{l}(G[H_1, H_2, H_3]) >$ $|S| = \sum_{i=1}^{3} |V(H_i)| - 3$. Set $S' = S \cup \{h_1\}$. Now, one can see that S' is an *l*-clique metric basis of *G*[*H*₁, *H*₂, *H*₃], and so cdim_{*l*}(*G*[*H*₁, *H*₂, *H*₃]) = $\sum_{i=1}^{3} |V(H_i)| - 2$. Now, let $|V(H_i)| > 1$, for each $1 \le i \le n$ and, assume that $n \ne 3$. Then it is easy to see that *S* is an *l*-clique metric generator of $G[H_1, H_2, \ldots, H_n]$, which implies that $\text{cdim}_l(G[H_1, H_2, \ldots, H_n]) = \sum_{i=1}^n |V(H_i)| - n.$

In the following theorem, we determine the *l*-CMD of the *G*-generalized join graph $G[H_1, H_2, \ldots, H_n]$, in the case that H_i 's are empty graphs and *G* is the complete graph *Kn*.

Theorem 2.10 *Assume that* $G \cong K_n$ *with* $V(G) = \{v_1, v_2, \ldots, v_n\}$ *, n* > 2*, and let H*1, *H*2,..., *Hn be n pairwise disjoint empty graphs such that the number of trivial* H_i 's is $r < n$. Then we have

$$
\text{cdim}_{l}(G[H_{1}, H_{2}, \ldots, H_{n}]) = \begin{cases} \sum_{i=1}^{n} |V(H_{i})| - 1 & 2 \leq l \leq n - 1\\ \sum_{i=1}^{n} |V(H_{i})| - n + r - 1 & l = 1, r > 0\\ \sum_{i=1}^{n} |V(H_{i})| - n & l = 1, r = 0\\ \sum_{i=1}^{n} |V(H_{i})| - n & l = n. \end{cases}
$$

Proof Assume that h_1, \ldots, h_n are arbitrary vertices in H_1, \ldots, H_n , respectively. Let $S = \bigcup_{i=1}^{n} (V(H_i)\setminus\{h_i\})$. By Proposition [2.8,](#page-6-0) every *l*-clique metric generator of $\sum_{i=1}^{n} |V(H_i)| - n$. First assume that $l = 1$. Since the places in which there is $G[H_1, H_2, \ldots, H_n]$ contains *S*, which implies that $\text{cdim}_l(G[H_1, H_2, \ldots, H_n]) \geq$ a 2, if exists, appears in the *l*-clique metric *S*-representation of each two distinct h_i and h_j , with $1 \leq i \neq j \leq n$, are different from each other, their *l*-clique metric *S*-representations are not equal. Without loss of generality, assume that $|V(H_1)| = \cdots = |V(H_r)| = 1$. Hence the *l*-clique metric *S*-representation of all h_i 's, for $1 \le i \le r$ is equal. So, in this situation, any *l*-clique metric generator of $G[H_1, H_2, \ldots, H_n]$ is of the form $S \cup \bigcup_{i=1, i \neq j}^{r} \{h_i\}$, for some $1 \leq j \leq r$. Hence we have $\text{cdim}_1(G[H_1, H_2, \ldots, H_n]) = \sum_{i=1}^n |V(H_i)| - n + r - 1$, for $0 < r < n$. Clearly if $r = 0$, then *S* is a 1-clique metric basis of $G[H_1, H_2, \ldots, H_n]$, and so $\text{cdim}_1(G[H_1, H_2, \dots, H_n]) = \sum_{i=1}^n |V(H_i)| - n.$

Now, assume that $l \geq 2$. Let S' be an *l*-clique metric generator and L be an arbitrary *l*-clique of $G[H_1, H_2, \ldots, H_n]$. For each $x \in S'$, we have

$$
d_{G[H_1, H_2, ..., H_n]}(L, x) = \begin{cases} 1 & x \notin L \\ 0 & x \in L. \end{cases}
$$

So, for each two distinct *l*-cliques L_1 and L_2 , $L_1 \cap S' = L_2 \cap S'$ if and only if L_1 and L_2 have the same *l*-clique metric *S'*-representations. If $l = n$, then, for each two distinct *l*-cliques L_1 and L_2 , $L_1 \cap S = L_2 \cap S$ implies that $L_1 = L_2$. This implies that *S* is an *l*-clique metric basis, and so cdim_{*n*}(*G*[*H*₁, *H*₂,..., *H_n*]) = $\sum_{i=1}^{n} |V(H_i)| - n$. Now, assume that $2 \le l \le n - 1$. If there are h_i and h_j with $1 \le i \ne j \le n$ such that they do not belong to an *l*-clique metric generator *S'*, then consider two *l*-cliques L_1 and L_2 with $h_i \in L_1, h_j \in L_2$ and $L_1 \setminus \{h_i\} = L_2 \setminus \{h_j\}$. Since $L_1 \cap S' = L_2 \cap S'$, they have the same *l*-clique metric S'-representations, which is impossible. So in this situation, any *l*-clique metric generator is of the form $S \cup \bigcup_{i=1, i \neq j}^{n} V(H_i)$, for some 1 ≤ *j* ≤ *n*. Thus we have cdim_{*l*}(*G*[*H*₁, *H*₂, ..., *H_n*]) = $\sum_{i=1}^{n} |V(H_i)| - 1$. □

In the following theorem, we determine the *l*-CMD of the *G*-generalized join graph $G[H_1, H_2, \ldots, H_n]$, in the case that H_i 's are empty graphs and *G* is isomorphic to the cycle C_n , where $n > 3$. Note that the case $n = 3$ is obtained by Theorem [3.3.](#page-11-0)

Theorem 2.11 Assume that G is a cycle C_n with vertex set $V(G) = \{v_1, v_2, \ldots, v_n\}$ $n > 3$, and let H_1, H_2, \ldots, H_n be *n* pairwise disjoint empty graphs. Then

$$
\sum_{i=1}^{n} |V(H_i)| - n \leq \mathrm{cdim}_l(G[H_1, H_2, \ldots, H_n]) \leq \sum_{i=1}^{n} |V(H_i)| - n + 2,
$$

when l ∈ {1, 2}*,* and cdim_{*l*}(*G*[*H*₁*, H*₂*,..., H_n*]) = 1*, for l* ≥ 3*. Also, for n* = 4 *and l* ∈ {1, 2}*, we have* cdim_{*l*}(*G*[*H*₁*, H*₂,..., *H_n*]) = $\sum_{i=1}^{n} |V(H_i)| - n + 2$ *, and if* $|V(H_i)| > 1$, for each $1 \le i \le n$, then we have $\text{cdim}_l(G[H_1, H_2, \ldots, H_n]) = \sum_{i=1}^n |V(H_i)| = n$, when $n > 4$ and $l \in \{1, 2\}$ $\sum_{i=1}^{n} |V(H_i)| - n$, when $n > 4$ *and* $l \in \{1, 2\}$ *.*

Proof Clearly if $l \geq 3$, then $\text{cdim}_{l}(G[H_1, H_2, \ldots, H_n]) = 1$. So assume that $l \in \{1, 2\}$. Let h_1, \ldots, h_n be arbitrary vertices in H_1, \ldots, H_n , respectively, and $S = \bigcup_{i=1}^{n} (V(H_i)\setminus\{h_i\})$. By Proposition [2.8,](#page-6-0) every *l*-clique metric generator of $G[H_1, H_2, \ldots, H_n]$, contains *S*. Also *S* ∪ {*h*₁, *h*₂} is an *l*-clique metric generator of $G[H_1, H_2, \ldots, H_n]$. Hence $\sum_{i=1}^n |V(H_i)| - n \leq \text{cdim}_l(G[H_1, H_2, \ldots, H_n]) \leq$
 $\sum_{i=1}^n |V(H_i)| - n + 2$. If $n - 4$, then one can see that $S \cup \{h_1, h_2\}$ is an *l* clique matric $\sum_{i=1}^{n} |V(H_i)| - n + 2$. If $n = 4$, then one can see that $S \cup \{h_1, h_2\}$ is an *l*-clique metric basis of $G[H_1, H_2, \ldots, H_n]$. So $\text{cdim}_l(G[H_1, H_2, H_3, H_4]) = \sum_{i=1}^4 |V(H_i)| - 2$.

Now, assume that $n \ge 5$. Let $|V(H_i)| > 1$, for each $1 \le i \le n$. Since $n \ge 5$ and $|V(H_i)| \geq 2$, for any two vertices h_i , $h_j \notin S$, the distance between h_i and any vertex belonging to *S* ∩ (*V*(H ^{*i*}-1)</sub> ∪ *V*(H ^{*i*}+1)) is one, while the distance between h _{*j*} and any vertex belonging to at least one of these two sets $S \cap V(H_{i-1})$ or $S \cap V(H_{i+1})$ is different than one. Thus, *S* is an 1-clique metric generator for $G[H_1, H_2, \ldots, H_n]$. Now, let L_1 and L_2 be two distinct 2-cliques. If $L_1 \cap S = \phi = L_2 \cap S$, then the places that 1 appears in their 2-clique metric *S*-representations are different. So, without loss of generality, assume that $s \in L_1 \cap S$. If $s \notin L_2$, then the corresponding components to *s* in the 2-clique metric *S*-representations of L_1 and L_2 are zero and nonzero, respectively. Thus, let $s \in L_2$. If $L_1 \subseteq S$ or $L_2 \subseteq S$, then clearly their 2clique metric *S*-representations are different. Now, assume that $L_1 \nsubseteq S$ and $L_2 \nsubseteq S$. Then one can see that the places of 1 in their 2-clique metric *S*-representations are different. So *S* is an 2-clique metric generator for $G[H_1, H_2, \ldots, H_n]$. Hence we have $\text{cdim}_{l}(G[H_1, H_2, \ldots, H_n]) = \sum_{i=1}^{n} |V(H_i)| - n.$

3 *l***-Clique Metric Dimension of** $\Gamma(\mathbb{Z}_n)$

Let R be a commutative ring with nonzero identity. We denote the set of all unit elements and zero divisors of *R* by $U(R)$ and $Z(R)$, respectively. Also by $Z^*(R)$ we denote the set $Z(R)\setminus\{0\}$. Sharma and Bhatwadekar [\[20\]](#page-17-14) defined the comaximal graph of a commutative ring *R*. The *comaximal graph* of *R* is a simple graph whose vertices consists of all elements of *R*, and two distinct vertices *a* and *b* are adjacent if and only if $aR + bR = R$, where cR is the ideal generated by c , for $c \in R$. Let $\Gamma(R)$ be an induced subgraph of the comaximal graph with nonunit elements of *R* as vertices. The properties of the graph $\Gamma(R)$ were studied in [\[16](#page-17-15), [22](#page-17-16), [25](#page-18-1)].

For two integers r and *s*, the notation (r, s) stands for the greatest common divisor of *r* and *s*. Also we denote the elements of the ring \mathbb{Z}_n , where $n > 1$, by 0, 1, 2, ..., $n-1$.

For every nonzero element *a* in \mathbb{Z}_n , if $(a, n) = 1$, then *a* is a unit element; otherwise, $(a, n) \neq 1$, and so *a* is a zerodivisor. Therefore, $|U(\mathbb{Z}_n)| = \phi(n)$ and $|Z(\mathbb{Z}_n)| =$ $n - \phi(n)$, where ϕ is the Euler's totient function.

An integer *d* is said to be a *proper divisor* of *n* if $1 < d < n$ and $d \mid n$. Now let d_1, d_2, \ldots, d_k be the distinct proper divisors of *n*. For $1 \le i \le k$, set

$$
A_{d_i} := \{ x \in \mathbb{Z}_n \mid (x, n) = d_i \}.
$$

Clearly, the sets $A_{d_1}, A_{d_2}, \ldots, A_{d_k}$ are pairwise disjoint and we have

$$
Z^*(\mathbb{Z}_n) = A_{d_1} \cup A_{d_2} \cup \cdots \cup A_{d_k}
$$

and

$$
V(\Gamma(\mathbb{Z}_n)) = \{0\} \cup A_{d_1} \cup A_{d_2} \cup \cdots \cup A_{d_k}.
$$

The following lemma is stated from [\[27\]](#page-18-2).

Lemma 3.1 [\[27,](#page-18-2) Proposition 2.1] *Let* $1 \le i \le k$. *Then* $|A_{d_i}| = \phi(\frac{n}{d_i})$.

In this section, the induced subgraph of $\Gamma(\mathbb{Z}_n)$ on the set A_{d_i} is denoted by $\Gamma(A_{d_i})$, where $1 \leq i \leq k$.

The following lemma states some adjacencies in $\Gamma(\mathbb{Z}_n)$.

Lemma 3.2 *The following statements hold:*

- (i) *Two distinct vertices x and y are adjacent in* $\Gamma(\mathbb{Z}_n)$ *if and only if* $(x, y) \in U(\mathbb{Z}_n)$ *.*
- (ii) *For* $1 \leq i \leq k$, $\Gamma(A_{d_i})$ *is isomorphic to* $K_{\phi(\frac{n}{d_i})}$.
- (iii) *For* $1 \leq i \neq j \leq k$, a vertex of A_{d_i} *is adjacent to a vertex of* A_{d_i} *if and only if* $(d_i, d_j) = 1.$
- *Proof* (i) First suppose that *x* and *y* are adjacent vertices in $\Gamma(\mathbb{Z}_n)$. Assume on the contrary that $d = (x, y) \notin U(\mathbb{Z}_n)$. So we have $x\mathbb{Z}_n \subseteq d\mathbb{Z}_n$ and $y\mathbb{Z}_n \subseteq d\mathbb{Z}_n$. Thus $x\mathbb{Z}_n + y\mathbb{Z}_n \subseteq d\mathbb{Z}_n \neq \mathbb{Z}_n$, and this means that *x* and *y* are not adjacent, which is a contradiction. Now, let $u = (x, y) \in U(\mathbb{Z}_n)$. So there exist $r, s \in \mathbb{Z}$ such that *u* = $rx + sy \in x\mathbb{Z}_n + y\mathbb{Z}_n$. Therefore we have $x\mathbb{Z}_n + y\mathbb{Z}_n = \mathbb{Z}_n$, which implies that *x* and *y* are adjacent.
- (ii) For each two distinct elements $x, y \in A_d$, we have $(x, n) = d_i = (y, n)$. So d_i | (x, y) , which implies that $(x, y) \notin U(\mathbb{Z}_n)$. Hence by (i), we have that *x* and *y* are not adjacent. Therefore by Lemma [3.1,](#page-10-0) we have $\Gamma(A_{d_i}) \cong K_{\phi(\frac{n}{d_i})}$.
- (iii) Let $i, j \in \{1, 2, ..., k\}$ with $i \neq j$. First assume that $x \in A_{d_i}$ and $y \in A_{d_i}$ are adjacent vertices. If $(d_i, d_j) = d \neq 1$, then $(n, d) = d$. Since $(x, n) = d_i$ and $(y, n) = d_j$, we have that $d \mid x, y$. Hence $Rx + Ry \subseteq Rd \neq R$, which is impossible. Now suppose that $(d_i, d_j) = 1$. Let $x \in A_{d_i}$ and $y \in A_{d_j}$ be arbitrary vertices. If $d = (x, y) \notin U(\mathbb{Z}_n)$, then $t = (d, n) \neq 1$. Since $t \mid x, y, n$, we have $t \mid (d_i, d_j)$ and this is impossible. Hence $(x, y) \in U(\mathbb{Z}_n)$ which means that *x* and *y* are adjacent. □

Now, we introduce a simple graph G_n , which plays an important role in the structure of $\Gamma(\mathbb{Z}_n)$. The graph G_n is the simple graph with vertex set $\{d_1, d_2, \ldots, d_k\}$, where d_i 's, $1 \le i \le k$, are the proper divisors of *n*, and two distinct vertices d_i and d_j are adjacent if and only if $(d_i, d_j) = 1$.

Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_t^{\alpha_t}$ be the factorization of *n* to its prime powers, where $t, \alpha_1, \ldots, \alpha_t$ are positive integers and p_1, \ldots, p_t are distinct prime numbers. Every divisor of *n* is of the form $p_1^{\beta_1} p_2^{\beta_2} \dots p_t^{\beta_t}$, for some integers β_1, \dots, β_t , where $0 \leq \beta_i \leq \alpha_i$ for each $i \in \{1, 2, ..., t\}$. Hence the number of proper divisors of *n* is equal to $\prod_{i=1}^{t} (n_i + 1) - 2$. Therefore we have $k = |V(G_n)| = \prod_{i=1}^{t} (n_i + 1) - 2$.

Let $\Gamma^*(\mathbb{Z}_n) = \Gamma(\mathbb{Z}_n) \setminus \{0\}$. Consider the graph G_n and replace each vertex d_i of G_n by $\Gamma[A_{d_i}]$. In view of Lemma [3.1,](#page-10-0) we have

$$
\Gamma^*(\mathbb{Z}_n) = G_n\left[\overline{K}_{\phi\left(\frac{n}{d_1}\right)}, \overline{K}_{\phi\left(\frac{n}{d_2}\right)}, \dots, \overline{K}_{\phi\left(\frac{n}{d_k}\right)}\right].
$$

Now, since the zero element is adjacent to none of the vertices of $\Gamma^*(\mathbb{Z}_n)$, we have

$$
\Gamma(\mathbb{Z}_n)=(K_1\cup \Gamma^*(\mathbb{Z}_n)).
$$

In the following theorem, we study the *l*-CMD of $\Gamma(\mathbb{Z}_n)$.

Theorem 3.3 *Assume that* $\{d_1, d_2, \ldots, d_t\}$ *, where* $1 \le t \le k$ *, are those vertices of* G_n *that each of them belongs to an l-clique. Then for* $l = 1$ *we have*

$$
\sum_{i=1}^{k} \phi\left(\frac{n}{d_i}\right) - k + r \leq \text{cdim}_{l}(\Gamma(\mathbb{Z}_n)) \leq \text{cdim}_{l}(G_n) + \sum_{i=1}^{k} \phi\left(\frac{n}{d_i}\right) - k + r
$$

and for $l > 1$ *,*

$$
\sum_{i=1}^t \phi\left(\frac{n}{d_i}\right) - t \leq \mathrm{cdim}_l(\Gamma(\mathbb{Z}_n)) \leq \mathrm{cdim}_l(G_n) + \sum_{i=1}^t \phi\left(\frac{n}{d_i}\right) - t,
$$

where r is the number of isolated vertices of G_n .

Proof Note that the graph G_n is not connected in general. Let r be the number of isolated vertices of G_n . Since 0 is the isolated vertex of $\Gamma(\mathbb{Z}_n)$, we assume that $0, a_1, \ldots, a_r$ are the isolated vertices of $\Gamma(\mathbb{Z}_n)$. By Remark [2.7,](#page-5-1) we have

$$
cdim_1(\Gamma(\mathbb{Z}_n)) = cdim_1(\Gamma(\mathbb{Z}_n)\setminus\{0,a_1,\ldots,a_r\}) + r.
$$

Now, the results follow from Proposition [2.8](#page-6-0) and Remark [2.7.](#page-5-1)

Example 3.4 Consider the ring \mathbb{Z}_{12} . We have $d_1 = 2$, $d_2 = 3$, $d_3 = 4$, and $d_4 = 6$. Then G_{12} is the graph 2 ~ 3 ~ 4 ∪ {6}, which is isomorphic to $P_3 \cup K_1$. Hence we have

$$
\Gamma(\mathbb{Z}_{12})=K_1\cup G_{12}[\overline{K}_2,\overline{K}_2,\overline{K}_2,K_1]
$$

and, by Theorems [2.9](#page-7-0) and [3.3](#page-11-0) , we have

$$
cdim_l(\Gamma(\mathbb{Z}_{12})) = \begin{cases} 5 & l = 1 \\ 4 & l = 2 \\ 1 & l \ge 3. \end{cases}
$$

In the rest of this section, we discuss the CMD of $\Gamma(\mathbb{Z}_n)$, for (i) $n = p^t$, (ii) $n = pq$ and (iii) $n = p^2q$, where p and q are distinct prime numbers and t is a positive integer.

(i) Let $n = p^t$. Then $\Gamma(\mathbb{Z}_{p^t})$ is an empty graph with $p^t - \phi(p^t) = p^{t-1}$ vertices, and so $\Gamma(\mathbb{Z}_{p^t}) = \overline{K_{p^{t-1}}}$. Now, by Remark [2.7](#page-5-1) we have

$$
cdim_l(\Gamma(\mathbb{Z}_{p^l})) = \begin{cases} p^{t-1} - 1 & l = 1 \\ 1 & l \ge 2. \end{cases}
$$

(ii) Let $n = pq$, where p and q are distinct prime numbers. Since the only proper divisors of *n* are *p* and *q*, the graph G_{pq} is $p \sim q$. So we have

$$
\Gamma(\mathbb{Z}_{pq})=K_1\cup G_{pq}[\overline{K}_{\phi(q)},\overline{K}_{\phi(p)}].
$$

Now, by Theorem [2.9,](#page-7-0) we have

$$
cdim_l(\Gamma(\mathbb{Z}_{pq})) = \begin{cases} p+q-4 & l=1,2\\ 1 & l \geq 3. \end{cases}
$$

(iii) Let $n = p^2q$, where *p* and *q* are distinct prime numbers. Since *p*, *q*, and *pq* are the proper divisors of *n*, the graph G_{p^2q} is $p \sim q \sim p^2 \cup \{pq\}$. Hence we have

$$
\Gamma(\mathbb{Z}_{p^2q})=K_1\cup G_{p^2q}[\overline{K}_{\phi(pq)},\overline{K}_{\phi(p^2)},\overline{K}_{\phi(q)},\overline{K}_{\phi(p)}].
$$

Since $\phi(pq) = pq - p - q + 1$ and $\phi(p^2) = p^2 - p$, by Theorem [2.9](#page-7-0) and Remark [2.7,](#page-5-1)

$$
cdim_l(\Gamma(\mathbb{Z}_{p^2q})) = \begin{cases} p^2 + pq - p - 3 & l = 1\\ p^2 + pq - 2p - 2 & l = 2\\ 1 & l \ge 3. \end{cases}
$$

4 *l***-Clique Metric Dimension Over Corona Product**

Let *G* and *H* be two graphs with the vertex sets $\{g_1, \ldots, g_n\}$ and $\{h_1, \ldots, h_m\}$, respectively. The corona of *G* and *H*, denoted by $G \circ H$, is the graph whose vertex and edge sets are defined as below:

$$
V(G \circ H) = V(G) \cup (\cup_{i=1}^{n} \{h_{1_i}, \dots, h_{m_i}\}),
$$

\n
$$
E(G \circ H) = E(G) \cup \{h_{j_i} h_{l_i} : h_j h_l \in E(H) \& 1 \le i \le n\}
$$

\n
$$
\cup \{g_i h_{j_i} : 1 \le j \le m, 1 \le i \le n\}.
$$

The metric dimension (1-CMD) of corona product graphs was investigated in [\[26](#page-18-3)]. After that Peterin and Yero studied the edge metric dimension (2-CMD) over corona product in [\[18\]](#page-17-17). In this section, we give a formula for the *l*-CMD of corona product of two graphs *G* and *H* for $l > 3$. In what follows, we say the vertex v distinguishes two *l*-cliques *U* and *W* if $d(v, U) \neq d(v, W)$.

Theorem 4.1 *Let G and H be two connected graphs of order n and m, respectively, and* l ≥ 3 *be an integer number. If* {*V*₁(*H*), ..., *V*_k(*H*)} *is the* (*l* − 1)*-clique set of H*, *then*

$$
cdim_l(G \circ H) = \begin{cases} cdim_l(G) & \text{if } \omega(H) < l - 1 \\ dim(G) & \text{if } k = 1 \text{ and } \omega(G) < l \end{cases}
$$

where $\omega(G)$ *and* $\omega(H)$ *are the clique numbers of* G *and* H, *respectively.*

Proof Let $V(G) = \{g_1, \ldots, g_n\}$ and H_i be the *i*-th copy of *H* in $G \circ H$, $1 \le i \le n$. Then $G \circ H$ is obtained by joining each vertex of the *i*-copy of H to the *i*-th vertex, g_i , of G .

Let *S_G* be an *l*-clique metric basis of *G* and { $V_1(G), \ldots, V_t(G)$ } be the *l*-clique set of *G*. Also, let $V_i(H)$ denote the *i*-the copy of $V_i(H)$ in $G \circ H$, for $1 \le i \le n$ and 1 ≤ *j* ≤ *k*. Thus, it is clear that $V'_{j_i}(H) = V_{j_i}(H) \cup \{g_i\}, 1 \le i \le n$, is an *l*-clique in $G \circ H$.

First, we prove that if $\omega(H) < l - 1$ (or $k = 0$), then $\text{cdim}_{l}(G \circ H) = \text{cdim}_{l}(G)$. To do this, we prove that S_G is also an *l*-clique metric basis of $G \circ H$. Clearly S_G is an *l*-clique metric generator for $G \circ H$ and so cdim_l($G \circ H$) < cdim_l(G). Suppose that *S* is an *l*-clique metric basis of *G* ◦ *H*. We claim that $|S \cap V(H_i)| \leq 1$ for $1 \leq i \leq n$. To prove this claim, suppose, on the contrary that there exist $u, z \in S \cap V(H_i)$. Then $S' = S \setminus \{u\}$ is not an *l*-clique metric generator for $G \circ H$. Thus there exist two *l*-cliques *U* and *W* in $G \circ H$ such that $d_{G \circ H}(v, U) = d_{G \circ H}(v, W)$ for each $v \in S'$. Hence $d_{G \circ H}(z, U) = d_{G \circ H}(z, W)$. On the other hand, since $\omega(H) < l - 1$, then $d_{G \circ H}(z, U) = d_{G \circ H}(z, W) = d_G(g_i, U) + 1 = d_G(g_i, W) + 1$. Also, since $\omega(H) < l - 1$, then $d_{G \circ H}(u, U) = d_{G \circ H}(u, W) = d_G(g_i, U) + 1 = d_G(g_i, W) + 1$. Therefore *S* is not an *l*-clique metric generator for $G \circ H$ which is a contradiction.

Now suppose that $u \in S \cap V(H_i)$. Then $S' = (S - \{u\}) \cup \{g_i\}$ is also an *l*-clique metric basis of *G* ◦ *H*. Because $d_{G \circ H}(u, V_i(G)) = d_G(g_i, V_i(G)) + 1$ for each $1 \leq j \leq t$. By repeating this technique, we reach an *l*-clique metric basis *S''* of *G* ∘ *H* with this property that all vertices of *S*["] are in *G*. Therefore, $\text{cdim}_{l}(G \circ H) \geq \text{cdim}_{l}(G)$.

Now, suppose that $\omega(G) < l$, $k = 1$ and $V_1(H)$ is the $(l-1)$ -clique of *H*. Let S_G be a 1-clique metric basis of *G*. We claim that S_G is an *l*-clique metric generator for *G* ◦ *H*. Then, since $d_{G \circ H}(V'_{1_i}(H), v) = d_G(g_i, v)$ for each $v \in S_G$, then every pair

of *l*-cliques V_1 , (H) 's, $1 \le i \le n$, is distinguished by a vertex of S_G . Therefore, S_G is an *l*-clique metric generator for $G \circ H$ and so $\text{cdim}_{l}(G \circ H) \leq |S_G| = \text{dim}(G)$. Then, it is sufficient to show that $\text{cdim}_{l}(G \circ H) \geq \text{dim}(G)$. To do this, suppose that *S*['] is an *l*-clique metric basis of *G* ◦ *H*. By the above argument, if $|S' \cap V(G)| = |S'|$, then we have nothing to prove. Otherwise, there exists $v \in S'$ such that $v \in V_{1_i}$ for an $i \in \{1, ..., n\}$. Since $d_G(v, V'_{1j}) = d_G(g_i, V'_{1j}) + 1$ for $i \neq j \in \{1, ..., n\}$, then $S'' = (S - v) \cup \{g_i\}$ is also an *l*-clique metric basis of $G \circ H$. We use this technique to reach an *l*-clique metric basis S''' of $G \circ H$ with this property that $|S''' \cap V(G)| = |S'''|$. Therefore, $\text{cdim}_{l}(G \circ H) \geq \text{dim}(G)$.

The concept of global forcing sets for maximal matchings was presented in [\[24](#page-18-4)]. Here we need to introduce an extension of the idea of global forcing sets for *l*-cliques of a graph.

A global forcing set for *l*-cliques of a graph *G* is a subset *S* of $V(G)$ with this property that $V_1 \cap S \neq V_2 \cap S$ for any two *l*-cliques V_1 and V_2 of *G*. A global forcing set for *l*-cliques of *G* with minimum cardinality is called a minimum global forcing set for *l*-cliques of *G*, and its cardinality, denoted by φ_l , is the global forcing number for *l*-cliques of *G*.

We can find a global forcing set for *l*-cliques of *G* by the following ILP.

Let *G* be a graph with $V(G) = \{v_1, \ldots, v_n\}$ and let $\{V_1, \ldots, V_k\}$ be the set of all *l*-cliques of *G*. Let $D_G = [d_{ij}]$ be a $k \times n$ matrix, where $d_{ij} = 1$ if $v_j \in V_i$, and $d_{ij} = 0$ otherwise. Let $F : \{0, 1\}^n \to \mathbb{N}_0$ be defined by

$$
F(x_1,\ldots,x_n)=x_1+\cdots+x_n.
$$

Then our goal is to determine min *F* subject to the constraints

$$
|d_{i1}-d_{j1}|x_1+|d_{i2}-d_{j2}|x_2+\cdots+|d_{in}-d_{jn}|x_n>0, \quad 1\leq i < j\leq k.
$$

Note that if x'_1, \ldots, x'_n is a set of values for which *F* attains its minimum, then $S =$ ${v_i : x'_i = 1}$ is a minimum global forcing set for *l*-cliques of *G*.

Theorem 4.2 Let G and H be two connected graphs with $|V(G)| = n$, and $l \geq 3$ be an *integer number. If*{*V*₁(*H*), ..., *V_k*(*H*)}*is the* (*l*−1)*-clique set of H and* $\omega(H) = l-1$ *, then for* $k \geq 2$ *we have*

$$
\operatorname{cdim}_l(G\circ H)=n\cdot\varphi_{l-1}(H).
$$

Proof Let *S* be an *l*-clique metric generator for $G \circ H$. Suppose, on the contrary that there exists H_i , a copy of *H* in $G \circ H$, that $|S \cap V(H_i)| < \varphi_{l-1}(H)$. Then there exist two $(l − 1)$ -cliques $V_{i}(H)$ and $V_{q_i}(H)$ in H_i such that $S ∩ V_{i}(H) = S ∩ V_{q_i}(H)$. Hence $d_{G \circ H}(u, V_{j_i}(H)) = d_{G \circ H}(u, V_{q_i}(H)) = 0$ for each $u \in S \cap V_{j_i}(H)$, and *d*_{*G*◦}*H*(*u*, *V*_{*ii*}(*H*)) = *d*_{*G*◦}*H*(*u*, *V*_{*q_i*}(*H*)) = 1 for each *u* ∈ *S* ∩ (*V*(*H_i*)*V*_{*j_i*}(*H*)). On the other hand, it is not difficult to check that $d_{G \circ H}(u, V_{i}(\mathbf{H})) = d_{G \circ H}(u, V_{q_i}(\mathbf{H}))$ for each $u \in S \setminus V(H_i)$. Thus, $d_{G \circ H}(u, V_{j_i}(H)) = d_{G \circ H}(u, V_{q_i}(H))$ for each $u \in S$, which is contrary to our assumption. Therefore, $\text{cdim}_{l}(G \circ H) \geq n \cdot \varphi_{l-1}(H)$.

 \mathcal{D} Springer

It remains to prove that $\text{cdim}_{l}(G \circ H) \leq n \cdot \varphi_{l-1}(H)$. Let S_H be a minimum global forcing set for $(l - 1)$ -cliques of *H*, and let S_{H_i} be the *i*-th copy of S_H in $G \circ H$. Then, it is easy to check that $S' = \bigcup_{i=1}^n S_{H_i}$ is an *l*-clique metric generator for $G \circ H$. Therefore, cdim_{*l*}($G \circ H$) < $n \cdot \varphi_{l-1}(H)$.

5 Complexity Issues

The clique problem is the optimization problem of finding a clique of maximum size in a graph. As a decision problem, we ask simply whether a clique of a given size *k* exists in the graph.

Theorem 5.1 [\[8](#page-17-18)] *The clique problem is NP-complete.*

Therefore, the problem of finding all *l*-cliques in a graph is *N P*-hard. Hence, throughout this section we are assuming that all the *l*-cliques of the graph are given.

In this section, we prove the *l*-CMD problem is NP-complete. Recall that for $l = 1, 2, l$ -CMD problems are the metric dimension and the edge metric dimension problems, respectively. On the other hand, Garey and Johnson [\[11\]](#page-17-3) proved that the decision version of the metric dimension problem is NP-complete on connected graphs. Also, NP-completeness of computing the edge metric dimension of connected graphs was proved in [\[14](#page-17-8)]. Moreover, Epstein, Levin, and Woeginger showed that for split graphs, bipartite graphs, co-bipartite graphs, and line graphs of bipartite graphs, the problem of computing the metric dimension of the graph is NP-hard [\[10](#page-17-4)]. Then, we prove NP-completeness of computing the *l*-CMD of connected graphs for $L > 3$. Let us start with the below decision problem.

l-CMD problem: For a given positive integer *l*. Let *G* be a connected graph with *n* where $n \geq 3$, *X* be the set of all distinct *l*-cliques of *G*, and let *r* be a positive integer such that $1 \le r \le n - 1$. Is cdim_{*l*}(*G*) $\le r$?

Note that the *l*-CMD problem is the decision version of the problem of computing cdim_l(G) for a given connected graph G .

Our proof for showing that the NP-completeness of *l*-CMD problem is based on a reduction from the metric dimension problem on connected bipartite graphs. We recommend [\[7\]](#page-17-19) for more details on the reduction technique. Now, we are ready to prove that the *l*-CMD problem is NP-complete.

Theorem 5.2 *The l-CMD problem, for* $l \geq 3$ *, is NP-complete.*

Proof Note that the *l*-CMD problem is clearly in NP because we can check its feasibility as a *l*-clique metric generator in polynomial time.

For showing NP-hardness of this problem, we present a reduction from the metric dimension for connected bipartite graphs.

Let *G* be a connected bipartite graph where $V(G) = \{g_1, \ldots, g_n\}$. Now, we construct graph *G*^{\prime} from *G* by taking one copy of *G* and *n* copies of the complete graph K_{l-1} and by joining each vertex of the *i*-th copy of K_{l-1} to the *i*-th vertex of *G*, $i = 1, \ldots, n$. In other words, $G' = G \circ K_{l-1}$. For more illustration, see an example of *G* and *G'* in Fig. [1.](#page-16-0) Since *G* is bipartite, then $\omega(G) < 3$. Thus by Theorem [4.1,](#page-13-0) $\text{cdim}_{l}(G') = \text{cdim}_{l}(G \circ H) = \dim(G)$. Moreover, it is easy to see that constructing G'

Fig. 1 The graph G' constructed from G for $l = 3$

from *G* can be done in polynomial time. Therefore, if there exists a polynomial-time algorithm for computing $\text{cdim}_{l}(G')$, then there exists a polynomial-time algorithm for computing dim(*G*). \Box

An integer linear programming (ILP) model for the classical metric dimension problem was presented in [\[6](#page-17-20)]. Motivated by this work and using its notations, we consider here an IPL model for computing $cdim_l(G)$ for a given connected graph G and its *l*-cliques. Let $G = (V, E)$ be a connected graphs with $V = \{u_1, \ldots, u_n\}$. Let V_1, \ldots, V_k be the *l*-cliques of *G*. Also, suppose that $D_G = [d_{ij}]$ is a $k \times n$ matrix such that $d_{ij} = d_G(V_i, u_j)$ for $i \in \{1, ..., k\}$ and $j \in \{1, ..., n\}$. Consider the binary decision variables x_i for $i \in \{1, ..., n\}$ where $x_i \in \{0, 1\}$. By x_i , we mean the vertex u_i is a member of an *l*-clique metric generator of *G* and $x_i = 0$ for otherwise. we define the objective function *F* by

$$
F(x_1,\ldots,x_n)=x_1+\cdots+x_n.
$$

Minimize *F* subject to the following constraints

$$
|d_{i1} - d_{j1}|x_1 + |d_{i2} - d_{j2}|x_2 + \dots + |d_{in} - d_{jn}|x_n > 0, \quad 1 \le i < j \le k
$$

is equivalent to finding a basis in the sense that if x'_1, \ldots, x'_n is a set of values for which *F* attains its minimum, then $W = \{u_i \mid x'_i = 1\}$ is a basis for *G*.

For example, consider graph *G* shown in Fig. [2](#page-16-1) with 3-cliques $V_1 = \{u_1, u_2, u_3\}$ and $V_2 = \{u_3, u_4, u_5\}$. Then, $D_G = \begin{pmatrix} 0 & 0 & 0 & 1 & 1 \\ 1 & 1 & 0 & 0 & 0 \end{pmatrix}$. Therefore, minimize $F(x_1, x_2, x_3) =$ $x_1+x_2+x_3+x_4+x_5$ subject to the constraints $x_1+x_2+x_4+x_5 > 0, x_1, x_2, x_3, x_4, x_5 \in$ {0, 1}. Thus *F* attains its minimum for $x_1 = 1$, $x_2 = x_3 = x_4 = x_5 = 0$, hence $W = \{u_1\}$ is a 3-clique metric basis for *G*.

Acknowledgements The authors are very grateful to the referees for their comments and suggestions.

References

- 1. Afkhami, M., Barati, Z., Khashyarmanesh, K.: On the Laplacian spectrum of the comaximal graphs (submitted)
- 2. Bondy, J.A., Murty, U.S.R.: Graph theory, Graduate Texts in Mathematics, vol. 244. Springer, New York (2008)
- 3. Buszkowski, P.S., Chartrand, G., Poisson, C., Zhang, P.: On *K*-dimensional graphs and their bases. Periodico Mathematica Hungarica **46**, 9–15 (2003)
- 4. Caceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., Wood, D.R.: On the metric dimension of some families of graphs. Electron. Notes Discret. Math. **22**, 129–133 (2005)
- 5. Caceres, J., Hernando, C., Mora, M., Pelayo, I.M., Puertas, M.L., Seara, C., Wood, D.R.: On the metric dimension of cartesian products of graphs. SIAM J. Discret. Math. **21**(2), 423–441 (2007)
- 6. Chartrand, G., Eroh, L., Johnson, M.A., Oellermann, O.R.: Resolvability in graphs and the metric dimension of a graph. Discret. Appl. Math. **105**, 99–113 (2000)
- 7. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 2nd edn. McGraw-Hill book company, The MIT Press (2003)
- 8. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms, 3rd edn. The MIT Press, Cambridge (2009)
- 9. Das, K.C., Tavakoli, M.: Bounds for metric dimension and defensive *k*-alliance of graphs under deleted lexicographic product. Trans. Comb. **9**(1), 31–39 (2020)
- 10. Epstein, L.L., Levin, A., Woeginger, G.J.: The (weighted) metric dimension of graphs: hard and easy cases. Algorithmica **72**, 1130–1171 (2015)
- 11. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman, New York (1979)
- 12. Hakanen, A., Laihonen, T.: On *l*-metric dimensions in graphs. Fund. Inform. **162**, 143–160 (2018)
- 13. Johnson, M.: Structure-activity maps for visualizing the graph variables arising in drug design. J. Biopharm. Stat. **3**, 203–236 (1993)
- 14. Kelenc, A., Tratnik, N., Yero, I.G.: Uniquely identifying the edges of a graph: the edge metric dimension. Discret. Appl. Math. **256**, 204–220 (2018)
- 15. Khuller, S., Raghavachari, B., Rosenfeld, A.: Landmarks in graphs. Discret. Appl. Math. **70**, 217–229 (1996)
- 16. Maimani, H.R., Salimi, M., Sattari, A., Yassemi, S.: Comaximal graph of commutative rings. J. Algebra **319**, 1801–1808 (2008)
- 17. Schwenk, A.J.: Computing the characteristic polynomial of a graph. In: Graphs and Combinatorics. Lecture Notes in Math., vol. 406, pp. 153–172. Springer, Berlin (1974)
- 18. Peterin, I., Yero, I.G.: Edge metric dimension of some graph operations. Bull. Malays. Math. Sci. Soc. (2019). <https://doi.org/10.1007/s40840-019-00816-7>
- 19. Saputro, S.W., Simanjuntak, R., Uttunggadewa, S., Assiyatun, H., Baskoro, E.T., Salman, A.N.M., Bača, M.: The metric dimension of the lexicographic product of graphs. Discret. Math. 313, 1045– 1051 (2013)
- 20. Sharma, P.K., Bhatwadekar, S.M.: A note on graphical representation of rings. J. Algebra **176**, 124–127 (1995)
- 21. Slater, P.J.: Leaves of trees. Congr. Numer. **14**, 549–559 (1975)
- 22. Slavko, M.M., Petrovic, Z.Z.: On the structure of comaximal graphs of commutative rings with identity. Bull. Aust. Math. Soc. **83**, 11–21 (2011)
- 23. Tavakoli, M., Rahbarnia, F., Ashrafi, A.R.: Distribution of some graph invariants over hierarchical product of graphs. Appl. Math. Comput. **220**, 405–413 (2013)
- 24. Vukičević, D., Zhao, S., Sedlar, J., Xu, S.-J., Došlić, T.: Global forcing number for maximal matchings. Discret. Math. **341**, 801–809 (2018)
- 25. Wang, H.J.: Graphs associated to co-maximal ideals of commutative rings. J. Algebra **320**, 2917–2933 (2008)
- 26. Yero, I.G., Kuziak, D., Rodríguez-Velázquez, J.A.: On the metric dimension of corona product graphs. Comput. Math. Appl. **61**, 2793–2798 (2011)
- 27. Young, M.: Adjacency matrices of zero-divisor graphs of integers modulo *n*. Involve **8**, 753–761 (2015)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.