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Abstract

For an ordered non-empty subset S = {vy, ..., vk} of vertices in a connected graph
G and an [-clique V' of G, the [-clique metric S-representation of V' is the vector
ré(V/|S) = (dg(V',v1),...,dc(V’',vp)) where dg(V’, v;) = min{dg(v,v;) : v €
V’}. A non-empty subset S of V(G) is an [-clique metric generator for G if all I-
cliques of G have pairwise different /-clique metric S-representations. An /-clique
metric generator of smallest order is an /-clique metric basis for G, its order being
the /-clique metric dimension (/-CMD for short) cdim;(G) of G. In this paper, we
propose this concept as an extension of the 1-clique metric dimension which is known
as the metric dimension, and also study some its properties. Moreover, [-CMD for
I'(Zy) and the corona product of two graphs is investigated. Furthermore, we prove
that computing the [-CMD of connected graphs is NP-hard and present an integer
linear programming model for finding this parameter.
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1 Introduction

All graphs considered in this paper are undirected and simple.

Ifu, v € V(G), then dg (u, v) denotes the number of edges on a shortest u, v-path
in G. A clique V' is a subset of vertices of a graph such that every two distinct vertices
in the clique are adjacent. Also, V' is called an [-clique if |V'| = I. For a vertex u and
an [-clique V' of G, the distance between V' and u, denoted by d¢ (u, V'), is defined
as min{dg (u, v) : v € V'}; in other words, dg (1, V') = min{dg(u, v) : v € V'}.

For an ordered non-empty subset S = {vy, ..., vt} of vertices in a connected graph
G and an [-clique V' of G, the [-clique metric S-representation of V' is the vector
rlG(V/|S) = (dg(V',v1),...,dc(V', vt)). A non-empty subset S of V(G) is an -
clique metric generator for G if all [-cliques of G have pairwise different /-clique
metric S-representations. [-Clique metric generators for special cases [ = 1 and [ = 2
are known as metric generator and edge metric generator, respectively. An [-clique
metric generator of smallest order is an [-clique metric basis for G, its order being the
I-clique metric dimension (I-CMD for short) cdim; (G) of G.

Recall that the special case 1-clique metric dimension is called the metric dimension
and denoted by dim(G) and also the special case 2-clique metric dimension is called
the edge metric dimension and denoted by dim,(G).

The concept of metric dimension was first introduced by Slater [21]. Since then
lots of work has been done on this topic because of its wide range of applications
in modeling of real world problems [13, 15]. For instance, Garey and Johnson [11],
and Epstein et al. [10] studied NP-hardness of computing of metric dimension. Also,
this invariant was investigated over the Cartesian product of graphs in [5], over the
lexicographic product of graphs in [19], over the deleted lexicographic product of
graphs in [9], and over the hierarchical product of graphs in [23]. Kelenc et al. [14]
introduced the concept of edge metric dimension. In the present work, we expand the
concept of metric dimension as /-clique metric dimension where / is a natural number.
Note that in [12] resolving sets locate up to some fixed [, [ > 1, vertices in a graph,
while here resolving sets locate the /-cliques of a graph. The first section of this paper
is dedicated to some properties of this parameter of graphs. In the second section,
we compute [-CMD for I'(Z,). We also obtain the exact value of /-CMD of corona
product of two graphs in the third section. [11, 14] showed the NP-completeness of
[-CMD problems for/ = 1 and [ = 2, respectively. We prove the NP-completeness of
[-CMD problems for / > 3 in the last section.

Throughout this paper, our notation is standard and taken mainly from [2].

2 Basic Results

In this section, we present some basic results on the /-clique metric dimension.
The following proposition gives the [-CMD of the complete graph K.

Proposition 2.1 Let n > 2. We have

1 l=n

Cdiml(Kn) = {I’l — 1 otherwise.
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Proof If | = n, then clearly cdim;(K,) = 1. Let/ € {1,2}. Then, by [14, Remark
1], we have edim(K,) = dim(K,) = n — 1. Hence, in this situation, cdim;(K,) =
edim(K,) = dim(K,) =n—1.Soweassumethat3 </ <n—1andn > 4. Let S be
a minimal /-clique metric generator of K,,. If |S| < n — 2, then there exist two distinct
vertices x, y € K,\S. Consider two /-cliques L| and L, suchthat x € Ly, y € Lo
and L1\{x} = L>\{y}. Then one can see that the /-clique metric S-representations of
L1 and L, are the same, which is impossible. Now, let S € V(K,) with |S| =n — 1.
Then, in this situation, for every two distinct cliques L and L;, there exists s € S
such that s € Lq\L>. Therefore the component which is corresponding to s in the
[-clique metric S-representations of L1 and Lj is 0 and 1, respectively, which implies
that S is an /-clique metric generator for K,,. Hence cdim;(K,) =n — 1. O

Recall that the wheel graph W , is the graph obtained from a cycle C, and the
graph K by adding all the edges between the vertex of K| and every vertex of C,,.

The least integer greater than or equal to a number m is denoted by [m]. Also,
greatest integer less than or equal to a number m is denoted by |m].

In the following proposition, we investigate the [-CMD cdim; (W ;). Note that if
[ =1, then cdim;(W; ) = dim(W ,), which is determined in [3], as follows.

3 n=3,6
dim(W;,) =142 n=4,5
|222] n>6.

Also, if [ = 2, then cdim; (W ,) = edim(W; ,,), which is

. n n=23,4
edim(W; ,) = {n—l n>5

see [14].
Proposition 2.2 Let Wy ,, be a wheel graph. Then

. 3 =3
cdimz(Wy ) = {n o Z -1
3 > 4.

Proof By Proposition 2.1, we have cdims (W 3) = cdim3(K4) = 3 and cdimg(W; 3) =
cdim4(K4) = 1. So assume that n > 4. Let {g1, g2, ..., gn} be the vertices of degree
3in Wy ,. Clearly for each two distinct triangles L and Ly in W ,, either there exists
1 <i < nsuchthat L; and L, have the common vertex g;, or L; and L have no
common vertices from the set {g1, g2, . . ., g»}. In both of the situations, one can easily
see that L1 and L, have the same 3-clique metric S-representations if and only if their
non-common vertices do not belong to S, where § € V(Wj ;). Now let S be a 3-clique

metric basis of Wy ;. Clearly S C {g1, 82, - .., gn}. We consider the following cases.
Case 1 n = 3k, where k > 2. Let S be a 3-clique metric basis of Wy ,. If there are
two adjacent vertices of the set {g1, g2, ..., gn}, say g2 and g3, such that g», g3 ¢ S,

then we should have g4, g5 € Sandg3L%J, g1 € S.So,ifk = 2,thencdim3 (W) ¢) = 4.
Letk > 2. Since S is a 3-clique metric basis, without loss of generality, we may assume
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that 86 ¢ S, g7, 88 € S, ey g3|_%1J,3 ¢ S, g3|.%]*2’ g3L%J,1 e S. Therefore, in this
situation, |S| =n — [5].

Now, assume that there exists a 3-clique metric basis of Wy ,, say S, such that for
any two adjacent vertices of the set {g1, g2, ..., g} at least one of them belongs to S.
Without loss of generality, assume that g3 ¢ S. Since S is a 3-clique metric basis, we
may assume that

S= {81782, 7gn}\{g3,867,g317 783'_%]}7

where 1 < i < | 5]. Clearly, in this situation we again have |S| =n — [5].

Note that in either of the above situationes, by the structure that we obtain for a
3-clique metric basis of Wy ,, it is easy to see that any subset of {g1, g2, ..., gn} With
less that n — [37] elements is not a 3-clique metric generator of W ,. Therefore, in
this case the 3-CMD of W, is equal ton — [3].

Case2n =3k+1orn = 3k+2, where k > 1. First we show that for any 3-clique
metric basis of Wy ,, say S, there exist two adjacent vertices of the set {g1, g2, ..., gn}
such that they do not belong to S. Assume on the contrary that for any two adjacent
vertices of the set {g1, g2, - . ., g}, at least one of them belongs to S. Without loss of
generality, we may assume that gz ¢ S. Since S is a 3-clique metric basis, we may
assume that

S={g1.82. ... gn}\{83. g6 - - - 83i» - - 8311},

where 1 < i < |5]. Now consider the set §' = S\{g2}. One can easily see that S’ is
a 3-clique metric generator of W ,, with |S’| < |S|, which is a contradiction.

Now let S be a 3-clique metric basis of Wy . Then there are two adjacent vertices
of the set {g1, g2, ..., gn}, say g2 and g3, such that g, g3 ¢ S. By using a similar
discussion as we used in Case 1, we obtain that

S=1{g1.82.--.. 8n}\{82. 83. 86 - - - 83i» - - 8312}

where 1 <i < |5] and |S| = n — [3]. Also, by the structure that we obtain for S, it
is easy to see that any subset of {g1, g2, ..., g»} with less that n — [5] elements, is
not a 3-clique metric generator of Wy .

Therefore we have cdimz(W; ,) =n — {%], when n > 4. O

Similarly to the wheel graph, the fan graph, which is denoted by F1 ,, is the graph
that is obtained from a path P, and the graph K| by adding all the edges between
the vertex of K| and every vertex of P,. In [4, 14], dim(F} ,) and edim(F) ,) are
determined as follows:

1 n=1
. 2 n=2,73
dim(Fy ,) = 3 n—6
|_2”5—+2J otherwise
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and

n n=12,3

edim(F,,) = {n I

In the following proposition, we investigate the [-CMD of Fj , in the case that
[ =3.

Proposition 2.3 For the fan graph F , we have

1 n=1,2
cdim3(Fi ) ={n—[21—1 n=3k3k+2fork>1
n—[z otherwise.

Proof Clearly if n € {1, 2, 3}, we have cdim3(F; ,) = 1. Let {g1, g2, ..., gn} be the
vertices of the path P, in the structure of F ,. Note that for each two distinct triangles
Ly and Lj in Fj ,, they have the same 3-clique metric S-representations if and only
if their non-common vertices do not belong to S, where S € V (F1,). Also clearly
each 3-clique metric basis of Fi , is a subset of {g1, g2, ..., g:»}. Now we have the
following cases:

Case 1 n = 3k, where k > 2. First we show that for any 3-clique metric basis of
F1.,, say S, there exist two adjacent vertices of the set {g1, g2, ..., g} such that they
do not belong to S. Assume on the contrary that for any two adjacent vertices of the set
{g1, g2, ..., gn}, at least one of them belongs to S. If g; ¢ S, then by using a similar
method as we used in the proof of Proposition 2.2, we get that

S=1{g1.82. ... &I\ {81, 84 ... 83it1. .. &322}

where 0 < i < [5]| — 1. But one can easily see that the set §’ = S\{g312)-1}is a
3-clique metric generator of Fj , with |S’| < |§|, which is a contradiction. Now, let
g1 € S. Then we may assume that

S = {g15 82» ) g?‘l}\{gZ’ gSa ceey g3l+2’ ceey 83\_%J—1},

where 0 < i < L%J — 1. Again we see that the set §' = S\{g3L%J} is a 3-clique metric
generator of Fy , with |S’| < |S|, which is a contradiction. Therefore for any 3-clique
metric basis of Fy ,, say S, there exist two adjacent vertices of the set {g1, g2, ..., gn}
such that they do not belong to S. Now it is easy to see that

S = {gl’ g27 ""gn}\{gl7 g2’ gS’ "'7g3i+2’ "'7g3L%J—1}’

where 0 < i < [5] — 1 is a 3-clique metric generator of Fy ,, and any subset of
{g1, g2, - .., g} with cardinality less than |S| = n — (%1 — 1 is not a 3-clique metric
generator for F ,. Hence in this case we have cdim3(F ,) =n — (%1 — 1.
Case2n = 3k+ 1, where k > 1. Let S be a 3-clique metric basis. First assume that
for any two adjacent vertices of the set {g1, g2, ..., g}, at least one of them belongs

@ Springer



2870 M. Afkhami et al.

to S.If g1 € S, thenif g2 ¢ S, then S\{g1} is a 3-clique metric generator with less
than | S| elements which is impossible. Also if g5 € S, then S\{g>} is a 3-clique metric
generator with less than | S| elements which is again impossible. So we have g ¢ S.
In this situation, one can easily see that

S = {gls g27 -~-sgn}\{81, g41 ~-~ag3i+la ~'-7g3L%J+l}a

where 0 < i < [5] is a 3-clique metric basis for Fy ,, with [S| = n — [57. Now,
suppose that there exist two adjacent vertices of the set {g1, g2, ..., g} such that they
do not belong to S. In this situation, we again have |S| = n — [57]. Therefore in this
case we have cdim3(Fy ,) =n — [5].

Case3n = 3k+2, where k > 1. Similar to Case 1, we can see that for any 3-clique
metric basis of Fy ,, say S, there exist two adjacent vertices of the set {g1, g2, ..., gn}
such that they do not belong to S. Now one can easily see that

S=1{g1.82, . gnI\{81. 82, 85, - - -, &3i+2, - .. g3 2 42}

where 0 < i < L%J, is a 3-clique metric generator of Fi ,, and any subset of
{21, g2, ..., gu} with cardinality less than |S| =n — (%1 — 1 is not a 3-clique metric
generator for F _,. Hence in this case we have cdim3(F ,) =n — (%1 — 1. O

Proposition 2.4 Let G be a graph with n vertices such that the number of its l-cliques

are t. Then if t > 2, we have cdim;(G) < min{n, (;)} Otherwise cdim; (G) = 1.

Proof If I = 1 ort < 1, then clearly we are done. So assume that [ > 2. Let
Li, Ly, ..., L, be the [-cliques of G. Foreach 1 <i < j < n, consider a vertex x;_;
which belongs to L;\L;. Let S = {x; ; | 1 <i < j < n}. Now one can see that S is

t

an [-clique metric generator for G and |S| < < ) Hence the result holds. O

2

The next corollary follows from Proposition 2.4.

Corollary 2.5 Let G be a graph with at most two [-cliques. Then cdim;(G) = 1.

Proposition 2.6 Let G be a graph with n vertices and L1, Lo, ..., L; be the l-cliques
of G such that L; g_ UE#/',/=1 Lj, forl <i <t— 1. Thencdim/(G) <t -1

Proof Let x; € Li\Ujzj j=y Ljsfor 1 <i <r—1.SetS={x|1<i<r-1}
Then the ith component of the /-clique metric S-representation of L is zero if and
only if i = j, for 1 <i <t — 1. Moreover, none of the components of the /-clique
metric S-representation of L, is zero. Hence S is an /-clique metric generator of G,
and so cdim;(G) <t — 1. O

If we consider disconnected graphs, then /-CMD could be easily defined by con-
sidering the distance between two vertices in two different components as infinite. In
fact we have the following result.

@ Springer



I-Clique Metric Dimension of Graphs 2871

Remark 2.7 Let G be a disconnected graph with components Gy, ..., G,. If [ = {i |
G hasonel—clique} and J = {i | G; has at least two [ —cliques}, then

0 1) <1

cdimy (G) = chlml(Gi)—l— { -1 11

ieJ

Recall that for two graphs H; and H, with disjoint vertex sets, the join Hy vV H; of
the graphs H; and H; is the graph obtained from the union of H; and Hj by adding
new edges from each vertex of H; to every vertex of H. The concept of join graph
is generalized (in [17], it is called as a generalized composition graph). Assume that
G is a graph on k vertices with V(G) = {vi, va, ..., v}, and let Hy, Ha, ..., Hi
be k pairwise disjoint graphs. The G-generalized join graph G[H1, Hy, . .., Hi] of
Hiy, Hy, ..., Hy is the graph formed by replacing each vertex v; of G by the graph H;
and then joining each vertex of H; to each vertex of H; whenever v; ~ v; in the graph
G. Now, if the graph G consists of two adjacent vertices, then the G-generalized join
graph G[H, H>] coincides with the join H; VvV H, of the graphs H; and H;.

Note that in the rest of this section, we assume that there exists at least a nontrivial
H;,with1 <i <k,in G[Hy, Ha, ..., Hi].

In the following proposition, we study the /-CMD of the G-generalized join graph
G|[H1, Hy, ..., Hi], in the case that H;’s are empty graphs.

Proposition 2.8 Assume that G is a connected graph on k vertices with V(G) =
{vi,v2,..., v}, and let Hy, Hy, ..., Hy be k pairwise disjoint empty graphs. If
{vi,v2,..., v}, where 0 < t < k are the vertices in G such that each of them
belongs to an l-clique, then

t t
S IVH)| —t < odimy(GLH). Hy. ... Hy) < odimy(G) + Y _ |V (H)| 1.

i=1 i=1

Proof Let {v;,, vi,, ..., v;,}, where 0 < t < k be the vertices in G such that each of
them belongs to at least one /-clique. If t+ = 0, then cdim;(G[Hy, Ha, ..., Hy]) =
cdim;(G) = 1. So assume that + > 0. Let hy,..., h; be arbitrary vertices in
Hy, ..., Hy, respectively. Assume that S is an /-clique metric generator of the graph
G[Hy, Hy, ..., Hi]. Foreach 1 < i < t, we show that V(H;)\{h;} < S. Suppose
on the contrary that there exists 4; € V(H;) with h; # h; such that i, ¢ S. Now
consider two /-cliques L and L, such that &; is a vertex of L, h: is a vertex of L,
and L1\{h;} = Ly\{h}. Now, one can see that the [-clique metric S-representations
of L1 and L, are the same, which is a contradiction. Hence V (H;)\{h;} < S, for each
1 <i < t. Therefore we have

t
Y IV(HY)| —t < cdimy(GIHy, Hy, ..., Hy)).
i=1

Let G’ be the induced subgraph on vertex set {hy, ..., hs, vriq, ..., v} Clearly G’
is isomorphic to G. Now, let S” be an /-clique metric basis for G’. Since, for each
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hj,h/j € V(Hj),wheret+1 < j <k,wehaved(L,h;) = d(L,h’j),whereLisanl-

clique, S/UU§:1 (V(H)\{h;}) is an [-clique metric generator for G[Hy, Ha, ..., H].
So

t
cdim;(G[H), Ha, ..., Hi]) < cdimy(G) + Z [V(H)| —1.

i=1
O

In the following theorem, we determine the /-CMD of the G-generalized join graph
G[Hi, Ha, ..., Hy], in the case that H;’s are empty graphs and G is a path P,. In
fact the following theorem shows examples where the bounds in Proposition 2.8 are
reached.

Theorem 2.9 Assume that G isapathonn > 2verticeswith V(G) = {v1, va, ..., Uy},
and let Hy, Hy, ..., H, be n pairwise disjoint empty graphs. Then Y _;_, |V (H;)| —
n < cdim;(G[Hy, Hy, ..., H,]) < Z?:l |[V(H;))| —n+ 1, whenl € {1,2}. Also if
|V(H;)| > 1, foreach 1 <i < n, then we have

P IWVH) —n+1 n=3,1=1,2
cdimi(G[Hy, Ha, ..., Hyl) = { Y-, [V(H)| —n n#3, 1=1,2
1 [ >3.

Proof If | > 3, then clearly cdim;(G[H,,H>,....,H,]) = 1. So let | €
{1,2}. Let hy, ..., h, be arbitrary vertices in Hy, ..., H,, respectively. Set § =
UL] (V(H;j)\{hi}), where h; is an arbitrary vertex in H;. By Proposition 2.8, every [-
clique metric generator of G[Hy, H3, ..., H,] contains S. Also SU {h}is an [-clique
metric generator for G[H1, Ha, ..., H,]. Hence we have

n

n
SOV H) —n < cdimy(GLH, Ha. ... Hy) < Y IV(H)| = n + 1.
i=1 i=1

If n = 3, then we have &y, gy (B11S) = réigy gy gy (131S) and also we have
ré[H.,Hz,Hﬂ(hlhz'S) = ré[Hl,H2’H3](h2h3|S), which means that S is not an /-clique
metric generator of G[Hj, Ha, Hz], and as a consequence, cdim;(G[H;, H>, H3]) >
|S| = Z?:] |V (H;)| — 3. Set S’ = S U {h;}. Now, one can see that §’ is an /-clique
metric basis of G[H;, Hy, H3], and so cdim;(G[H, H, H3]) = Z?:l |V(H;)| — 2.
Now, let |V (H;)| > 1, foreach 1 <i < n and, assume that n # 3. Then it is easy to
see that S is an [-clique metric generator of G[Hy, H3, ..., H,], which implies that
cdimy(G[Hy, Ha, ..., Hy)) = > 1 IV(H)| — n. O

In the following theorem, we determine the /-CMD of the G-generalized join graph

G[Hi, Hy, ..., Hy],inthe case that H;’s are empty graphs and G is the complete graph
K.
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Theorem 2.10 Assume that G = K,, with V(G) = {vi, va, ..., v,}, n > 2, and let
Hy, Hy, ..., H, be n pairwise disjoint empty graphs such that the number of trivial
H;’s isr < n. Then we have

Y IVH)| -1 2<l<n-—1
. _ Z:’:1|V(Hi)|—n+r—1 Il=1,r>0
cdim;(G[Hy, Ha, ..., H,]) = SV (H)| - n I=1 r=0
Y IV(H)| —n [ =n.
Proof Assume that Ay, ..., h, are arbitrary vertices in Hy, ..., H,, respectively. Let

S = U'_(V(H)\{h;}). By Proposition 2.8, every /-clique metric generator of
G[Hy, Ha, ..., H,] contains S, which implies that cdim;(G[Hy, Ha, ..., H,]) >
> IV(H;)| — n. First assume that / = 1. Since the places in which there is
a 2, if exists, appears in the /-clique metric S-representation of each two distinct
hi and h;, with 1 < i # j < n, are different from each other, their /-clique
metric S-representations are not equal. Without loss of generality, assume that
|V(Hy)| = --- = |V(H;)| = 1. Hence the [-clique metric S-representation of all
h;’s, for 1 < i < r is equal. So, in this situation, any /-clique metric generator of
G[H,, Hy, ..., H,] is of the form S U Ule,i;&j{hi}, for some 1 < j < r. Hence
we have cdim(G[H, Hy, ..., H,]) = Z?:l [V(H)|—n+r—1,for0 < r < n.
Clearly if r = 0, then S is a 1-clique metric basis of G[H1, Hz, ..., H,], and so
cdim((G[Hy, Ha, ..., Hy]) = X1 [V(H)| —n.

Now, assume that/ > 2. Let S’ be an [-clique metric generator and L be an arbitrary
I-clique of G[H}, Hy, ..., H,]. For each x € §’, we have

1 x¢L
0 xelL.

So, for each two distinct [-cliques Lj and Ly, Ly NS’ = Ly NS’ if and only if L;
and L, have the same [-clique metric S’-representations. If [ = n, then, for each two
distinct /-cliques L1 and Lo, L1 NS = L, N S implies that L1 = L. This implies that
S is an [-clique metric basis, and so cdim, (G[H1, Ha, ..., H,]) = Zf’zl |V (H;)| —n.
Now, assume that 2 <[ < n — 1. If there are /; and hj with 1 <i # j < n such that
they do not belong to an [-clique metric generator S’, then consider two I-cliques L1
and L, with h; € Ly, /’lj € Ly and L1\{h;} = Lz\{hj}. Since LiNS =L,NY,
they have the same /-clique metric S’-representations, which is impossible. So in this
situation, any /-clique metric generator is of the form S U U;’:Li £ V (H;), for some
1 < j < n. Thus we have cdimy(G[Hy, Ha, ..., Hy]) = Y/, [V(H;)| — 1. O

In the following theorem, we determine the /-CMD of the G-generalized join graph
G[H., Hy, ..., H,], in the case that H;’s are empty graphs and G is isomorphic to
the cycle C,, where n > 3. Note that the case n = 3 is obtained by Theorem 3.3.
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Theorem 2.11 Assume that G is a cycle C,, with vertex set V(G) = {vy, va, ..., U},
n > 3, and let Hy, Hy, ..., H, be n pairwise disjoint empty graphs. Then

n n
S IV H)| —n < cdim(GIHy, Hy,.... Hy)) < Y|V (H)| —n+2,
i=1 i=1

when | € {1,2}, and cdim;(G[Hy, H», ..., H,]) = 1, for | > 3. Also, forn = 4
andl € {1, 2}, we have cdim;(G[Hy, Ha, ..., H,]) = Z?:] |V(H))| — n+2, and
if [V(H;)| > 1, for each 1 < i < n, then we have cdim;(G[H1, Ha, ..., Hy,]) =
Y IV(H)| —n, whenn > 4andl € {1, 2}.

Proof Clearly if [ > 3, then cdim;(G[Hy, Hy, ..., H,]) = 1. So assume that

I € {1,2}. Let hy, ..., h, be arbitrary vertices in Hy, ..., H,, respectively, and
S = Uj_;(V(H)\{hi}). By Proposition 2.8, every /-clique metric generator of
G[H\, Hy, ..., Hy], contains S. Also S U {h1, ho} is an [-clique metric generator

of G|H;, H», ..., H,]. Hence Z?:l |V(H})| —n < cdimy(G[Hy, Hy, ..., Hy]) <
Z?:l |V (H;)| —n+2.If n = 4, then one can see that SU{h1, h,} is an [-clique metric
basis of G[Hy, Ha, . .., Hy]. So cdim/(G[H,, Ha, Hs, Hy]) = Yi_, |V (H)| — 2.
Now, assume that n > 5. Let |V (H;)| > 1,foreach 1 <i < n. Sincen > 5 and
|V (H;)| > 2, for any two vertices h;, h; ¢ S, the distance between &; and any vertex
belonging to S N (V (H;-1) U V(H,41)) is one, while the distance between & ; and
any vertex belonging to at least one of these two sets S NV (H;_1) or SN V(Hjt1)
is different than one. Thus, S is an 1-clique metric generator for G[H;, Ha, ..., H,].
Now, let L1 and L, be two distinct 2-cliques. If L1 NS = ¢ = Ly N S, then the
places that 1 appears in their 2-clique metric S-representations are different. So, with-
out loss of generality, assume that s € L1 N S. If s ¢ Ly, then the corresponding
components to s in the 2-clique metric S-representations of L and L, are zero and
nonzero, respectively. Thus, let s € L. If L1 € S or L, C S, then clearly their 2-
clique metric S-representations are different. Now, assume that L ¢ S and L, € S.
Then one can see that the places of 1 in their 2-clique metric S-representations are
different. So S is an 2-clique metric generator for G[H;, Hz, . .., H,]. Hence we have
cdim;(G[Hy, Hy, ..., Hy)) :Z?:l |V(H;)| — n. |

3 I-Clique Metric Dimension of I'(Z,)

Let R be a commutative ring with nonzero identity. We denote the set of all unit
elements and zero divisors of R by U (R) and Z(R), respectively. Also by Z*(R) we
denote the set Z(R)\{0}. Sharma and Bhatwadekar [20] defined the comaximal graph
of a commutative ring R. The comaximal graph of R is a simple graph whose vertices
consists of all elements of R, and two distinct vertices a and b are adjacent if and only
if aR + bR = R, where cR is the ideal generated by c, for c € R. Let I'(R) be an
induced subgraph of the comaximal graph with nonunit elements of R as vertices. The
properties of the graph I"(R) were studied in [16, 22, 25].

For two integers r and s, the notation (7, s) stands for the greatest common divisor of
r and 5. Also we denote the elements of the ring Z,,, wheren > 1,by0, 1,2, ..., n—1.
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For every nonzero element a in Z,, if (a, n) = 1, then a is a unit element; otherwise,
(a,n) # 1, and so a is a zerodivisor. Therefore, |U(Z,)| = ¢(n) and |Z(Z,)| =
n — ¢ (n), where ¢ is the Euler’s totient function.

An integer d is said to be a proper divisor of n if 1 < d < n and d | n. Now let
dy, d, ..., dy be the distinct proper divisors of n. For 1 <i <k, set

Ay i={xeZ,| (x,n) =d}.
Clearly, the sets Ay, Ag,, . .., Ag, are pairwise disjoint and we have
Z¥(Zy) = Agy UAg5 U---U Ay,
and
VI (Zp) ={0UAg UAg U---UAy.

The following lemma is stated from [27].
Lemma 3.1 [27, Proposition 2.1] Let 1 <i < k. Then |Ay,| = ¢(d£,~)'

In this section, the induced subgraph of I"'(Z,,) on the set A4, is denoted by I'(Ay; ),
where 1 <i <k.
The following lemma states some adjacencies in I'(Z;).

Lemma 3.2 The following statements hold:

(i) Two distinct vertices x and y are adjacent in I'(Zy) if and only if (x, y) € U(Zy).
(ii) For1 <i <k, I'(Ag,) is isomorphic to Kd)((}i.)'
(i) For1 <i # j < k, avertex of Ag; is adjaclem‘ 10 a vertex of Aq; if and only if
(di,dj) = 1.

Proof (i) First suppose that x and y are adjacent vertices in I"(Z,). Assume on the
contrary thatd = (x, y) ¢ U(Z,). So we have xZ, C dZ, and yZ, < dZ,. Thus
XZn + yZy < dZy, # Z,, and this means that x and y are not adjacent, which is
a contradiction. Now, let u = (x, y) € U(Z,). So there exist r, s € Z such that
u=rx+sy € xZn + yZy. Therefore we have xZ, + yZ, = Z,, which implies
that x and y are adjacent.

(ii) For each two distinct elements x, y € Ay, we have (x,n) = d; = (y,n). So
d; | (x,y), which implies that (x, y) ¢ U(Z,). Hence by (i), we have that x and
y are not adjacent. Therefore by Lemma 3.1, we have I'(A,4,) = f¢(%).

(i) Leti, j € {1,2,...,k} with i # j. First assume that x € Ay anél y € Adj
are adjacent vertices. If (d;,d;) = d # 1, then (n,d) = d. Since (x,n) = d;
and (y,n) = d;, we have thatd | x, y. Hence Rx + Ry C Rd # R, which is
impossible. Now suppose that (d;, dj) = 1. Letx € Ag, and y € Ag; be arbitrary
vertices. If d = (x,y) ¢ U(Z,), thent = (d,n) # 1. Since t | x, y, n, we have
t | (d;, d;) and this is impossible. Hence (x, y) € U(Z,) which means that x and
y are adjacent. O
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Now, we introduce a simple graph G,,, which plays an important role in the structure
of I'(Z,). The graph G, is the simple graph with vertex set {d1, d3, ..., dr}, where
di’s, 1 <i < k, are the proper divisors of n, and two distinct vertices d; and d; are
adjacent if and only if (d;, d;) = 1.

Let n = p}'py*...p;" be the factorization of n to its prime powers, where

t,a1, ..., 0 are positive integers and py, ..., p; are distinct prime numbers. Every

divisor of n is of the form p’lglpgz...pf}’, for some integers By, ..., B:, where

0 < B <a; foreachi € {1,2,...,t}. Hence the number of proper divisors of
n is equal to ]_E:l (n; +1) — 2. Therefore we have k = |V (G,)| = ]_[fz1 (n; +1)—2.

Let ' (Z,) = I'(Z,)\{0}. Consider the graph G, and replace each vertex d; of G,
by I'[ A4 . In view of Lemma 3.1, we have

I'Z) =Gy |K /K (0Ns s K 100 |-
=6 Byl oy o)

Now, since the zero element is adjacent to none of the vertices of I'*(Z,), we have
D(Zy) = (K1 UT*(Zy)).

In the following theorem, we study the /-CMD of I'(Z,).

Theorem 3.3 Assume that {dy, d,, ..., d;}, where 1 <t <k, are those vertices of G,
that each of them belongs to an l-clique. Then forl = 1 we have

k

k
§¢ (%) —k +r < cdim(I'(Zy,)) < cdimy(G,) + ;¢> (:il_,) — k4t

and forl > 1,
d n d n
§¢ (dT-) — 1 < cdimy(I'(Zy)) < cdim(G,) + ;‘qs (dT-) 1,

where r is the number of isolated vertices of G,.

Proof Note that the graph G, is not connected in general. Let r be the number of
isolated vertices of G,. Since O is the isolated vertex of I'(Z,), we assume that
0,ay, ..., a, are the isolated vertices of I'(Z,). By Remark 2.7, we have

cdim(I'(Z,)) = cdim | (I'(Z,)\{0, ay, ..., ar}) +r.

Now, the results follow from Proposition 2.8 and Remark 2.7. O

Example 3.4 Consider the ring Zj>. We have d) = 2,d> = 3,d3 = 4, and dy = 6.
Then G, is the graph 2 ~ 3 ~ 4 U {6}, which is isomorphic to P3 U K. Hence we
have

I'(Z12) = K1 UG1alK2, K2, K2, Ki]
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and, by Theorems 2.9 and 3.3 , we have

5 1=1
cdimy(D(Z1p) =14 1=2
1 1>3.

In the rest of this section, we discuss the CMD of I'(Z,,), for (i) n = p’, (ii)n = pq
and (iii) n = p?q, where p and ¢ are distinct prime numbers and ¢ is a positive integer.

(i) Letn = p'. Then'(Z,) is an empty graph with p’ — ¢ (p') = p'~!

so'(Zy) = K 1. Now, by Remark 2.7 we have

vertices, and

—1_ _
cdimy(T'(Zy0)) = {f =1

(i) Let n = pgq, where p and g are distinct prime numbers. Since the only proper
divisors of n are p and g, the graph G, is p ~ ¢g. So we have

F(Zm) =K U qu[?qb(q)»Eqb(p)l
Now, by Theorem 2.9, we have

. +g—4 1=1,2
cdlm,(r(qu))z{f 4 13

(iii) Let n = p?q, where p and ¢ are distinct prime numbers. Since p, ¢, and pq are
the proper divisors of n, the graph G 2, is p ~ g ~ p* U {pgq}. Hence we have

F(szq) =K U szq[K¢(pq), K¢(p2)’ Ksq), Kopl-

Since ¢(pq) = pg — p —q + 1 and ¢p(p*>) = p? — p, by Theorem 2.9 and
Remark 2.7,

pPP+pg—-p-=3 I=1
cdimy(M'(Zy2,)) = { p>+pqg—2p—2 =2
1 [>3

4 |-Clique Metric Dimension Over Corona Product

Let G and H be two graphs with the vertex sets {g1, ..., g,}and {hy, ..., h;,}, respec-
tively. The corona of G and H, denoted by G o H, is the graph whose vertex and edge
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sets are defined as below:

V(GoH)=V(G)U U {hi,, ..., "y},
E(GoH)=E(G)U{hjhy :hjh € E(H)&1 <i <n}

U{gihj 11 <j<m,1=<i<n}

The metric dimension (1-CMD) of corona product graphs was investigated in [26].
After that Peterin and Yero studied the edge metric dimension (2-CMD) over corona
product in [18]. In this section, we give a formula for the /-CMD of corona product
of two graphs G and H for [ > 3. In what follows, we say the vertex v distinguishes
two [-cliques U and W if d(v, U) # d(v, W).

Theorem 4.1 Let G and H be two connected graphs of order n and m, respectively,
andl > 3 be an integer number. If {(V1(H), ..., Vi(H)} is the (I — 1)-clique set of H,
then

i if o(H —1
edimy(G o H) = 1 C4im(G) T o(H) <1 ,
dim(G) ifk=1and w(G) <!

where w(G) and w(H) are the clique numbers of G and H, respectively.

Proof Let V(G) = {g1,...,&n} and H; be the i-thcopyof HinGo H,1 <i <n.
Then G o H is obtained by joining each vertex of the i-copy of H to the i-th vertex,
8i, of G.

Let S be an [-clique metric basis of G and {V1(G), ..., V;(G)} be the [-clique set
of G. Also, let V;, (H) denote the i-the copy of V;(H)in G o H,for1 <i < n and
1 < j < k. Thus, it is clear that ij[ (H)=V;(H)U{gi},1 <i <n,isan[-clique in
GoH.

First, we prove that if w(H) <[ — 1 (or k = 0), then cdim; (G o H) = cdim;(G).
To do this, we prove that S¢ is also an /-clique metric basis of G o H. Clearly Sg is an
[-clique metric generator for G o H and so cdim; (G o H) < cdim;(G). Suppose that
S is an [-clique metric basis of G o H. We claim that |[SNV (H;)| < l1forl <i <n.
To prove this claim, suppose, on the contrary that there exist u,z € S N V(H;).
Then §' = S\{u} is not an /-clique metric generator for G o H. Thus there exist
two [-cliques U and W in G o H such that dgoy (v, U) = dgon (v, W) for each
v € 8. Hence dgoy (2, U) = dgon (z, W). On the other hand, since w(H) <[ — 1,
then dgop (2, U) = dgon(z, W) = dg(gi, U) + 1 = dg(gi, W) + 1. Also, since
w(H) <l—1,thendgoyg(u,U) =dgog(u, W) =dg(gi, U)+ 1 =dg(gi, W)+ 1.
Therefore S is not an /-clique metric generator for G o H which is a contradiction.

Now suppose that u € S N V(H;). Then S = (§ — {u}) U {g;} is also an [-clique
metric basis of G o H. Because dgoy (u, V;(G)) = dg(gi, V;(G)) + 1 for each
1 < j <. By repeating this technique, we reach an /-clique metric basis S of G o H
with this property that all vertices of S” are in G. Therefore, cdim; (GoH) > cdim;(G).

Now, suppose that w(G) < I, k = 1 and V| (H) is the (I — 1)-clique of H. Let Sg
be a 1-clique metric basis of G. We claim that Sg is an /-clique metric generator for
G o H. Then, since dGOH(V{i (H),v) = dg(gi, v) for each v € Sg, then every pair
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of [-cliques Vi, (H)’s, 1 < i < n, is distinguished by a vertex of Si. Therefore, Sg
is an [-clique metric generator for G o H and so cdim;(G o H) < |Sg| = dim(G).
Then, it is sufficient to show that cdim;(G o H) > dim(G). To do this, suppose that
S’ is an [-clique metric basis of G o H. By the above argument, if |§' N V(G)| = |5|,
then we have nothing to prove. Otherwise, there exists v € S’ such that v € V, for
ani € {1,...,n}. Since dg (v, Vl’j) =dg(gi, ij) + 1fori # j € {1,...,n}, then
S” = (§ —v) U{g;} is also an [-clique metric basis of G o H. We use this technique to
reach an /-clique metric basis S”’ of G o H with this property that |S” NV (G)| = |S"|.
Therefore, cdim; (G o H) > dim(G). O

The concept of global forcing sets for maximal matchings was presented in [24].
Here we need to introduce an extension of the idea of global forcing sets for /-cliques
of a graph.

A global forcing set for /-cliques of a graph G is a subset S of V(G) with this
property that Vi NS # V, N S for any two [-cliques Vi and V, of G. A global forcing
set for [-cliques of G with minimum cardinality is called a minimum global forcing
set for /-cliques of G, and its cardinality, denoted by ¢y, is the global forcing number
for [-cliques of G.

We can find a global forcing set for /-cliques of G by the following ILP.

Let G be a graph with V(G) = {vy,...v,} and let {V1, ..., Vi} be the set of all
I-cliques of G. Let Dg = [d;;] be a k x n matrix, where d;; = 1if v; € V;, and
dij = 0 otherwise. Let F : {0, 1} — Ny be defined by

Fxi,...,xp) =x14+ -+ x;.
Then our goal is to determine min F subject to the constraints
|dit —djilxt + |diz —djalx2 + -+ |din —djulxn, >0, 1<i<j<k.
x! is a set of values for which F attains its minimum, then S =

Note that if x{, ..., x;,
{vi : x/ = 1} is a minimum global forcing set for /-cliques of G.

Theorem 4.2 Let G and H be two connected graphs with |V (G)| = n, andl > 3 be an
integer number. If {V1(H), ..., Vi.(H)}isthe (I—1)-clique setof H and w(H) = 1—1,
then for k > 2 we have

cdim;(Go H) =n-¢—1(H).

Proof Let S be an /-clique metric generator for G o H. Suppose, on the contrary that
there exists H;, a copy of H in G o H, that |S NV (H;)| < ¢;—1(H). Then there exist
two (I — 1)-cliques V;,(H) and V, (H) in H; such that SNV, (H) = SNV, (H).
Hence dgon (1, Vj;(H)) = dgon(u, V4, (H)) = 0 for eachu € SNV, (H), and
dGon(u, Vj;(H)) = dgon(u, V4, (H)) = 1 for eachu € SN (V(H)\Vj;(H)). On
the other hand, it is not difficult to check that dgog (u, V;;(H)) = dgon (u, V4, (H))
for each u € S\V (H;). Thus, dgoy (u, V;;(H)) = dgon (u, Vy, (H)) for each u € §,
which is contrary to our assumption. Therefore, cdim;(G o H) > n - ¢;_1(H).
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It remains to prove that cdim;(Go H) < n-¢;—1(H).Let Sy be a minimum global
forcing set for (I — 1)-cliques of H, and let Sy, be the i-th copy of Sy in G o H.
Then, it is easy to check that S’ = | Ji_; S, is an [-clique metric generator for G o H.
Therefore, cdim;(G o H) < n - ¢;—1(H). O

5 Complexity Issues

The clique problem is the optimization problem of finding a clique of maximum size
in a graph. As a decision problem, we ask simply whether a clique of a given size k
exists in the graph.

Theorem 5.1 [8] The clique problem is NP-complete.

Therefore, the problem of finding all /-cliques in a graph is N P-hard. Hence, through-
out this section we are assuming that all the /-cliques of the graph are given.

In this section, we prove the [-CMD problem is NP-complete. Recall that for
I = 1,2, [-CMD problems are the metric dimension and the edge metric dimen-
sion problems, respectively. On the other hand, Garey and Johnson [11] proved that
the decision version of the metric dimension problem is NP-complete on connected
graphs. Also, NP-completeness of computing the edge metric dimension of connected
graphs was proved in [14]. Moreover, Epstein, Levin, and Woeginger showed that for
split graphs, bipartite graphs, co-bipartite graphs, and line graphs of bipartite graphs,
the problem of computing the metric dimension of the graph is NP-hard [10]. Then,
we prove NP-completeness of computing the /-CMD of connected graphs for L > 3.
Let us start with the below decision problem.

[-CMD problem: For a given positive integer /. Let G be a connected graph with n
where n > 3, X be the set of all distinct /-cliques of G, and let » be a positive integer
suchthatl <r <n —1.Is cdim;(G) < r?

Note that the /-CMD problem is the decision version of the problem of computing
cdim; (G) for a given connected graph G.

Our proof for showing that the NP-completeness of /-CMD problem is based on
a reduction from the metric dimension problem on connected bipartite graphs. We
recommend [7] for more details on the reduction technique. Now, we are ready to
prove that the /-CMD problem is NP-complete.

Theorem 5.2 The [-CMD problem, forl > 3, is NP-complete.

Proof Note that the [-CMD problem is clearly in NP because we can check its feasi-
bility as a /-clique metric generator in polynomial time.

For showing NP-hardness of this problem, we present a reduction from the metric
dimension for connected bipartite graphs.

Let G be a connected bipartite graph where V(G) = {g1, ..., g:}. Now, we con-
struct graph G’ from G by taking one copy of G and n copies of the complete graph
K;_1 and by joining each vertex of the i-th copy of K;_; to the i-th vertex of G,
i =1,...,n. Inother words, G’ = G o K;_;. For more illustration, see an example
of G and G’ in Fig. 1. Since G is bipartite, then w(G) < 3. Thus by Theorem 4.1,
cdim;(G’) = cdim;(G o H) = dim(G). Moreover, it is easy to see that constructing G’
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& &3
&1 &4
G G'=GoK,
Fig. 1 The graph G’ constructed from G for [ = 3
Fig.2 Graph G U Us
us
U; Uy
G

from G can be done in polynomial time. Therefore, if there exists a polynomial-time
algorithm for computing cdim; (G’), then there exists a polynomial-time algorithm for
computing dim(G). O

An integer linear programming (ILP) model for the classical metric dimension
problem was presented in [6]. Motivated by this work and using its notations, we
consider here an IPL model for computing cdim;(G) for a given connected graph G
and its /-cliques. Let G = (V, E) be a connected graphs with V = {uy, ..., u,}. Let
Vi, ..., Vi be the [-cliques of G. Also, suppose that Dg = [d;;] is a k x n matrix
suchthatd;; = dg(Vi,uj)fori € {1,...,k}and j € {1, ..., n}. Consider the binary
decision variables x; fori € {1, ..., n} where x; € {0, 1}. By x;, we mean the vertex
u; is a member of an /-clique metric generator of G and x; = 0 for otherwise. we
define the objective function F by

F(xi,...,xp) =x1 4+ + xp.
Minimize F subject to the following constraints
diy — dji|x1 + |din — djalxa + -+ |din —djnlxn >0, 1<i<j<k

is equivalent to finding a basis in the sense that if xi, el x,’, is a set of values for

which F attains its minimum, then W = {u; | x] = 1} is a basis for G.
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For example, consider graph G shown in Fig. 2 with 3-cliques V| = {u1, u», u3}and
00011
11000
X1+x2+x3+xa-+x5 subject to the constraints x| +x2+x4+x5 > 0, x1, x2, X3, X4, X5 €
{0, 1}. Thus F' attains its minimum for x; = 1, xp = x3 = x4 = x5 = 0, hence
W = {u1} is a 3-clique metric basis for G.

Vo = {u3, ug, us}. Then, Dg = ) Therefore, minimize F(x1, xp, x3) =
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