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Abstract
Dvořák and Postle introduced the concept of DP-coloring to overcome some diffi-
culties in list coloring. Sittitrai and Nakprasit combined DP-coloring and defective
list coloring to define a new coloring—relaxed DP-coloring. For relaxed DP-coloring,
Sribunhung et al. proved that planar graphs without 4- and 7-cycles are DP-(0, 2,
2)-colorable. Li et al. proved that planar graphs without 4, 8-cycles or 4, 9-cycles are
DP-(1, 1, 1)-colorable. Lu and Zhu proved that planar graphs without 4, 5-cycles, or 4,
6-cycles, or 4, 7-cycles are DP-(1, 1, 1)-colorable. In this paper, we show that planar
graphs without 4, 6-cycles or 4, 8-cycles are DP-(0, 2, 2)-colorable.

Keywords DP-coloring · Defective coloring · List coloring · Relaxed-DP-coloring

Mathematics Subject Classification 05C15

1 Introduction

All graphs in this paper are simple and undirected. Assume G is a plane graph, we
use V (G), E(G), F(G), and δ(G) to denote its vertex set, edge set, face set, and
minimum degree in the graph G, respectively. We use d(x) to denote the degree of x
for each x ∈ V (G) ∪ F(G). We say that u is a d-vertex, d+-vertex, or d−-vertex if
d(u) = d, d(u) ≥ d, or d(u) ≤ d, respectively. Let b( f ) be the boundary of a face f
and write f = [v1v2 . . . vd ], where v1, v2, . . . , vd are the boundary vertices of f in a
cyclic order. If d( f ) = k (d( f ) ≥ k or d( f ) ≤ k), then we call f a k-face (k+-face
or k−-face) of G. A face is called a simple face if its boundary is a cycle. A cycle of
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length k is called a k-cycle, and a 3-cycle is usually called as a triangle. Two cycles or
faces are adjacent if they share at least one edge, or their boundaries share at least one
edge, respectively. Two adjacent cycles (or faces) C1 and C2 are normally adjacent if
|V (C1) ∩ V (C2)| = 2.

We say that L is a k-list assignment for a graph G if it assigns a list L(v) to each
vertex v of G with |L(v)| ≥ k. If G has a proper coloring φ such that φ(v) ∈ L(v)

for each vertex v, then we say that G is L-colorable. A graph G is k-choosable if it is
L-colorable for any k-list assignment L . The list chromatic number of G, denoted by
χ�(G), is the smallest integer k such that G is k-choosable.

Dvořák and Postle [2] introduced a generalization of list coloring. Let G be a graph
and L be a list assignment on V (G). A graph HL , simply write H , is said to be a cover
of G if it satisfies all the following two conditions.

(i) The vertex set of H is
⋃

u∈V (G)({u} × L(u)) = {(u, c) : u ∈ V (G), c ∈ L(u)}.
(ii) The edge set of H isM = ⋃

uv∈E(G) Muv , whereMuv is a matching between
the sets {u} × L(u) and {v} × L(v).

Let T be a subset of V (H). If |T ∩ ({u} × L(u))| = 1 for each vertex u in G, then T
is called a transversal of H . When a transversal is independent, it is a DP-coloring. If
every cover H of G with a k-assignment L has a DP-coloring, then the least number
k is the DP-chromatic number of G, denoted by χDP (G). Note that DP-coloring is
a generalization of list coloring. This implies that χ�(G) ≤ χDP (G). Chen et al. [1]
proved that every planar graphwithout 4-cycles adjacent to 6-cycles isDP-4-colorable.
Recently, it is proved that every planar graph is DP-4-colorable if it does not contain
i-cycles adjacent to j-cycles for distinct i and j from {3, 4, 5, 6}, see [1, 6, 10, 12].
More sufficient conditions for a planar graph to be DP-4-colorable, see [3, 9, 11, 15].

In [14], Sittitrai and Nakprasit combined DP-coloring and relaxed list coloring
(defective list coloring) into a new coloring as follows. Let H be a cover of a graph
G with a k-assignment L . A transversal T of H is a (d1, d2, . . . dk)-coloring if every
(v, i) ∈ T has degree at most di in H [T ]. For any k-assignment L and any cover HL ,
if HL has a (d1, d2, . . . , dk)-coloring, then we say G is DP-(d1, d2, . . . dk)-colorable.
For defective DP-coloring, we refer the readers to [4, 5, 7].

Li et al. [8] proved that every planar graph without 4, 8-cycles, or 4, 9-cycles is
DP-(1, 1, 1)-colorable. Lu and Zhu [13] proved that every planar graph without 4,
5-cycles, or 4, 6-cycles, or 4, 7-cycles is DP-(1, 1, 1)-colorable. Sribunhung et al. [16]
proved that every planar graph without 4, 7-cycles is DP-(0, 2, 2)-colorable. In this
paper, we prove that every planar graph without 4, 6-cycles, or 4, 8-cycles is DP-(0,
2, 2)-colorable.

To prove the conclusion, we need some new definitions. Suppose B is a condition
imposed on ordered vertices. A DP-B-coloring of HL is a transversal T with ordered
vertices from left to right such that each (v, c) ∈ T satisfies condition B imposed on
each element of H . Suppose T is a transversal of a cover H of G. We say that T is a
DP-BA-coloring if the vertices in T can be ordered from left to right such that:

(i) For each (v, 1) ∈ T , (v, 1) has no neighbor on the left.
(ii) For each (v, c) ∈ T where c �= 1, (v, c) has at most one neighbor on the left and

that neighbor (if it exists) is adjacent to at most one vertex on the left of (v, c).
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We say that G is DP-BA-k-colorable if every cover HL of a graph G with a k-
assignment L has a DP-BA-coloring.

A graph is a linear forest if it is a forest with maximum degree at most two. It is
easy to prove that a transversal T is a DP-BA-coloring only if H [T ] is a linear forest
and {(v, c) ∈ T : c = 1} is independent in H . But the inverse is not true. For example,
T = {(x, 1), (y, 2), (z, 1)}, where (y, 2) is adjacent to (x, 1) and (z, 1) in H . Observe
that T has no desired ordering as in the definition DP-BA-coloring.

Theorem 1.1 Every planar graph without 4- and 8-cycles is DP-BA-3-colorable.

Corollary 1.2 If G is a planar graph without 4- and 8-cycles, then

(i) G is DP-(0, 2, 2)-colorable.
(ii) V (G) can be partitioned into three sets in which each of them induces a linear

forest and one of them is an independent set.

Theorem 1.3 Every planar graph without 4- and 6-cycles is DP-BA-3-colorable.

Corollary 1.4 If G is a planar graph without 4- and 6-cycles, then

(i) G is DP-(0, 2, 2)-colorable.
(ii) V (G) can be partitioned into three sets in which each of them induces a linear

forest and one of them is an independent set.

In order to prove results on DP-BA-3-colorable graphs, Sribunhung et al. [16] gave
some structural results.

Lemma 1.5 (Sribunhung et al. [16]) If G is not DP-BA-3-colorable, but all its proper
induced subgraphs are DP-BA-3-colorable, then δ(G) ≥ 3.

Lemma 1.6 (Sribunhung et al. [16]) Suppose G is not DP-BA-3-colorable, but all its
proper induced subgraphs are DP-BA-3-colorable. If a 3-vertex u in G is adjacent to
a 3-vertex, then u has two 5+-neighbors. Moreover, if x is a 5-neighbor of u, then x
has a 4+-neighbor.

We say that a 3-vertex is bad if it is adjacent to another 3-vertex; otherwise, it is a
good 3-vertex.

2 Plane Graphs without 4- and 8-Cycles

Firstly, we give some structural results on plane graphs without 4- and 8-cycles.

Lemma 2.1 Let G be a plane graph without 4- and 8-cycles. Then the following state-
ments hold.

(i) There are no adjacent 3-faces.
(ii) If a 3-face is adjacent to a 5-face, then they are normally adjacent.
(iii) If δ(G) ≥ 3 and a 3-face is adjacent to a 6-face, then they are normally adjacent.
(iv) If δ(G) ≥ 3, then each 7-face is not adjacent to any 3-face.
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(v) If δ(G) ≥ 3, then there are no adjacent 5-faces.
(vi) If δ(G) ≥ 3, then each 5-face is adjacent to at most two 3-faces.
(vii) If δ(G) ≥ 3, then each 6-face is adjacent to at most one 3-face.

Proof (i) If two 3-faces are adjacent, then G has a 4-cycle, a contradiction.
(ii) Suppose to the contrary that a 5-face [v1v2v3v4v5] is adjacent to a 3-face [v1v2u].

Since they are not normally adjacent, u ∈ {v3, v4, v5}. Then the 5-cycle has a
chord, a contradiction.

(iii) Suppose that a 6-face f is not a simple face. Then its boundary consists of two
triangles. Let f = [u′vuwvw′] be a 6-face, where [uvw] and [u′vw′] are two
triangles. Observe that G has no adjacent triangles. Suppose that f is adjacent
to a 3-face. Then either [uvw] or [u′vw′] bounds a 3-face, and then there are at
least two 2-vertices, a contradiction.

So we may assume that the 6-face f is a simple face. Suppose to the contrary
that f = [v1v2v3v4v5v6] is not normally adjacent to a 3-face [v1v2u]. Then
u ∈ {v3, v4, v5, v6}. By symmetry, we need to consider two cases: u = v3 or
u = v4. If u = v4, then [v1v2v3v4] is a 4-cycle, a contradiction. It follows that
u = v3. Since [v1v2v3] is a 3-face, we have that v2 is a 2-vertex, a contradiction.

(iv) Assume that a 7-face f1 is adjacent to a 3-face f2. Observe that f1 must be a
simple face; otherwise, there is a 4-cycle in the boundary of f1, a contradiction.
Since δ(G) ≥ 3 and G does not have 4-cycle, f1 and f2 are normally adjacent.
Now, b( f1) ∪ b( f2) contains an 8-cycle, a contradiction.

(v) Suppose to the contrary that a 5-face [v1v2v3v4v5] is adjacent to a 5-face
[v1v2uvw]. Since there is no 8-cycle, {u, v, w} ∩ {v3, v4, v5} �= ∅. Since
δ(G) ≥ 3 and [v1v2v3v4v5] has no chord, we have {u, w}∩{v3, v4, v5} = ∅. By
symmetry, we can obtain that {v3, v5}∩ {u, v, w} = ∅. If v = v4, then [vuv2v3]
is a 4-cycle, a contradiction.

(vi) Suppose to the contrary that a 5-face f is adjacent to three 3-faces. If those
three 3-faces share vertices outside f , then G has a 4-cycle, a contradiction.
Then the boundaries of these four faces form an 8-cycle, a contradiction. Thus,
each 5-face is adjacent to at most two 3-faces.

(vii) Suppose to the contrary that a 6-face f is adjacent to two 3-faces. If those two
3-faces share vertices outside f , then G has a 4-cycle, a contradiction. Then
the boundaries of these three faces form an 8-cycle, a contradiction. Thus, each
6-face is adjacent to at most one 3-face. 
�

Next, we prove the main result—Theorem 1.1.
Suppose to the contrary that G is a minimum counterexample to the statement. By

Lemma 1.5, the minimum degree of G is at least three.
A 3-vertex is special if it is incident with a 3-face, a 5-face, and a 6-face.

Lemma 2.2 Let v be a 3-vertex. If v is incident with a 3-face f1 = [vv1v2], a 5-face
f2 = [vv2v3v4v5], and a 6-face f3 = [vv5v6v7v8v1], then each of the following holds.
(i) There is only one possibility for the special 3-vertex v, as shown in Fig. 1, where

v4 and v7 are identical. Furthermore, f2 is adjacent to exactly one 3-face, say f1.
(ii) There is no other special 3-vertex on the boundary of f2.
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Fig. 1 Some cases in
Lemma 2.2. Note that [v4v5v6]
does not bound a 3-face

Proof (i) ByLemma2.1(ii) and (iii), f1 and f2 are normally adjacent, f1 and f3 are nor-
mally adjacent. Note that the 6-face f3 is adjacent to the 3-face f1, the boundary of f3 is
a 6-cycle. Then {v, v1, v2} and {v3, v4, v5} are disjoint, {v, v1, v2} and {v5, v6, v7, v8}
are disjoint. If {v3, v4} and {v6, v7, v8} are disjoint, [v1v2 . . . v8] is an 8-cycle, a con-
tradiction. So we may assume that {v3, v4} ∩ {v6, v7, v8} �= ∅. If v3 ∈ {v6, v7, v8},
then there is a 4-cycle, a contradiction. It follows that v3 /∈ {v6, v7, v8}. If v4 = v8,
then [vv1v8v5] is a 4-cycle, a contradiction. It is observed that v4 �= v6, for otherwise
v5 is a 2-vertex. Therefore, v4 and v7 are identical. Note that the 3-cycle [v4v5v6] does
not bound a 3-face, for otherwise v6 is a 2-vertex. Moreover, v4v5 cannot be incident
with a 3-face; otherwise, there exists a 4-cycle with a chord v4v5. It is observed that
vv2 and v4v5 are is triangles; thus, no other edge on f2 is contained in a triangle, for
otherwise there exists an 8-cycle. It follows that f2 is adjacent to exactly one 3-face.

(ii) Since every special 3-vertex is incident with a 3-face, the possible other special
3-vertex on f2 is v2. By Lemma 2.2(i), if v2 is a special 3-vertex, then v4 should be
identified with a vertex on the 6-face incident with v2, and v3v4 should be contained
in a triangle, but this is impossible. 
�

Let μ(x) = d(x) − 4 be the initial charge of a vertex or a face x , and let μ∗(x)
denote the final charge of x after the discharging process. By the Euler’s formula,
|V (G)| − |E(G)| + |F(G)| = 2 and

∑
v∈V (G) d(v) = ∑

f ∈F(G) d( f ) = 2|E(G)|,
we can derive the following identity:

∑
x∈V (G)

⋃
F(G) μ(x) = −8. By the following

discharging rules, we shall finally get μ∗(x) ≥ 0 for all x ∈ V (G) ∪ F(G). Thus a
contradiction is obtained and the proof is completed.

The discharging rules are as follows:

R1 Each 5+-vertex gives 1
4 to each adjacent bad 3-vertex.

R2 Each 5+-face gives 1
3 to each adjacent 3-face.

R3 Each 5-face gives 1
6 to each incident good 3-vertex and 1

12 to each incident bad
3-vertex.
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R4 Let f be a 6-face or 7-face. Then f gives 1
2 to each incident good 3-vertex and 1

4
to each incident bad 3-vertex.

R5 Each 8+-face gives 5
6 to each incident good 3-vertex and 5

12 to each incident bad
3-vertex.

Let β( f ) be the final charge of a 5-face f after applying the rules R1–R5.
R6 If v is a special 3-vertex, then the incident 5-face f additionally sends β( f ) to v.

Now, we give a lower bound of β( f ) in R6.

Lemma 2.3 If f is a 5-face which is incident with a special 3-vertex, then β( f ) ≥ 1
3 .

Proof By Lemma 2.2(i), the 5-face is adjacent to exactly one 3-face. If the 5-face is
incident with at most two 3-vertices, then β( f ) ≥ 1 − 1

3 − 1
6 × 2 = 1

3 by R2 and
R3. If the 5-face is incident with at least three 3-vertices, then the 5-face is incident
with exactly three 3-vertices in which two of them are bad 3-vertices by Lemma 1.6.
It follows that β( f ) ≥ 1 − 1

3 − 1
6 − 1

12 × 2 = 1
3 by R2 and R3. 
�

Recall that every vertex v is a 3+-vertex.
Consider a good 3-vertex v. If v is incident with at least two 6+-faces, thenμ∗(v) ≥

μ(v) + 1
2 × 2 = 0 by R4 and R5. So we may assume that v is incident with at least

two 5−-faces. By Lemma 2.1(v) and (i), v is incident with a 3-face and a 5-face. If v is
incident with an 8+-face, thenμ∗(v) = μ(v)+ 1

6 + 5
6 = 0 by R3 and R5. Otherwise, v

is incident with a 3-face, a 5-face f , and a 6-face by Lemma 2.1(iv), i.e., v is a special
3-vertex. Then μ∗(v) = μ(v) + 1

6 + 1
2 + β( f ) ≥ 0 by R3, R4, R6, and Lemma 2.3.

Consider a bad 3-vertex v. By Lemma 1.6, v is adjacent to two 5+-vertices. If v

is incident with at least two 6+-faces, then μ∗(v) ≥ μ(v) + 1
4 × 2 + 1

4 × 2 = 0
by R1, R4, and R5. Then v is incident with at least two 5−-faces. By Lemma 2.1(v)
and (i), v is incident with a 3-face and a 5-face. If v is incident with an 8+-face, then
μ∗(v) = μ(v)+ 1

4 ×2+ 1
12 + 5

12 = 0 by R1, R3, and R5. Otherwise, v is incident with
a 3-face, a 5-face f , and a 6-face by Lemma 2.1(iv), i.e., v is a special 3-vertex. Then
μ∗(v) = μ(v) + 1

4 × 2 + 1
12 + 1

4 + β( f ) > 0 by R1, R3, R4, R6, and Lemma 2.3.
If v is a 4-vertex, then it is not involved in a discharging process and thus μ∗(v) =

μ(v) = 0.
Consider a 5-vertex v. If v is adjacent to a bad 3-vertex, say u, then v has a 4+-

neighbor by Lemma 1.6. Consequently, v is adjacent to at most four bad 3-vertices.
Then μ∗(v) ≥ μ(v) − 1

4 × 4 = 0 by R1.
Consider a d-vertex vwhere d ≥ 6. Thenμ∗(v) ≥ μ(v)−d× 1

4 = (d−4)−d× 1
4 >

0 by R1.
Let f be a k-face.

• k = 3. It follows from Lemma 2.1(i) that f is adjacent to three 5+-faces, and
μ∗( f ) = μ( f ) + 3 × 1

3 = 0 by R2.
• k = 4. Since G does not contain a 4-cycle, it does not contain a 4-face.
• k = 5. It follows from Lemma 2.1(vi) that f is adjacent to at most two 3-faces.
Suppose that f is incident with a special 3-vertex. By Lemma 2.2(ii), f is incident
with exactly one special 3-vertex. By R6 and Lemma 2.3, we get μ∗( f ) = 0. So
we may assume that f is not incident with a special 3-vertex. If f is incident with
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at most two 3-vertices, then μ∗( f ) ≥ μ( f ) − 1
3 × 2 − 1

6 × 2 = 0 by R2 and R3.
If f is incident with at least three 3-vertices, then f is incident with exactly three
3-vertices in which two of them are bad 3-vertices by Lemma 1.6. It follows that
μ∗( f ) ≥ μ( f ) − 1

3 × 2 − 1
6 − 1

12 × 2 = 0 by R2 and R3.
• k = 6. It follows from Lemma 2.1(vii) that f is adjacent to at most one 3-face. If f
is incident with at most three 3-vertices, thenμ∗( f ) ≥ μ( f )− 1

3 − 1
2 ×3 = 1

6 > 0
by R2 and R4. If f is incident with at least four 3-vertices, then f is incident with
exactly four 3-vertices in which all of them are bad 3-vertices by Lemma 1.6. It
follows that μ∗( f ) ≥ μ( f ) − 1

3 − 1
4 × 4 = 2

3 > 0 by R2 and R4.
• k = 7. If f is not a simple face, then G contains a 4-cycle, a contradiction. So we
may assume that f is a simple face. Then f is bounded by a 7-cycle. It follows
from Lemma 2.1(iv) that f is not adjacent to any 3-face. By Lemma 1.6, f is
incident with at most four 3-vertices. It follows that μ∗( f ) ≥ μ( f ) − 1

2 × 4 > 0
by R4.

• k = 8. If f is a simple face, thenG contains an 8-cycle, a contradiction. So f is not
a simple face, its boundary consists of a 3-cycle and a 5-cycle, or two 3-cycles and
a cut edge. It follows from Lemma 2.1(i) and (vi) that f is adjacent to at most two
3-faces. By Lemma 1.6, f is incident with at most five 3-vertices. If f is incident
with at most four 3-vertices, then μ∗( f ) ≥ μ( f ) − 1

3 × 2− 5
6 × 4 = 0 by R2 and

R5. If f is incident with five 3-vertices, then at least four of the 3-vertices are bad
by Lemma 1.6. It follows that μ∗( f ) ≥ μ( f ) − 1

3 × 2 − 5
6 − 5

12 × 4 = 5
6 > 0 by

R2 and R5.
• k ≥ 9. It follows from Lemma 2.1(i) that a 3-vertex is incident with at least two
4+-faces. If f is a 9-face incident with exactly four good 3-vertices, then f is
adjacent to at most five 3-faces and f is not incident with a bad 3-vertex, thus
μ∗( f ) ≥ μ( f ) − 1

3 × 5− 5
6 × 4 = 0 by R2 and R5. So we may assume that f is

not a 9-face incident with exactly four good 3-vertices. In what follows, if f is a
9-face, then it is incident with at most three good 3-vertices.

Let v1, v2, . . . , vk be the vertices on the boundary of f , and let fi be the face sharing
an edge vivi+1 with f , where all the subscripts are taken modulo k. In order to easily
check the final charge of f , we treat some transfer from an element to another element
via some agents. Firstly, f sends 1

2 to each vertex vi and sends an extra 1
6 to each good

3-vertex vi . Next, vi may play the role of agent. If fi is a 3-face, then the agent vi
sends 1

6 to fi , and the agent vi+1 sends 1
6 to fi , which corresponds to R2 that f sends

2 × 1
6 = 1

3 to fi .
Suppose that vi is a 3-vertex incident with 4+-vertices vi−1 and vi+1. Then the

agent vi−1 sends 1
4 to vi if fi−1 is a 4+-face; otherwise, the agent vi−1 sends 1

4 − 1
6

to vi . Similarly, the agent vi+1 sends 1
4 or 1

4 − 1
6 to vi . Note that the 3-vertex vi is

incident with at most one 3-face; thus, f sends at least ( 12 − 1
6 )+ 1

6 + 1
4 + ( 14 − 1

6 ) = 5
6

to vi , which corresponds to the first part of R5.
Suppose that vi is a 3-vertex, and one of vi−1 and vi+1 is also a 3-vertex. By

symmetry, let vi+1 be a 3-vertex. Then the agent vi−1 sends 1
4 or 1

4 − 1
6 to vi , and

then f sends at least ( 12 − 1
6 ) + ( 14 − 1

6 ) = 5
12 in total to vi , which corresponds to the

second part in R5.
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For each 4+-vertex vi , when it plays the role of agent, it receives 1
2 from f and

gives at most 2( 14 − 1
6 ) + 2 × 1

6 = 1
2 .

So we can treat f sends 1
2 to each vertex vi , and vi maybe plays the role of agent

to redistribute at most 1
2 to incident 3-faces and 3-vertices; additionally, f sends an

extra 1
6 to each good 3-vertices.

If f is a 9-face incident with at most three good 3-vertices, then μ∗( f ) ≥ μ( f ) −
1
2 ×9− 1

6 ×3 = 0. If f is a 10+-face, then f is incident with at most k2 good 3-vertices,
and then μ∗( f ) ≥ μ( f ) − 1

2 × k − 1
6 × k

2 = 1
6 > 0.

This completes the proof.

3 Plane Graphs without 4- and 6-Cycles

In this section, we prove the second main result—Theorem 1.3.
Assume that G is a counterexample to Theorem 1.3, but all of its proper induced

subgraphs are DP-BA-3-colorable. By Lemma 1.5, the minimum degree of G is at
least three. Since G has no 4- or 6-cycles, the following statements hold.

Lemma 3.1 A 3-face is not adjacent to a 6−-face.

Proof If two 3-faces are adjacent, then G has a 4-cycle, a contradiction.
Suppose that a 5-face [v1v2v3v4v5] is adjacent to a 3-face [v1v2u]. Since there is

no 6-cycle, u ∈ {v3, v4, v5}. But the 5-cycle has a chord, then there is a 4-cycle, a
contradiction.

Since there is no 6-cycle inG, the boundary of a 6-face consists of two triangles. Let
f = [u′vuwvw′] be a 6-face, where [uvw] and [u′vw′] are two triangles. Observe that
G has no adjacent triangles. Suppose that f is adjacent to a 3-face. Then either [uvw]
or [u′vw′] bounds a 3-face, and then there are at least two 2-vertices, a contradiction.

�
We once again use the dischargingmethod to complete the proof. Letμ(x) = d(x)−4
be the initial charge of a vertex or a face x , and let μ∗(x) denote the final charge of
x after the discharging procedure. According to the Euler’s formula and handshaking
theorem, the sum of the initial charge is −8. By the following discharging rules, we
should finally get μ∗(x) ≥ 0 for all x ∈ V (G) ∪ F(G). Thus a contradiction is
obtained and the counterexample does not exist.

The discharging rules are as follows:

R1 Each 5+-vertex gives 1
4 to each adjacent bad 3-vertex.

R2 Each 7+-face gives 1
3 to each adjacent 3-face.

R3 Each 5-face gives 1
3 to each incident good 3-vertex and 1

6 to each incident bad
3-vertex.

R4 Each 6+-face gives 1
2 to each incident good 3-vertex and 1

4 to each incident bad
3-vertex.

Recall that every vertex v is a 3+-vertex.
Consider a good 3-vertex v. If v is not incident with a 3-face, then v is incident

with three 5+-faces; thus, μ∗(v) ≥ μ(v) + 1
3 × 3 = 0 by R3 and R4. If v is incident
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with a 3-face, then the other two faces are 7+-faces by Lemma 3.1; thus, μ∗(v) =
μ(v) + 1

2 × 2 = 0 by R4.
Consider a bad 3-vertex v. If v is not incident with a 3-face, then v is incident with

three 5+-faces; thus, μ∗(v) ≥ μ(v) + 1
4 × 2 + 1

6 × 3 = 0 by R1, R3, and R4. If v is
incident with a 3-face, then the other two faces are 7+-faces by Lemma 3.1, and then
μ∗(v) = μ(v) + 1

4 × 2 + 1
4 × 2 = 0 by R1 and R4.

If v is a 4-vertex, then it does not involve in a discharging process and thenμ∗(v) =
μ(v) = 0.

Consider a 5-vertex v. If v is adjacent to a bad 3-vertex, say u, then v has a 4+-
neighbor by Lemma 1.6. Consequently, v is adjacent to at most four bad 3-vertices.
Then μ∗(v) ≥ μ(v) − 4 × 1

4 = 0 by R1.
Consider a d-vertex vwhere d ≥ 6. Thenμ∗(v) ≥ μ(v)−d× 1

4 = (d−4)−d× 1
4 >

0 by R1.
Let f be a k-face.

• k = 3. It follows from Lemma 3.1 that f is adjacent to three 7+-faces. Thus
μ∗( f ) = μ( f ) + 3 × 1

3 = 0 by R2.
• k = 4. Since G does not contain a 4-cycle, it does not contain a 4-face.
• k = 5. It follows from Lemma 3.1 that f is not adjacent to any 3-face. If f is
incident with at most two 3-vertices, then μ∗( f ) ≥ μ( f ) − 1

3 × 2 > 0 by R3.
If f is incident with at least three 3-vertices, then it is incident with exactly three
3-vertices in which two of them are bad 3-vertices by Lemma 1.6. It follows that
μ∗( f ) ≥ μ( f ) − 1

6 × 2 − 1
3 > 0 by R3.

• k = 6. It follows from Lemma 3.1 that f is not adjacent to a 3-face. Since there
are no 6-cycles in G, the boundary of f consists of two triangles, and f is incident
with at most four 3-vertices. If f is incident with at most three 3-vertices, then
μ∗( f ) ≥ μ( f )− 1

2 × 3 = 1
2 > 0 by R4. If f is incident with four 3-vertices, then

each 3-vertex is bad; thus, μ∗( f ) = μ( f ) − 1
4 × 4 = 1 > 0 by R4.

• k ≥ 7. Similar to the proof in Theorem 1.1, we can treat f sends 3
7 to each

incident vertex and redistribute at most 3
7 to incident 3-faces and 3-vertices. Thus,

μ∗( f ) ≥ μ( f ) − 3
7 × k ≥ 0.

This completes the proof.
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