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Abstract
In this paper, we show that Loewner spaces introduced byHeinonen andKoskela (Acta
Math., 1998) are preserved under quasimöbius mappings between Ahlfors regular
spaces.
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1 Introduction andMain Results

In this note, we study the behavior of Loewner condition under quasimöbius mappings
betweenmetricmeasure spaces. The class of quasimöbiusmappings, under which, in a
certain sense, the cross ratio is quasi-invariant, was explicitly defined and investigated
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in [11]. The main motivation for introducing this class of mappings by Väisälä is
that they give a handy tool when studying the relationship between quasisymmetric
and quasiconformal mappings. However, this class has appeared before such as in
the celebrated Mostow’s work on rigidity. Recently, the motivation in the study of
quasimöbius mappings comes from many sources, see e.g. [1, 3, 5, 9, 12–16] and the
references therein.

There are two important classes of quasimöbius mappings, known as spherical-
ization and flattening ([1]), in geometric function theory. The original idea of these
deformations comes from the work of Bonk and Kleiner [3] in defining a metric on the
one point compactification of an unbounded locally compact metric space. The first
class of deformation, sphericalization, is a generalization of the deformation from the
Euclidean distance on R

n to the chordal distance on the unit sphere S
n . The second

class of flattening deformation is a generalization of inversion on the punctured sphere.
It was shown in [5] that these two conformal transformations are dual in the sense that
if one starts from a bounded metric space, and then performs a flattening transforma-
tion followed by a sphericalization, thus the object space is bilipschitzly equivalent to
the original space. This duality comes from the idea that the stereographic projection
between the Euclidean space and the Riemann sphere can be realized as a special case
of inversion. Sphericalization and flattening have a lot of applications in the area of
analysis on metric spaces, such as [1–3, 5].

Our motivation comes from Heinonen and Koskela’s celebrated work on the equiv-
alence of quasiconformality and quasisymmetry between metric measure spaces in
[8]. They introduced the concept of Loewner spaces, which has many applications
in studying Sobolev spaces and quasiconformal theory in metric spaces, see [2, 4,
7]. It should be noted that Tyson [10] answered positively to a conjecture proposed
by Heinonen and Koskela [8,Sect. 8.7] in proving that the Q-Loewner condition is
preserved under quasisymmetric maps between two Ahlfor Q-regular spaces.

In their recent work [9], Li and Shanmugalingam studied the invariance of bounded
geometry under sphericalization and flattening transformations; in particular, doubling
measure, Ahlfors regularity and Poincaré inequality. It is natural to ask whether the
Loewner condition is preserved under sphericalization and flattening, more general
quasimöbius mappings. Indeed, this question has been investigated by Brania and
Yang [4] by introducing the notion of controlled modulus condition. They proved that
quasimöbius mapping preserves the n-Loewner condition in the extended Euclidean
space R

n ∪ {∞}, see [4,Proposition 3.1]. In the setting of metric spaces, they also
showed that the Loewner condition is preserved under quasimöbius mappings, pro-
vided the spaces are simultaneously bounded or unbounded and the mapping sends
infinity to infinity, see [4,Corollary 3.4].

We obtain the following as our main theorem.

Theorem 1.1 Let (X , d, μ) and (Y , σ, ν) be locally compact Ahlfors Q-regular metric
measure spaces with Q > 1. Suppose that f : X → Y is a quasimöbius homeomor-
phism. If X is Q-Loewner, then Y is also Q-Loewner.

We remark that Theorem 1.1 is a generalization of [4,Proposition 3.1 and Corollary
3.4] and our proof is different. Also, we explain the connection between Theorem 1.1
and Li-Shanmugalingam’s results in [9]:
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First, Heinonen and Koskela demonstrated that Q-Loewner condition and (1, Q)-
Poincaré inequality are equivalent in proper, Ahlfors Q-regular and ϕ-convex metric
measure spaces, see [8,Corollary 5.13]. In [9,Theorem 1.1], it was shown by Li and
Shanmugalingam that for a complete doubling metric measure space which admits
a (1, p)-Poincaré inequality with 1 ≤ p < ∞, if in addition the sphericalized (or
flattened) space is annular quasiconvex, then the deformed space also admits a (1, p)-
Poincaré inequality. Notice that we do not need any extra assumptions concerning the
connectivity or completeness of the spaces in Theorem 1.1. By using a deformed cross
ratio introduced in [2], our proof is direct and simple.

We conclude with reviewing certain examples of Loewner spaces, see [7, 8] and the
references therein. For instance, Euclidean spaces and compactRiemannianmanifolds,
Carnot groups equipped with its Carnot-Carathéodory metrics, Riemannian manifolds
of non-negative Ricci curvature, and so on. Indeed, by using Theorem 1.1, we can
obtain many new Loewner spaces via sphericalization and flattening transformations.

The rest of this paper is organized as follows. In Sect. 2, we introduce the necessary
terminology. The proof of Theorem 1.1 is given in Sect. 3.

2 Preliminary and Notations

Following [4, 5, 7, 11], we introduce certain terminology and recall useful results in
this section.

For real numbers s and t , we set

s ∧ t = min{s, t} and s ∨ t = max{s, t}.
Let (X , d) be a metric space. A curve in X means a continuous map γ : I =

[a, b] → X from an interval I ⊂ R to X . We denote the image set γ (I ) of γ by γ .
The length of γ is denoted by

�d(γ ) = sup
{ n∑

i=1

d(γ (ti ), γ (ti−1))
}
,

where the supremum is taken over all partitions a = t0 < t1 < t2 < . . . < tn = b. A
curve γ is called rectifiable if its length �d(γ ) < ∞.

A metric space X is called rectifiably connected if every pair of points in X can
be joined with a rectifiable curve γ . The length function associated with a rectifiable
curve γ : [a, b] → X is zγ : [a, b] → [0, �(γ )], given by zγ (t) = �(γ |[a,t]). For any
rectifiable curve γ : [a, b] → X , there is a unique map γs : [0, �(γ )] → X such that
γ = γs ◦ zγ . Obviously, �(γs |[0,t]) = t for t ∈ [0, �(γ )]. The curve γs is called the
arclength parametrization of γ .

For a rectifiable curve γ in X , the line integral over γ of each Borel function � :
X → [0,∞) is

∫

γ

� ds =
∫ �(γ )

0
� ◦ γs(t) dt .
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2.1 Metric Measure Spaces

Following [8], (X , d, μ) denotes a metric measure space with X a locally compact,
rectifiably connected metric space and μ a Borel regular measure with dense support.

Definition 2.1 ([6]) Let (X , d, μ) be a metric measure space. Given Q > 1, we say
that X is Ahlfors Q-regular if there exists a constant C > 0 such that for each x ∈ X
and 0 < r ≤ diam(X),

r Q/C ≤ μ(B(x, r)) ≤ Cr Q,

where diam(X) means the diameter of X and B(x, r) = {y ∈ X; d(x, y) < r}.
For instance, the Euclidean space R

n with Lebesgue measure satisfies the Ahlfors
n-regularity.

Definition 2.2 Let Q > 1. We define the Q-modulus of a family � of curves in a
metric measure space (X , d, μ) by

modQ� = inf
∫

X
ρQ dμ,

where the infimum is taken over all Borel functions ρ : X → [0,∞] satisfying
∫

γ

ρ ds ≥ 1

for all locally rectifiable curves γ ∈ �. Then the Q-modulus of a pair of disjoint
nonempty compact sets E, F ⊂ X is

modQ(E, F; X) = modQ
(E, F; X),

where 
(E, F; X) is the family of all curves in X joining the sets E and F .

In studying the equivalence of quasiconformality and quasisymmetry, Heinonen
and Koskela [8] introduced the notion of Loewner spaces. Moreover, they showed
some examples for Loewner, such as Euclidean n-space R

n , a Carnot group admits a
(1, p)-Poincaré inequality for all p > 1 and so on. Note that a metric measure space
(X , d, μ) is called Q-Loewner, with Q > 1, provided the Loewner control function

ϕ(t) = inf{modQ(E, F; X) : 
d(E, F) ≤ t}

is strictly positive for all t > 0; here E and F are non-degenerate disjoint continua in
X and


d(E, F) = distd(E, F)

diamd(E) ∧ diamd(F)
,

where distd(E, F) means the distance between E and F in the metric d.
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2.2 Mappings onMetric Spaces

Given a metric space (X , d), the cross ratio r(x, y, z, w) of each four distinct points
x, y, z, w ∈ X is defined as

r(x, y, z, w) = d(x, z)d(y, w)

d(x, y)d(z, w)
.

It is often convenient to consider cross ratios also in the extended space Ẋ =
X ∪ {∞}. If x, y, z, w are points in Ẋ and if one of the points x, y, z, w is ∞, the
cross ratio is defined by deleting the distances from ∞. For example,

r(x, y, z,∞) = d(x, z)

d(x, y)
.

Let (X1, d1) and (X2, d2) be two metric spaces, and let f : X1 → X2 be a
homeomorphism. We say that f is L-bilipschitz if there exists L ≥ 1 such that

d1(x, y)/L ≤ d2( f (x), f (y)) ≤ Ld1(x, y).

Let η : [0,∞) → [0,∞) be a homeomorphism.We say that f is η-quasisymmetric
if for all distinct points x, y, z ∈ X1, we have

d2( f (x), f (z))

d2( f (x), f (y))
≤ η

(
d1(x, z)

d1(x, y)

)
.

Moreover, we say that f is η-quasimöbius if for all distinct points x, y, z, w ∈ X1,

we have

r( f (x), f (y), f (z), f (w)) ≤ η
(
r(x, y, z, w)

)
.

For the properties of quasimöbius and quasisymmetric mappings see [7, 11, 12].
We also need the following result.

Lemma 2.3 ([11,Theorem 3.10]) Suppose that X is unbounded and that f : X → Y
is θ -quasimöbius between two metric spaces. Then f is θ -quasisymmetric if and only
if f (x) → ∞ as x → ∞.

Our main tool in this paper is the following useful notation introduced by Bonk and
Kleiner in [2]:

〈x, y, z, w〉 = d(x, z) ∧ d(y, w)

d(x, y) ∧ d(z, w)
.

They also established a relation between r(x, y, z, w) and 〈x, y, z, w〉 as follows.
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Lemma 2.4 ([2,Lemma 2.3]) For any distinct points x, y, z, w in a metric space X,
we have

〈x, y, z, w〉 ≤ θ0(r(x, y, z, w)),

where θ0(t) = 3(t ∨ √
t).

3 Proof of Theorem 1.1

We begin the proof of Theorem 1.1 by showing that the sphericalization of an
unbounded metric measure space preserves the Q-Loewner condition. Following [5,
9], we first introduce certain terminology.

Bonk and Kleiner introduced sphericalization of an unbounded metric measure
space, see [3,Lemma 2.2, p87]. We briefly recall their work. Given an unbounded
locally compact metric space (X , d) and a base point a ∈ X , we consider the one-
point compactification Ẋ = X ∪ {∞} and define the function da : Ẋ × Ẋ → [0,∞)

as follows

da(x, y) = da(y, x) =

⎧⎪⎨
⎪⎩

d(x,y)
[1+d(x,a)][1+d(y,a)] , if x, y ∈ X ,

1
1+d(x,a)

, if y = ∞ and x ∈ X ,

0, if x = ∞ = y.

Note that, this distance function is an analog of the chordal metric on the Riemann
sphere. Unfortunately, da(x, y) will not satisfy the triangle inequality in general. In
fact, generally, da is not a metric on Ẋ and however a quasimetric. There is a standard
procedure, known as chain construction, to construct a metric from a quasimetric as
follows. Define

d̂a(x, y) := inf
k∑

j=0

da(x j , x j+1),

where the infimum is taken over all finite sequences x = x0, x1, . . . , xk, xk+1 = y
from Ẋ . Then (Ẋ , d̂a) is a metric space and called the sphericalization of (X , d)

associated to the point a ∈ X . Moreover, by [5,(3.3)] we have for all x, y ∈ Ẋ

1

4
da(x, y) ≤ d̂a(x, y) ≤ da(x, y). (3.1)

If (X , d) is a rectifiably connected unbounded metric space, then the Borel function
ρa : X → [0,∞) is defined as

ρa(x) = 1

[1 + d(a, x)]2 .
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A similar argument as [5,(4.1)], we obtain that for any rectifiable curve γ in X joining
x and y,

�d̂a
(γ ) =

∫

γ

ρa(z) ds, (3.2)

where ds means the element of the length. If (X , d, μ) is Ahlfors Q-regular, then the
associated spherical measure μa on a Borel set A ⊂ X is given by

μa(A) =
∫

A
ρa(z)Q dμ(z). (3.3)

Lemma 3.1 Suppose that (X , d, μ) is an unbounded Ahlfors Q-regular Q-Loewner
locally compact metric measure space with Q > 1 and a ∈ X. Then, the sphericalized
space (X , d̂a, μa) is a bounded Q-regular Q-Loewner metric measure space.

Proof Since (X , d, μ) is Ahlfors Q-regular, we see from [9,Proposition 3.1] that
(X , d̂a, μa) is also Ahlfors Q-regular. We first prove that the sphericalized trans-
formation preserves Q-modulus, that is,

modQ(�, d, μ) = modQ(�, d̂a, μa) (3.4)

for all rectifiable family of curves � in X . Indeed, we know from (3.2) and (3.3) that
for all nonnegative Borel function ρ : X → [0,∞]

∫

X
ρQ dμ =

∫

X

ρQ

ρ
Q
a

dμa,

and for any rectifiable curve γ ∈ �

∫

γ

ρ ds =
∫

γ

ρ

ρa
dsa,

where dsa is the arc-length element with respect to d̂a . From the definition of Q-
modulus, we know that (3.4) holds true.

In order to show that (X , d̂a, μa) is Q-Loewner, we only need to find a lower bound
of the Q-modulus associated to any pair of disjoint, non-degenerate continua E and
F in X . Since (X , d, μ) is Q-Loewner, by (3.4) we know that it suffices to find an
increasing function ψ : (0,∞) → (0,∞) satisfying


d̂a
(E, F) ≥ ψ

(

d(E, F)

)
. (3.5)

To this end, take x ∈ E and y ∈ F such that

distd̂a
(E, F) = d̂a(x, y).
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Without loss of generality, we may assume that diamd̂a
(E) ≤ diamd̂a

(F). More-
over, choose z ∈ E such that diamd̂a

(E) ≤ 2d̂a(x, z) and choose w ∈ F such that
diamd̂a

(F) ≤ 2d̂a(y, w).
By [3,Lemma 2.2], we see that the identity map id : (X , d) → (X , d̂a) is θ -

quasimöbius with θ(t) = 16t . It thus follows from Lemma 2.4 and (3.1) that

d(x, y) ∧ d(z, w)

d(x, z) ∧ d(y, w)
≤ θ0

(d(x, y)d(z, w)

d(x, z)d(y, w)

)

≤ θ0

(
16

d̂a(x, y)d̂a(z, w)

d̂a(x, z)d̂a(y, w)

)

≤ η
( d̂a(x, y) ∧ d̂a(z, w)

d̂a(x, z) ∧ d̂a(y, w)

)
,

where θ0(t) = 3(t ∨√
t) and η(t) = θ0

( 16
θ−1
0 (1/t)

)
. Consequently, from the above facts

we get


d(E, F) = distd(E, F)

diamd(E) ∧ diamd(F)

≤ d(x, y) ∧ d(z, w)

d(x, z) ∧ d(y, w)

≤ η
( d̂a(x, y) ∧ d̂a(z, w)

d̂a(x, z) ∧ d̂a(y, w)

)

≤ η
( 2distd̂a

(E, F)

diamd̂a
(E) ∧ diamd̂a

(F)

)
.

Hence, (3.5) is true by letting ψ(t) = 1
2η

−1(t). We complete the proof of Lemma 3.1.
��

Next, we consider the flatting transformations on bounded metric spaces. Given a
bounded metric space (X , d) and a base point c ∈ X , we consider the space Xc =
X \ {c} and define the function dc : Xc × Xc → [0,∞) as follows

dc(x, y) = dc(y, x) = d(x, y)

d(x, c)d(y, c)
.

We also deform the quasimetric dc by a chain construction and obtain from [5,(3.1)]
that there is a metric d̂c on Xc satisfying

1

4
dc(x, y) ≤ d̂c(x, y) ≤ dc(x, y).

The metric space (Xc, d̂c) is said to be the flattening of (X , d) associated to the
point c. In the case that (X , d) is a rectifiably connected bounded metric space, we
define the Borel function ρc : Xc → [0,∞) to be
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ρc(x) = 1

d(c, x)2
.

Thus, by [5,(4.1)], we obtain that for any rectifiable curve γ in Xc joining x and y,

�d̂c (γ ) =
∫

γ

ρc(z) ds.

If (X , d, μ) is Ahlfors Q-regular, then the corresponding flattening measure μc is
defined by

μc(A) =
∫

A
ρc(z)Q dμ(z),

where A ⊂ Xc is a Borel set.
Moreover, we demonstrate that the Q-Loewner condition is preserved under the

flattening of a bounded metric measure space. Since the argument for this result is
completely similar to the proof of Lemma 3.1, we do not provide the proof.

Lemma 3.2 Suppose that (X , d, μ) is a bounded Ahlfors Q-regular Q-Loewner metric
measure space with Q > 1 and c ∈ X. Then the flattening space (Xc, d̂c, μc) is an
unbounded Q-regular Q-Loewner metric measure space.

Now, we are ready to prove Theorem 1.1 by using Lemmas 3.1 and 3.2.

Proof of Theorem 1.1 Let (X , d, μ) and (Y , σ, ν) be locally compact Ahlfors Q-
regular metric measure spaces with Q > 1. Suppose that f : X → Y is a quasimöbius
homeomorphism and X is Q-Loewner. We need to show that Y is Q-Loewner.

For this, we only consider the case whenever X and Y are both bounded; for the
other cases, it is easy to deal with and the proof is rather similar. No loss of generality
we assume that diamσ (Y ) = 1.

Fix c ∈ X and c′ = f (c) ∈ Y . It follows from Lemma 3.2 that the flattening spaces,
(Xc, d̂c, μc) and (Y c′

, σ̂ c′
, νc′

), are both unbounded Ahlfors Q-regular metric spaces.
By [5,Lemma 3.1], we find that the identity mappings

ϕX : (Xc, d) → (Xc, d̂c) and ϕY : (Y c′
, σ ) → (Y c′

, σ̂ c′
)

are both θ -quasimöbius with θ(t) = 16t , ϕX (x) → ∞ as x → c and ϕY (y) → ∞ as
y → c′. Because the inverse and the composition of quasimöbius mappings are also
quasimöbius, we obtain a quasimöbius mapping:

f̂ = ϕY ◦ f ◦ ϕ−1
X : (Xc, d̂c) → (Y c′

, σ̂ c′
)

with f̂ (x) → ∞ as x → ∞. Thus f̂ is quasisymmetric by using Lemma 2.3.
On the one hand, again by Lemma 3.2, we see that (Xc, d̂c, μc) is Q-Loewner

because (X , d, μ) is Q-Loewner. Therefore, appealing to [10,Corollary 1.6] we see
that (Y c′

, σ̂ c′
, νc′

) is Q-Loewner.
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On the other hand, take another point p′ ∈ Y with σ(p′, c′) ≥ diam(Y )/2 = 1/2.

Consider the sphericalized space (Y c′
,

̂
(σ̂ c′

)p′ , (νc′
)p′) of (Y c′

, σ̂ c′
, νc′

) with respect

to p′. By Lemma 3.1, it follows that (Y c′
,

̂
(σ̂ c′

)p′ , (νc′
)p′) is also Ahlfors Q-regular

and Q-Loewner. According to [5,Proposition 3.5], we see that the identity map id :
(Y , σ ) → (Y ,

̂
(σ̂ c′

)p′) with c′ corresponding to the point ∞ in the extended space

( ˙Y c′
, σ̂ c′

), is 256-bilipschitz. Since Q-Loewner is a bilipschitz invariant, we find that
(Y , σ, ν) is also Q-Loewner. The proof of Theorem 1.1 is complete.

Remark 3.3 Aswe point out in Sect. 1, by Theorem 1.1, it is easy to get many Loewner
spaces via sphericalization and flattening transformations. For instance, we obtain that
the spherical surface S

n is a Loewner space, since every Euclidean space is a Loewner
space. It follows from the space (B2\{0}, |·|) being a Loewner space that (R2\B

2, |·|)
is also a Loewner space by Theorem 1.1 and flattening transformation.

References

1. Balogh, Z., Buckley, S.: Sphericalization and flattening. Conform. Geom. Dyn. 9, 76–101 (2005)
2. Bonk, M., Kleiner, B.: Quasisymmetric parametrizations of two-dimensional metric spheres. Invent.

Math. 150, 127–183 (2002)
3. Bonk, M., Kleiner, B.: Rigidity for quasi-Möbius group actions. J. Differential Geom. 61, 81–106

(2002)
4. Brania, A., Yang, S.: Domains with controlledmodulus and quasiconformalmappings. Nonlinear Stud.

9, 57–74 (2002)
5. Buckley, S.M., Herron, D., Xie, X.: Metric space inversions, quasihyperbolic distance, and uniform

spaces. Indiana Univ. Math. J. 57, 837–890 (2008)
6. David, G., Semmes, S.: Fractured fractals and broken dreams: self-similar geometry through metric

and measure. Oxford lecture series in mathematics and its applifications, 7. Clarendon Press, Oxford
(1997)

7. Heinonen, J.: Lectures on analysis on metric spaces. Springer-Verlag, Berlin-Heidelberg-New York
(2001)

8. Heinonen, J., Koskela, P.: Quasiconformal maps in metric spaces with controlled geometry. ActaMath.
181, 1–61 (1998)

9. Li, X., Shanmugalingam, N.: Preservation of bounded geometry under sphericalization and flattening.
Indiana. Math. J. 64, 1303–1341 (2015)

10. Tyson, J.: Quasiconformality and quasisymmetry in metric measure spaces. Ann. Acad. Sci. Fenn.
Math. 23, 525–548 (1998)

11. Väisälä, J., Quasi-Möbius maps, J. Anal. Math. 44, 218–234 (1984/85)
12. Wang, X., Zhou, Q.: Quasimöbius maps, weakly quasimöbius maps and uniform perfectness in quasi-

metric spaces. Ann. Acad. Sci. Fenn. Ser. AI Math. 42, 257–284 (2017)
13. Zhou, Q., Li, X., Li, Y.: Sphericalizations and applications in Gromov hyperbolic spaces. J. Math.

Anal. Appl. 509, 125948 (2022)
14. Zhou, Q., Li, X., Li, Y.: Deformations on symbolic Cantor sets and ultrametric spaces. Bull. Malays.

Math. Sci. Soc. 43(4), 3259–3270 (2020)
15. Zhou, Q. and Ponnusamy, S.: Gromov hyperbolic type metrics and quasimöbius invariance of uniform

domains, Submitted
16. Zhou, Q., Rasila, A.: Quasimöbius invariance of uniform domains. Stud. Math. 261(1), 1–24 (2021)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Quasimöbius invariance of Loewner spaces
	Abstract
	1 Introduction and Main Results
	2 Preliminary and Notations
	2.1 Metric Measure Spaces
	2.2 Mappings on Metric Spaces

	3 Proof of Theorem 1.1
	References




