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Abstract
This study focused on comparing selected commonly used marginal models with
marginal-conditional models for analyzing correlated longitudinal binary data. A sim-
ulation study shows that for explaining the relationship among the covariates and the
repeated outcomes, each of the proposed models show competitive results in terms
of bias and coverage probability as compared to the marginal models. If the repeated
outcomes are associated or if the distribution of outcome variables are not identical at
different follow-ups, the marginal-conditional models give better results in terms of
bias and coverage probability of the estimates. For keeping the number of parameters
to be estimated as small as possible, the regressive model is suggested for data with
more than three follow-ups. The methods are illustrated with an example using Health
and Retirement Study data.
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1 Introduction

Analysis of repeated measures categorical data has drawn the interest of many
researchers in the last few decades and has become an important and active area
of research [7, 9, 14]. Most of the previous works on correlated outcome variables
were based on the marginal response probabilities. Generalized estimating equations
(GEE) is a popular and one of the most widely used methods for analyzing longitudi-
nal data which is a quasi-likelihood approach that uses a population averaged model
[20, 32]. GEE do not require to meet the classical assumptions of independence and
normality, which are too restrictive for many problems [26]. Carey et al. [5] intro-
duced alternating logistic regression (ALR) models based on marginal odds ratios
instead of correlations between pairs of binary responses combining the first-order
GEE for regression coefficients with a new logistic regression equation for estimating
the correlation parameter. Due to lack of proper specification of the underlying model,
marginal models such as GEE or ALR may fail to provide the measure of depen-
dence of binary outcomes. The induced correlations considered in these methods and
anomalies caused by the induced correlation between repeated outcomes is beyond
any explanation. Working correlation structure of GEE has been a concern of many
studies mainly focusing on examining the existing selection criteria and/or proposing
new selection criteria for correlations structures [10, 12, 23, 24, 27, 30]. Many studies,
see, for example, Darlington and Farewell, Guerra et al. [6, 11], tried to address this
problem by modifying the approaches based on marginal models usingMarkov-based
transition probabilities.

A good number of researchers, for example, Muenz and Rubinstein [22], Zeger
et al. [33] and Azzalini [1], explored Markov models for binary longitudinal data.
Islam and Chowdhury [18], Islam et al. [13, 16, 17] carried out a series of research
works using Markov-based conditional models and joint models based on marginal
conditional approaches for repeated binary data. The conditional regressive logistic
models of Bonney [3, 4] were generalized by Islam et al. [13] to include both binary
outcomes in previous times and the covariates in the conditional models.

A longitudinal data offers the advantage of visualizing the change in the individual
responses with respect to time. GEE- or GEE-based models, being constructed to
describe the population averaged or marginal distribution of repeated measurements,
may sometimes be appropriate for descriptive observational studies but should be used
carefully in causal experiments [21]. Moreover, GEE or other marginal models may
not provide the measure of dependence of binary outcomes due to lack of proper
specification of the underlying model. The conditional models alone are, also, not
adequate to model the longitudinal data. In this study, we proposed two joint models
usingmarginal-conditional approaches for longitudinal data. Thesemodels can be used
as alternatives to GEE-based models for longitudinal data where marginal models are
not appropriate. Starting with an extension of the Markov-based model proposed by
Darlington and Farewell [6], we proposed, consequently, a more generalized form
that takes into account the correlation structure in an appropriate manner. Finally, we
proposed the use of a regressive model-based joint model in case of more than three
repeated outcomes in a longitudinal data. Theproposed jointmodels and their inference
procedures are simple. Nevertheless, the proposed models take care of the covariate
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dependence of the conditional probabilities (of occurrence of events) in second or
later follow-ups given the earlier responses of the same subject. One can use of the
proposed models for any number of follow-ups, equal or unequal, without making
the underlying model complex. Furthermore, the estimation and test procedures for
both the specific parameters of interest and the overall model is easy and simple for
practical uses on any longitudinal data. Through a simulation study, we compared the
proposed two joint models (based on a marginal conditional approach) with GEE and
ALR based on marginal models. Finally, we illustrated the selected methods using
Health and Retirement Study data [29].

2 Models for Analyzing Repeated Binary Data

Let Yi j be a Bernoulli outcome variable for subject i at j th occasion, i = 1, 2, ..., N
and j = 1, 2, ..., ni . Then the outcome vector for subject i can be defined as
Y i = (

Yi1 Yi2 ... Yini
)′ with mean vector μi = E(Y i ) = (

μi1 μi2 ... μini

)′ =
(
pi1 pi2 ... pini

)′. Also let X i j be the 1 × (p + 1) vector of covariates for subject
i at j th occasion.

Let us consider the simplest case of two repeated outcomes on each individual. The
vector of responses can be defined as Y i = (Yi1 Yi2). For binary outcome variables
Yi1 and Yi2 of i th individual, the marginal probability of Yi j observing an event can
be expressed as

pi j = Pr(Yi j = 1|xi j )

= exi jβ j

1 + exi jβ j
i = 1, 2, . . . , N ; j = 1, 2, (1)

where β j = (β j0, ..., β j p)
′ is a (p + 1) × 1 vector of parameters of the marginal

model of Yi j . Consequently, the marginal probability of not observing an event can be
expressed as 1 − pi j = 1 − Pr(Yi j = 1|xi j ) = 1

1+exi j β j
.

If Yi2 depends on Yi1, then for each possible values of yi1, we get one conditional
model for Yi2. As we assumed Yi j to be binary random variables, Yi1 can take values
0 and 1. When Yi1 = 0, the conditional probability of Yi2 = 1 can be defined as

p∗
i2 = Pr(Yi2 = 1|yi1 = 0, xi2)

= exi2β01

1 + exi2β01
; i = 1, 2, . . . , N , (2)

here β01 is the vector of parameters of the conditional model of P(Yi2 = 1|Yi1 =
0, Xi2 = xi2); i = 1, 2, . . . N . Here, the suffix (01) of β is used to show the transition
from Yi1 = 0 to Yi2 = 1.

Similarly, when Yi1 = 1, the conditional probability of Yi2 = 1 can be defined as

p∗
i2 = Pr(Yi2 = 1|yi1 = 1, xi2)
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= exi2β11

1 + exi2β11
; i = 1, 2, . . . , N , (3)

where β11 is the vector of parameters of the conditional model of P(Yi2 = 1|Yi1 =
1, Xi2 = xi2); i = 1, 2, . . . N . The suffix (11) of β is used to show the transition from
Yi1 = 1 to Yi2 = 1.

For i = 1, 2, . . . , N , the joint probabilities can be expressed as the product of
marginal and conditional probabilities,

P(Yi1,Yi2) = P(Yi2 = 1|Yi1 = yi1, xi2)P(Yi1 = yi1|xi1). (4)

The repeated measures data are naturally correlated and the major challenge of the
methods for analyzing repeated measures categorical data is to model the probable
correlations among the repeated observations on the same subject.

2.1 Marginal Models

Following the quasi-likelihood approach [31], with a mean model, μi j , and variance
structure, Vi j , the GEE [20, 32] for β, where β denotes the parameters of the marginal
model, can be expressed as:

U (β) =
N∑

i=1

Ui (β) =
N∑

i=1

D′
iV

−1
i (Y i − μi ) = 0, (5)

where Di = δμi
δβ

and V i is a working or approximate covariance matrix of Y i that
allows the time dependence to be specified in different ways. The GEE approach
uses an induced correlation matrix to define the correlation among the repeated
responses. The commonly used correlation structures are independence, autoregres-
sive, exchangeable or unstructured correlation.

The alternating logistic regression (ALR) procedure proposed by Carey et al. [5]
combines the first-order GEE for β with new logistic regression equations for esti-
mating correlation parameter. ALR regress the response on explanatory variables and
model the association among responses in terms of pairwise odds ratio simultaneously.
The ALR estimate of (α,β), where α is the pairwise log odds ratio and β is the regres-
sion coefficient, is the simultaneous solution of the following unbiased estimating
equations:

Uβ = ∑N
i=1

(
δμi
δβ

)′
V−1

i (Yi − μi ) = 0, (6)

Uα = ∑N
i=1

(
δζ i
δα

)′
S−1
i (Yi − ζ i ) = 0, (7)

where ζ i jk = E(Yi j |Yik = yik) and Si is the ni C2 ×ni C2 diagonal matrix with
elements ζ i jk(1− ζ i jk). Equations (6) and (7) are solved simultaneously for β and α.
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2.2 Dependence in Bivariate Binary Outcomes

Consider binary outcomes Yi1 and Yi2 for i th individual. If Yi1 and Yi2 are not inde-
pendent, then the conditional probability of Yi2 given Yi1 can be expressed as [6,
25]

P(Yi2 = 1|Yi1, X i2 = xi2)

= P(Yi2 = 1|X i2 = xi2) + ρi (Yi1 − P(Yi1|X i1 = xi1))
(8)

where ρ is the correlation between Yi1 and Yi2. For Yi1 = 0, Eq. (8) can be expressed
as,

P(Yi2 = 1|Yi1 = 0, X i2 = xi2)

= P(Yi2 = 1|xi2) + ρi (0 − P(Yi1|xi1))
or,

exi2β01

1 + exi2β01
= exi2β2

1 + exi2β2
− ρi .

exi1β1

1 + exi1β1

(9)

and for Yi1 = 1, Eq. (8) can be expressed as:

P(Yi2 = 1|Yi1 = 1, xi2)

= P(Yi2 = 1|xi2) + ρi (1 − P(Yi1|xi1))
or ,

exi2β11

1 + exi2β11
= exi2β2

1 + exi2β2
+ ρi

(

1 − exi1β1

1 + exi1β1

) (10)

Clearly ρi is a function of β1, β2 and β2.1 where β1 and β2 are the parameters of the
marginal models (Eq. 1), j = 1, 2 and β2.1 = β01 or β11, are the vectors of parameters
of the two conditional models (Eq. 2) for j = 2. When Yi1 and Yi2 are not correlated,
then ρi = 0 and

P(Yi2 = 1|Yi1, X i2 = xi2)

= P(Yi2 = 1|X i2 = xi2)

= exi2β2

1 + exi2β2
.

(11)

Theoretically, the observed correlation between two repeated outcome variables, Yi1
and Yi2, can be shown as:

ρi = cov(Yi1,Yi2)√
V (Yi1)

√
V (Yi2)

= E(Yi1Yi2) − E(Yi1)E(Yi2)√
μi1(1 − μi1)

√
μi2(1 − μi2)

(12)
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where

E(Yi1Yi2) =
1∑

yi1,yi2=0

yi1yi2P(Yi1 = yi1,Yi2 = yi2)

= P(Yi1 = 1,Yi2 = 1)

= P(Yi2 = 1|Yi1 = 1)P(Yi1 = 1)

= exi2β11

1 + exi2β11
.

exi1β1

1 + exi1β1

(13)

If X i j is time invariant then the correlation between Yi1 and Yi2, can be shown as:

ρi = e
1
2 xi (β1−β2)

exiβ11 − exiβ2

(1 + exiβ11)
. (14)

Equation (14) shows that correlation between Yi1 and Yi2 is equal to zero when
β11 = β2. However, this condition does not completely define no association between
Yi1 and Yi2. Equations (9) and (10) show that for the independence of Yi1 and Yi2, it is
necessary that both β01 and β11 are equal and equal to β2. If β01 �= β11 then Yi1 and
Yi2 are associated. Islam et al. [17] showed that the dependence in bivariate Bernoulli
outcome variables can be tested by testing the equality of the conditional models. Yi1
and Yi2 are independent if P(Yi2 = 1|Yi1 = s1, X i2 = xi2) = P(Yi2 = yi2|Yi1 =
0, X i2 = xi2) = P(Yi2 = yi2|Yi1 = 1, X i2 = xi2) = P(Yi2 = yi2|X i2 = xi2), i.e.
β2.s1 = β01 = β11 = β2. It should also be noted that even if the distribution of Yi1,
Yi2, ..., Yi j are independent, i.e., β j .12... j−1 = β j , this does not necessarily mean that
the distribution of Yi j ’s are identical. Distribution of Yi1, Yi2, ..., Yi j are identical only
if β1 = β2 = ... = β j = β.

GEE is a method for marginal or population averaged model and it considers
β1 = β2.1 = ... = βni .12...ni−1 = β, although inducing a (nuisance) correlation
structure. ALR is also a marginal model-based approach and hence the association of
repeated responses cannot be addressed in a true sense in ALR. Clearly, while ana-
lyzing longitudinal data with correlated response variables or response variables from
independent but non-identical populations at different time points, fitting marginal-
conditional models for Yi j ’s is a more appropriate choice as marginal models fail to
utilize the major advantage of longitudinal data of observing the change in the out-
come variable with respect to time because a marginal model is not able to apprehend
the scenario.

It might be noted here that Darlington and Farewell [6] proposed a transition prob-

ability model based on the transition probability P(Yi2 = 1|Yi1 = 1, xi ) = exi β11
1+exi β11

and the marginal probability P(Yi2 = 1|xi ) = exi β

1+exi β
, where β is the vector of param-

eters of the marginal model P(Yi j = 1|xi ). Essentially Darlington and Farewell [6]
addressed the correlation partially, as they have not considered the transition proba-
bility P(Yi2 = 1|Yi1 = 0, xi ) in their model.
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3 ProposedModels

In this study, we propose two joint models based on marginal conditional approach
for repeated binary outcomes. We start from the model considered by Darlington and
Farewell [6] with the working likelihood function:

L(β,β11) =
N∏

i=1

pi
yi1(1 − pi )

1−yi1
ni∏

j=2

p∗
i j
yi j (1 − p∗

i j )
1−yi j (15)

where pi = Pr(Yi j = 1|X i = xi ) = eβ′xi
1+eβ′xi and p∗

i j = Pr(Yi j = 1|Yi j−1, X i =
xi ) = E(Yi j |Yi j−1, X i = xi ) = pi + ρi (Yi j−1 − pi )and ρi = eβ11

′xi −eβ∗′
xi

1+eβ11
′xi ,

max(− pi
1−pi

,− 1−pi
pi

) < ρi < 1 because the likelihood must be maximized at
0 < pi < 1 and 0 < pi j < 1. The limitations of this model is that it does
not consider the transition probability from Yi j−1 = 0 to Yi j = 1 and con-
sidered p∗

i j = Pr(Yi j = 1|Yi j−1 = 1, X i ). Although, the transition probability
P(Yi j = 1|Yi j−1 = 0) was not considered in determining the correlation, while
defining the range of ρi , the transition from Yi j−1 = 0 was considered which con-
tradicts with the definition of ρi . A straight forward and simple way to improve the
model discussed by Darlington and Farewell [6] by including both the transition prob-
abilities, P(Yi j = 1|Yi j−1 = 0) and P(Yi j = 1|Yi j−1 = 1), in the working likelihood
function is discussed in the following subsection.

3.1 ProposedModel 1

For any order of Markov chain with covariate dependence, a model based on marginal
and conditional models can be used. Consider the simplest case of two repeated mea-
sures on each individuals. If Yi2 depends on Yi1, then for each possible values of
yi1, we get one conditional model for Yi2. As we assumed Yi j to be binary random
variables, Yi1 can take values 0 and 1. When Yi1 = 0, the conditional probability of
Yi2 = 1 can be defined as

p∗
i2 = Pr(Yi2 = 1|yi1 = 0, xi2)

= exi2β01

1 + exi2β01
; i = 1, 2, . . . , N , (16)

where β01 is the vector of parameters of the conditional model of P(Yi2 = 1|Yi1 =
0, Xi2 = xi2); i = 1, 2, . . . N . Here the suffix (01) of β is used to show the transition
from Yi1 = 0 and Yi2 = 1.

Similarly, when Yi1 = 1, the conditional probability of Yi2 = 1 can be defined as

p∗
i2 = Pr(Yi2 = 1|yi1 = 1, xi2)

= exi2β11

1 + exi2β11
; i = 1, 2, . . . , N , (17)
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where β11 is the vector of parameters of the conditional model of P(Yi2 = 1|Yi1 =
1, Xi2 = xi2); i = 1, 2, · · · N . The suffix (11) of β is used to show the transition from
Yi1 = 1 and Yi2 = 1.

The joint probabilities can be expressed as, for i = 1, 2, . . . , N ,

P(Yi1,Yi2) = P(Yi2 = 1|Yi1 = yi1, xi2)P(Yi1 = yi1|xi1). (18)

In general, the joint mass function for ni outcome variables, Yi1,Yi2, ..., Yini , for
subject i at follow-ups 1, 2..., ni , respectively, in the presence of covariates X i j =
(1, Xi j1, Xi j2, ..., Xi jp), can be expressed as product of the conditional and marginal
probability mass functions for given values of covariates as follows:

Pr(Yi1 = yi1, ...,Yini = yini |Xi = xi )

= Pr(Yi1)
ni∏

j=2

Pr(Yi j |Yi1 = yi1, ...,Yi j−1 = yi j−1, Xi = xi ).
(19)

Ingeneral, let us considerni possibly correlatedoutcomevariables (Yi1,Yi2, ..., Yini )
on each of N individuals. Let θ = (θ1, θ2.1, ..., θni .1,2,...,ni−1) be the vector of
unknown parameters where θ j = g(μi j ) = Xi jβ j , θ j .12... j−1 = g(μi j .12... j−1) =
X i jβ j .12... j−1 and g is an appropriate link function. The joint probability mass func-
tion of Yi1, ...,Yini can be expressed as:

P(Yi1 = yi1, · · · ,Yini = yini )

= P(Yi1 = yi1|xi1).P(Yi2 = yi2|xi2, yi1)
· · · P(Yini = yini |xini , yi1, · · · , yini−1).

(20)

The likelihood function can be expressed as:

L(β) =
N∏

i=1

f (yi1|xi1,β1) f (yi2.1|xi2,β2.1)

· · · f (yni .1,2,...,ni−1|xini ,βni .1,2,...,ni−1), (21)

where f (yi1|xi1,β1) is the marginal distribution of yi1 for given X i1 = xi1 and the
conditional probabilities of yi j , given Yi1 = yi1, ...,Yi j−1 = yi j−1, and X i j = xi j
are f (yi j .12... j−1) = f (yi j |xi j , yi1, ..., yi j−1, β j .1,2,..., j−1), j = 2, 3, ..., ni . Let li j
be the contribution of i j th term to the log likelihood function. Differentiating the
log-likelihood, l = ∑N

i=1
∑ni

j=1 li j , with respect to corresponding parameters, and
equating to zero, the estimating equations are:

∂l

δβk
=

N∑

i=1

ni∑

j=1

∂li j
∂θ j

∂θ j

∂μi j
.
∂μi j

∂βk
= 0. (22)

The estimates of β can be obtained by maximum likelihood method.
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The variance of the estimates, V (β̂), is obtained from the inverse of the information
matrix I , where I is a (2ni − 1)(p+ 1)× (2ni − 1)(p+ 1) matrix with kk′th elements
− ∂2l

∂βk∂β
′
k
; k, k′ = 0, 1, ..., p.

For example, consider possibly correlatedBernoulli outcome variablesYi1, ..., Yini ,
with probability of success pi1, p∗

i2, ..., p
∗
ini

, where p∗
i j denotes the conditional prob-

ability, P(Yi j = 1|yi1, ..., yi j−1, xi j ), j = 2, ..., ni . Then f (yi1|xi1,β1) = pyi1i1 (1 −
pi1)1−yi1 and f (yi j .12... j−1|xi j ,β j .12... j−1) = p∗yi j

i j (1 − p∗
i j )

1−yi j , j = 2, ..., ni .
The likelihood function can be expressed as

L =
N∏

i=1

e
yi1ln

pi1
1−pi1

+yi2ln
p∗i2

1−p∗i2
+...+yini ln

p∗ini
1−p∗ini . (23)

Similar representation was shown previously by Islam and Chowdhury [14]. Differ-
entiating the log-likelihood with respect to the respective parameters and equating to
zero, the score equations for β are obtained as:

∂l

∂βk
=

N∑

i=1

Xi1k(yi1 − pi1)

+
N∑

i=1

ni∑

j=2

Xi jk(yi j − p∗
i j ), k = 0, 1, ..., p.

(24)

The informationmatrix Iβ is a (2ni −1)(p+1)×(2ni −1)(p+1)matrix with elements

− ∂2l
∂βk∂β

′
k
, k, k′ = 0, 1, ..., p.

Test of Hypothesis

To test the significance of the overall model, the null and alternative hypothesis can
be expressed as: H0 : β = β0 vs H1 : β �= β0 where β = (β1,β2.1, ...,βni .1,2,...ni−1)

and β0 is the value of β under null hypothesis of no covariate effect. The test statistic
� = −2[lnL(β0)−lnL(β)] has a chi-square distribution under H0 with (2ni −1)p d.f.
Here lnL(β) is the log likelihood of the full model and lnL(β0) is the log likelihood
of the reduced model for no covariate effects, i.e. the value of lnL(β) under H0. For

testing H0 : βk = 0 vs H1 : βk �= 0 the test statistic is z = β̂k

se(β̂k )
which follows

N (0, 1) under H0. The major limitation of the proposed joint model based on Markov
transition probability in Eq. (21) is the rapid increase in the number of parameters
for increasing number of follow-ups. With ni follow-ups, the number of parameters
to be estimated is as big as (2ni − 1)(p + 1) where p is the number of covariates.
To overcome the limitations of the proposed model 1, in the following section, we
propose a second set of joint models as an alternative.
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3.2 ProposedModel 2

If there are more than three follow-ups in a longitudinal data, the number of
parameters of the joint model becomes as big as (24 − 1)(p + 1), for 4 follow-
ups where p is the number of covariates.. In this section, an alternative to GEE
approach is developed based on the regressive models [3] in order to analyze
repeated measures data. The generalized form of the regressive model was pro-
posed by Islam et al. [16]. Following the notations of Islam et al. [16], let us
define λ′

j−1 = (β ′, γ ′
j−1, ρ

′
j−1, η

′
j−1) and W ′

j−1 = (X ′
i j ,Y

′
j−1, ν

′
j−1, Z

′
j−1)

where X i j = (1, Xi j1, Xi j2, ..., Xi jp) and Y j−1 = Yi1, ..., Yi j−1, ν j−1 =
(ν12, ν123, ..., ν12... j−1)

′ = (yi1yi2, yi1yi2yi3, ..., yi1yi2...yi j−1)
′ are the interaction

terms among Yi j s, j = 1, ..., ni and Z j−1 = (z11, ..., z1p, ..., z j−1p)
′ are the

interaction terms among X i j and Y i =(xi1yi1, ..., xip yi1, ..., xi1yi j−1, ..., xip yi j−1)
′.

β ′ = (β0, β1, ..., βp) are the coefficients of X i j ; γ ′
j = (γ1, ..., γ j−1), the parame-

ters corresponding to Yi1, ...,Yi j−1; ρ′
j−1 = (ρ12, ρ123, ..., ρ12... j−1), the coefficients

of the interaction terms among Yi j ’s, and η−1 = (η11, ..., η j−1p) be the parameters
corresponding to Z j−1. The regressive model for the j th follow-up is defined as:

P(Yi j = s|w j−1) = eλ′
jw j−1s

1 + eλ′
jw j−1

, s = 0, 1, j = 2, ..., ni . (25)

The likelihood function can be expressed as:

L =
N∏

i=1

f (yi1|x1,λ1) f (yi2|xi ,λ2)... f (yni |xi ,λni ). (26)

The score equations can be obtained by differentiating the log likelihood, l = logL ,
with respect to the respective parameters. The information can be obtained as − ∂2l

∂λ∂λ′ .

Test of Hypothesis

To test for the dependence of the j th outcome on earlier outcomes and other related
terms, the null hypothesis can be shown as: H0 : λ∗

j−1 = 0 against H1 : λ∗
j−1 �= 0

where λ∗
j−1 = (γ j−1, ρ j−1, η j−1)

′. The total number of parameters need to be tested

is (2 j−1−1) for γ j−1 and ρ j−1 and ( j −1)× p parameters for η j−1. The test statistic
is a likelihood ratio and follows chi-square distribution with (2 j−1 − 1)+ ( j − 1)× p
degrees of freedom [13]. Under independence, the model in Eq. (25) can be defined
as

P(Yi j = s|xi j ,Y i j−1, ν j−1Z j−1) = eβ ′xi j s

1 + eβ ′xi j
, s = 0, 1. (27)
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If the outcomes are independent, one can simply fit the reduced model using a maxi-
mum likelihood method. If the outcomes are associated, the full model as given in Eq.
(25) is suggested.

4 Simulation Study

A simulation studywas carried out to compare the properties of estimates of regression
coefficients of the models discussed in the earlier sections. The repeated measures can
be associated in a variety of ways and in this study, the cases considered are:(i) Yi j ’s
are identically and independently distributed, (ii) Yi j ’s are identically distributed and
associated (iii) Yi j ’s are not identical and their distributions are independent.

4.1 Simulation Design

For simplicity of the study,we restrict the simulation study for the conditionalmarginal
model to two follow-ups, Yi1 and Yi2 on i th subject and only one explanatory variable,
Xi1 for each of the N individuals where Xi1 is fixed and time invariant. We assumed
that Yi1 and Yi2 are two binary random variables with Yi1 ∼ B(1, pi1) and Yi2 ∼
B(1, pi2). The corresponding generalized linear models are g(μi1) = eβ′

1Xi

1+eβ′
1Xi

and

g(μi2) = eβ′
2Xi

1+eβ′
2Xi

.

The simulation followed the following steps: a time invariant explanatory variable
Xi was generated first from Bernoulli distribution with probability of success 0.5.
Then pi1, the probability of success of Yi1 was calculated using the equation P(Yi1 =
1|xi ) = eβ′

1xi

1+eβ′
1xi

for selected values of β1 = (β10, β11)
′ where X i = (1, Xi ), β10 is

the intercept term and β11 is the coefficient of Xi . N values, ai , were generated from
uniform distribution within range (0, 1) and then Yi1 was generated such that Yi1 = 1
if ai < P(Yi1 = 1|xi ) and 0 otherwise. To generate data on Yi2, first, the probability of
success at time point 2, pi2, was calculated as P(Yi2 = 1|X i = xi ) = eβ′

2xi

1+eβ′
2xi

. Here

β2 = (β20 + γ1yi1, β21) where β20 + γ1yi1 is the intercept term, β21 is the coefficient
of Xi and γ1 is the coefficient of Yi1. Similar as Yi1, N values, bi , were generated from
uniform distribution within range (0, 1) and then Yi2 was generated such that Yi2 = 1
if bi < P(Yi2 = 1|Xi = xi ) and 0 otherwise.

For illustration of the regressive model, Yi1, Yi2, Yi3 and Yi4 were generated in
a similar way as Yi1 with β1 = (β0, β1)

′, Yi2 with β2 = (β0, β1, γ1)
′, Yi3 with

β3 = (β0, β1, γ1, γ2)
′ and Yi4 with β4 = (β0, β1, γ1, γ2, γ3)

′, respectively.
Yi j ’s are independently and identically distributed when β1 = β2 and γ1 = 0;

distribution of Yi j ’s are identical (β1 = β2) but they are associated (γ1 �= 0); Yi j ’s are
independent (γ1 = 0) but the distribution of Yi j ’s are not identical (β1 �= β2). GEE
under different correlation structures (independent, exchangeable and autoregressive),
ALR under exchangeable correlation and joint models were fitted. The bias, the stan-
dard error of the estimates and coverage probability of the 95 % confidence interval
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were constructed over a range of scenarios for large samples and varying association
among the repeated responses.

4.2 Simulation Results

The findings of the simulation study (estimates, bias, standard error and coverage
probability) are summarized in Tables 1, 2 and 3. In all the following tables, GEE(In),
GEE(Ex), GEE(AR) stand for GEE models under independent, exchangeable and
autoregressive correlations, respectively. ALR(Ex)denotes the ALR model under an
exchangeable correlation. The parameters of the joint model are β10, β11, β010, β011,
β110 and β111. Here, β10 and β11, respectively, denote the intercept and the regression
coefficients of the marginal model P(Yi1 = 1|X i = xi ); β010 and β011, respec-
tively, denote the intercept and the regression coefficient of the conditional model
P(Yi2 = 1|Yi1 = 0, X i = xi ); and β110 and β111, respectively, denote the intercept
and regression coefficient of the conditional model P(Yi2 = 1|Yi1 = 1, X i = xi ).
GEE or ALR, being approaches based on marginal models, estimate the parameters of
such models as an average of the parameters of two populations from where Yi1 and
Yi2 were generated. To distinguish the parameters of GEE and ALR from joint model,
we used the notation β∗ = (β∗

0 , β∗
1 )′ to denote the parameters of GEE and ALR in the

following tables.

In Table 1, P(Yi1 = 1|X i = xi ) = eβ10+β11xi11

1+eβ10+β11xi11
= e0.5+0.2xi11

1+e0.5+0.2xi11
and P(Yi2 =

1|Yi1 = yi1, X i = xi ) = eβ20+β21xi21+γ1 yi1

1+eβ20+β21xi21+γ1 yi1
, where, β20 and β21, respectively, denote

the intercept and regression coefficients of the marginal model P(Yi2 = 1|X i = xi );
So if γ1 = 0, the true values of the parameters to be estimated for the joint model are
β10 = 0.5, β11 = 0.2, β010 = β20 + γ1 × (yi1 = 0) = 0.5 + 0 × 0 = 0.5 = β20,
β011 = β21 = 0.2, β110 = β20 + γ1 × (yi1 = 1) = 0.5 + 0 × 1 = 0.5 and β111 =
β21 = 0.2.When γ1 = 1, the true values of the parameters to be estimated for the joint
model are β10 = 0.5, β11 = 0.2, β010 = β20 + γ1 × (yi1 = 0) = 0.5 + 1 × 0 = 0.5,
β011 = β21 = 0.2, β110 = β20 + γ1 × (yi1 = 1) = 0.5 + 1 × 1 = 1.5 and
β111 = β21 = 0.2.

Table 1 shows that bias and the standard error of estimates of the proposed Model
1 (extension of Darlington and Farewell [6]), Proposed Model 2, GEE and ALR
are competitive for longitudinal data when the repeated measures are independent
(γ1 = 0.0). Inadequacy of GEE or ALR to portray the relationship between X and Y
are visible with the presence of dependence relationship between Yi1 and Yi2 as shown
in Table 1 where the data are generated from two associated populations (γ1 = 1.0).
The marginal parameters in the Model 1 proposed as an extension of Darlington and
Farewell [6] does not make much improvement in the performance of the parameters
in terms of bias and standard error.

The proposed joint model (Model 2) gives better estimates in this case. The inade-
quacy of GEE or ALR to portray the relationship between X and Y are also observed
in Table 2 where the data are generated from two independent but nonidentical pop-
ulations. The estimates of parameters of GEE do not portray the actual relationship
between the covariates and the response variable because of the variation in the rela-
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Table 2 Estimates(Est.), bias, standard error(SE) and coverage probability (CP) of estimates for independent
outcomes with non-identical distributions, (β1 = (β10, β11) = (0.5, 0.2), β2 = (β20 + γ1yi1, β21) =
(0.2, 0.7), γ1 = 0.0)

Methods Par Est Bias from β1 Bias from β2 SE CP for β1 CP for β2

Model 1 β10 0.5127 − 0.0127 – 0.2066 0.9580 –

β11 0.2030 − 0.0030 – 0.2985 0.9550 –

β20 0.1992 – 0.0008 0.2010 – 0.9520

β21 0.7157 – − 0.0157 0.3010 – 0.9520

GEE(In) β∗
0 0.3522 0.1478 − 0.1522 0.1426 0.818 0.828

β∗
1 0.4566 − 0.2566 0.2434 0.2101 0.763 0.780

GEE(Ex) β∗
0 0.3522 0.1478 − 0.1522 0.1426 0.818 0.828

β∗
1 0.4566 − 0.2566 0.2434 0.2101 0.763 0.780

ALR(Ex) β∗
0 0.3522 0.1478 − 0.1522 0.1426 0.818 0.828

β∗
1 0.4566 − 0.2566 0.2434 0.2101 0.763 0.780

tionship at different time points. And the actual bias from population 1 (from where
Yi1 were generated) and population 2 (from where Yi2 were generated) are shown in
two columns of Table 2. Clearly, even if the repeated measures are not associated,
while data come from two different populations, the GEE or ALR are not adequate to
capture the relationship between the covariates and the response variable. Proposed
model 2 is suggested in such cases.

While there are more than three repeated measurements on the same subject, the
covariate-dependent Markov Chain-based joint models need to estimate too many
parameters and a general form of the regressive model approach [13] is suggested as
an alternative of GEE-based approaches. The results of the simulation study (Table 3)
show that when the outcomes are independent and identically distributed, the estimates
of the parameters of a regressivemodel produce similar results asGEEorALR in terms
of bias and coverage probability. The regressive model performs better than GEE or
ALR while the repeated responses are associated.

Indubitably, GEE and ALR performed well only when repeated measures come
from identical population and are not associated. The simulation study also finds that
basically there is no difference in the estimates of GEE under different correlation
structures (Tables 1, 2, 3). Also, ALR does not show any noticeable difference from
GEE estimates inmost cases. The proposedmodel 2 (for 3 or fewer repeated outcomes)
and proposed model 3 (for more than 3 repeated outcomes) produce better estimates in
terms of bias and coverage probability than GEE or ALR in the cases when responses
are associated or the responses at different time points have different distributions.

5 Application to HRS Data

The first three waves of the longitudinal data from the Health and Retirement Study
(HRS) conducted by the University of Michigan [29] were used for comparison of
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the selected methods. The study started in 1992 on American individuals over the
age of 50 years and their spouses and the subjects are observed every two years.
In wave 1, the sample size was 9760 and the sample size was reduced to 9750 due
to the dropping of 10 cases with missing values of outcome variable at first round.
Finally, the number of individuals were 8657 who reported that they were not hos-
pitalized at wave 1. The panel data from the waves for 1992, 1994 and 1996 have
been used in this study. An Elderly population may suffer from repeated spells of
depression which may change over time [8, 15] and result in other health problems
and chronic illness [19]. The literature on depression among elderly helped filling
many gaps in our understanding of the factors associated with depression and also the
outcome of depression [2]. But understanding depression and its associated factors
more explicitly is important. In many studies on clinical and non-clinical populations,
CESD (Center for Epidemiologic Studies Depression) scale is employed to measure
depressive symptoms [28]. The dependent variable for this study is Depression status
(no depression (CESD score = 0), depression (CESD score > 0)). The independent
variables are gender (male=1), marital status (married/partnered=1), education, eth-
nicity: Black (Black = 1), ethnicity: White (White = 1), drinking habit (drink=1)
and the number of health conditions. In Tables 4 and 5, Mstat stands for marital sta-
tus, White stands for white ethnicity, Black stands for Black ethnicity, Drink means
drinking habit and No. of Cond. is the number of health conditions. In GEE models,
we observe that marital status, education year, ethnicity: White and number of health
conditions were significantly associated with depression. The GEE model under the
assumption of independence and exchangeable correlation produces the same results
and finds that marital status, education, White ethnicity and number of health condi-
tions had significant influence on depression among the study population. ALR under
an exchangeable correlation, in addition, finds drinking habit as a significant factor
for depression. GEE model under the assumption of autoregressive correlation shows
that marital status, education, white ethnicity and number of health conditions were
significantly associated with the depression status but gender was not significant in
GEE-based models.

The joint model shows that the effects of the covariates were different on the depres-
sion status at different follow-ups. At the baseline, marital status, education, white
ethnicity and the number of conditions had a significant effect on depression. Mar-
ried people were less depressed as compared to their single counterparts, education
lessened the risk of depression, white people were less depressed, number of physical
conditions increased the risk of depression.

In thefirst follow-up, covariate effectswere different ondepression status depending
on what the CESD score was in the baseline (Y1). If the respondent was not depressed
in the baseline, gender, marital status, education year and being white had a significant
influence on the dependent variable. Male, married, educated persons and people from
White ethnicity are at less risk of being depressed. Gender had no significant effect
on those at the first follow-up. Being married and being educated lessens the risk of
being depressed for those who were depressed at the baseline.

In the second follow-up, the effects of the covariates were notably different depend-
ing on the depression status of the respondent in the previous follow-ups. Depression
status of patients (who were not depressed in the baseline or the first follow-up) was
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Table 4 Estimates of parameters of GEE and ALR on HRS data

GEE(In) GEE(Ex)

Est SE p value Est SE p value

Intercept 2.023 0.206 0.000 2.023 0.206 0.000

Gender − 0.059 0.059 0.321 − 0.059 0.059 0.321

Mstat − 0.621 0.065 0.000 − 0.621 0.065 0.000

Education − 0.153 0.010 0.000 − 0.153 0.010 0.000

White − 0.363 0.166 0.029 − 0.363 0.166 0.029

Black − 0.085 0.177 0.629 − 0.085 0.177 0.629

Drink − 0.091 0.055 0.097 − 0.091 0.055 0.097

No. of Cond. 0.389 0.024 0.000 0.389 0.024 0.000

GEE(AR) ALR(Ex)

Est SE p value Est SE p value

Intercept 1.944 0.206 0.000 2.019 0.192 0.000

Gender − 0.056 0.060 0.351 − 0.059 0.057 0.153

Mstat − 0.613 0.065 0.000 − 0.624 0.063 0.000

Education − 0.151 0.010 0.000 − 0.153 0.010 0.000

White − 0.338 0.166 0.042 − 0.366 0.153 0.008

Black − 0.067 0.177 0.706 − 0.085 0.163 0.301

Drink − 0.082 0.055 0.135 − 0.091 0.053 0.045

No. of Cond. 0.391 0.024 0.000 0.391 0.023 0.000

significantly associated with marital status, education and drinking habit. Depression
status of patients (who were not depressed in the baseline but were depressed in the
first follow-up) was significantly associated with education. Education had a signif-
icant effect on depression status of patients in second follow-up for those who were
depressed in the baseline but not depressed in the first follow-up. Respondents’ depres-
sion status was significantly associated withmarital status and education for those who
were depressed in both the first and the second follow-ups. These findings confirm our
assertion that the extensive use of GEE-based models may result in failure to specify
the covariate effects adequately for longitudinal data. The results demonstrate that
a joint model based on marginal conditional approach explains the covariate effects
more meaningfully.
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6 Conclusion

Majority of the longitudinal models, for example, the GEE and ALR, are based on
marginal approaches with an induced correlation among repeated outcomes on one
subject and lack in proper specification of the dependence in binary or multivariate
repeated outcomes. Naturally, these models may fail to provide an efficient estimation
of parameters of themodel considered. At this backdrop, this study proposed the usage
of two joint models based on marginal conditional approaches as alternatives to GEE
or related models based on marginal approaches.

The joint models, (proposed models 1 and 2), take care of the correlation among the
repeatedmeasures in a built-in nature and can be extended for any order of dependence
without complicating the theory. First of all, the proposed model 1 is an extension of
Darlington and Farewell [6] showing the likelihood formodels based on theMarkovian
assumption of first order more explicitly. The second model (proposed model 2) is a
further generalization of proposed model 1 based on marginal and conditional models
for any order of a Markov chain with covariate dependence. Although the estimates
of parameters of the proposed model 1 have less bias and greater coverage probability
as compared to the same of GEE or ALR, the proposed model 1 has restricted use due
to an overwhelming increase in the number of models and parameters to be estimated
when there are more than three observations on a single subject. To overcome these
limitations, we suggested the regressive model (Proposed model 2), when a subject is
observed more than three times. It might be noted that the biggest advantage of the
proposedmodel 2 is itsminimumnumber of parameters for any order of the underlying
Markov Chain. Furthermore, in terms of bias and coverage probability, the proposed
model 2 appears to be as good as other alternatives, say, proposedmodels 1. Hence, for
practical reasons, the proposed model 2 can be used to analyze longitudinal data effec-
tively and conveniently for more than three follow-ups. In addition to the simulation
study, the applications of the selected models to HRS data [29] show that the proposed
model 2 is a more specified model in a simpler setup, as compared to GEE, ALR, the
Darlington and Farewell’s [6] method or proposed model 1. Nevertheless, in case of
more than 3 repeated outcomes, the proposed model 2 is not only the most convenient
model but also it performs better than GEE or ALR. Indubitably, both the theoretical
and practical users will find the results more useful using the proposed models.
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