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Abstract
We consider a Kirchhoff-type equation with critical and supercritical nonlinear terms
in a ball. By providing a method of decomposition of energy functional and subtle
analysis, we show that every Palais–Smale sequence at a level below a certain energy
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of the variational functional.
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1584 C.Y. Lei and J.F. Liao

1 Introduction andMain Results

We consider the following Kirchhoff-type equation with critical growth:

⎧
⎨

⎩

M

(∫

Br

|∇u|2dx

)

�u + u5 + |x |β
1+|x |β u p−1 = 0, in Br ,

u = 0, on ∂ Br ,

(1.1)

where Br ⊂ R
3 is an open ball centered at the origin, 0 < β < 1, 6 < p < 6 + 2β.

Denoting M̂(s) = ∫ s
0 M(t)dt , we make the following assumptions:

(M1) M ∈ C1(R+,R+), M(s) ≥ a > 0, a is a constant, M(s) is increasing in s;
(M2) 2M(s) ≥ s M ′(s) for each s > 0, and lims→+∞ M(s)

s2
= 0;

(M3) for s > 0, M̂(s) − 1
3 s M(s) ≥ 2

3as and 1
s ( 12 M̂(s) − 1

6 s M(s)) is nondecreasing
in s.

A typical example of M is given by M(t) = a+bt for t ∈ R
+, where a > 0, b ≥ 0.

Problem (1.1) is often referred as being nonlocal because the presence of the term
M(

∫

Br
|∇u|2dx) implies that problem (1.1) is no longer a pointwise identity. This

phenomenon causes some mathematical difficulties which make the study of such
a class of problem particularly interesting. Moreover, such a problem has physical
motivation. Indeed, the Kirchhoff equation arises in nonlinear vibrations, namely

⎧
⎪⎪⎨

⎪⎪⎩

utt − M

(∫

�

|∇u|2dx

)

�u = f (x, u), in � × (0, T ′),

u = 0, on ∂� × (0, T ′),
u(x, 0) = u0(x), ut (x, 0) = u1(x),

where T ′ > 0. Such a hyperbolic equation is related to the stationary analogue of the
following equation:

utt −
(

a + b
∫

�

|∇u|2dx

)

�u = h(x, u),

where u denotes the displacement, h is the external force, and a is the initial tension,
while b is related to the intrinsic properties of the string (such as Young’s modulus).
Such nonlocal elliptic problems like problem (1.1) have received a lot of attention, and
some important and interesting results have been established by using the variational
methods; see for example ([1–23]) and the references therein. In particular, Figueiredo
in [1] studied the following semilinear equation with critical growth:

⎧
⎨

⎩

M

(∫

�

|∇u|2dx

)

�u + |u|4u + λ f (x, u) = 0, in �,

u = 0, on ∂�,

(1.2)

where M satisfies the following conditions:
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Positive Solutions for a Kirchhoff-Type... 1585

(A1) The function M is increasing;
(A2) There exists M0 > 0 such that M(t) ≥ M0 = M(0) , for all t ≥ 0. Under

suitable conditions about f and the above assumptions, applying an appropri-
ated truncated argument, the author proved that there exists a threshold value

(here the threshold value is just ( 1
θ

− 1
6 )(M0S)

3
2 , where 4 < θ < 6 and S is

the best constant for the Sobolev embedding H1
0 (�) ↪→ L6(�)), only below

this threshold value the functional associated with the problem (1.2) satisfies
the Palais–Smale condition. Moreover, the author obtained that there exists
λ∗ > 0 such that for all λ ≥ λ∗, problem (1.2) admits a positive solution uλ

with limλ→∞ ‖uλ‖ = 0.

After that, Wang et al. in [2] extended the above equation to the following p-
Kirchhoff-type equation:

⎧
⎨

⎩

M

(∫

�

|∇u|pdx

)

�pu + |u|p∗−2u + λ f (x, u) = 0, in �,

u = 0, on ∂�.

The authors made the following assumptions M(0) = 0, and

(B1) there exists θ ∈ (1, p∗/p)(p∗ = N p
N−p ) such that t M(t) ≤ θ M̃(t) :=

θ
∫ t
0 M(s)ds for all t > 0;

(B2) for any τ > 0 there exists κ = κ(τ) > 0 such that M(t) ≥ κ for all t ≥ τ ;
(B3) there exists a constant c > 0 such that M(t) ≥ ctθ−1 for all t ∈ [0, 1]. The

authors also obtained the same result in [1] by using theMountain pass theorem.

Now, returning to problem (1.1), it is clear that problem (1.1) has a variational
structure. We understand critical points of the associated energy functional acting on
the Sobolev space H :

I (u) = 1

2
M̂

(∫

Br

|∇u|2dx

)

− 1

6

∫

Br

|u|6dx − 1

p

∫

Br

|x |β
1 + |x |β |u|pdx,

where H := H1
0,rad(Br ) is the first-order Sobolev space of radial functions equipped

with the inner product and norm

〈u, v〉 =
∫

Br

∇u∇vdx, ‖u‖ = 〈u, v〉 1
2 .

We say that the functional I satisfies the Palais–Smale ((P S) for short) condition if
any (P S) sequence {un} ⊂ H , that is a sequence satisfying

{I (un)} bounded and I ′(un) → 0 in H−1 as n → +∞,
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1586 C.Y. Lei and J.F. Liao

admits a convergent subsequence. If {un} ⊂ H is a bounded (P S) sequence of I , {un}
has a profile decomposition with containing finitely bubbles (see Lemma 2.4)

un = u +
∑

k∈�

gn,k VN + γn,

where VN , γn ∈ D1,2(R3) which is the completion of C∞
0 (R3) with respect to the

norm

‖ϕ‖D =
(∫

R3
|∇ϕ|2dx

) 1
2

.

� is finite, say � = 1, 2, ..., N (� may be empty and N = 0). In particular, if N = 0,
then un → u strongly in H . In order to prove the result, we need to establish the exact
threshold value, and only below this threshold value the functional I satisfies the (P S)

condition.
Motivated by the above works, we study the existence of solutions for problem

(1.1). Here, in order to overcome the lack of compactness induced by the presence
of the Kirchhoff term and critical exponent, some delicate estimates are exploited
which are totally different from those used in the papers mentioned above. Unlike
[1, 2], due to the enough large constraint condition on the parameter λ, which plays
a very important role, it causes us not to estimate the threshold value of the energy
functional. Therefore, assume that M is an abstract function and the parameter λ is
not restricted, in this case, it is very difficult to determine the threshold value of the
energy functional. However, in this paper, by a concentration compactness analysis
on the Palais–Smale sequence, we establish the threshold value to consequently prove
the existence of positive solutions. Thus, the method used in those articles cannot be
repeated here because we are working with M which is an abstract function and the
parameter λ ≡ 1.

Now our main result is as follows:

Theorem 1.1 Assume that 0 < β < 1, 6 < p < 6 + 2β and (M1), (M2), (M3) hold,
then problem (1.1) has a positive solution u. Moreover

lim
r→∞ u(r) = 0.

Remark 1.2 Under the assumptions of Theorem 1.2, the following problem

⎧
⎨

⎩

M

(∫

Br

|∇u|2dx

)

�u + u5 + |x |βu p−1 = 0, in Br ,

u = 0, on ∂ Br ,

admits a positive solution u with limr→∞ u(r) = 0.

This paper is organized as follows. In Sect. 2, we give the compactness analysis and
establish the Palais–Smale condition. In Sect. 3, we demonstrate the threshold value
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Positive Solutions for a Kirchhoff-Type... 1587

and conclude Theorem 1.2. In the proof, we use a same character C to denote several
positive constants.

2 Concentration Compactness Analysis

In this section, we make concentration compactness analysis on the (P S) sequence of
the functional I . The results will be used to deduce the system of coupled equations
satisfied by the weak limit function of a (P S) sequence and the bubbles.

Lemma 2.1 Assume that 0 < β < 1, 6 < p < 6 + 2β. If {un} is bounded and un⇀u
in H. Then,

lim
n→∞

∫

Br

|x |β
1 + |x |β |un|pdx =

∫

Br

|x |β
1 + |x |β |u|pdx . (2.1)

Proof From Lemma 2.2 in [24], we have

|un(x)| ≤ C‖un‖ 1

|x | 12
, a.e. x ∈ Br .

By the boundedness of {un}, for 6 < p < 6 + 2β, it follows that

∫

|x |≤1

|x |β
1 + |x |β |un|pdx ≤ C

∫

|x |≤1

|x |β
1 + |x |β

dx

|x | p
2

≤ C
∫

|x |≤1

dx

|x | p
2 −β

= C
∫ 1

0

dt

t
p
2 −β−2

< +∞ (as p < 6 + 2β)

(2.2)

and

∫

|x |≥1

|x |β
1 + |x |β |un|pdx ≤ C

∫

|x |≥1

|x |β
1 + |x |β

dx

|x | p
2

≤ C
∫

|x |≥1

dx

|x | p
2

= C
∫ +∞

0

dt

t
p
2 −2

< +∞. (as p > 6)

(2.3)

Consequently, it leads to (2.1) by means of the Lebesgue dominated convergence
theorem. The proof is complete. ��
Lemma 2.2 Any Palais–Smale sequence of I is bounded in H.
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1588 C.Y. Lei and J.F. Liao

Proof Let {un} ⊂ H be such that

I ′(un) → 0, I (un) → c as n → ∞. (2.4)

Combining with (M3), one has

I (un) − 1

6
〈I ′(un), un〉 ≥ 1

2
M̂(‖un‖2) − 1

6
M(‖un‖2)‖un‖2

+
(
1

6
− 1

p

) ∫

Br

|x |β
1 + |x |β |un|pdx

≥ a

3
‖un‖2.

Therefore, {un} is bounded in H . The proof is complete. ��
To make the concentration compactness analysis, we introduce the dilation group

D in R3

D =
{

gσ,y |gσ,yu(·) = σ
1
2 u(σ (· − y)), y ∈ R

3, σ ∈ R
+.

}

The dilation g in D is an isometry in both L6(R3) and D1,2(R3).
Let {un} ⊂ H be a Palais–Smale sequence of the functional I . By Lemma 2.2, {un}

is bounded in H . According to Theorem 3.1 and Corollary 3.2 in [26](see also [25]),
{un} has a profile decomposition

un = u +
∑

k∈�

gn,kUk + γn, (2.5)

where u ∈ H , Uk ∈ D1,2(R3), gn,k = gσn,k ,yn,k ∈ D, σn,k > 0, yn,k ∈ Br , γn ∈
D1,2(R3), � is an index set, satisfy:

(1) un⇀u in H , g−1
n,kun⇀Uk in D1,2(R3), as n → ∞, k ∈ �;

(2) gn,k⇀0 in [D1,2(R3)]∗, g−1
n,k gn,l⇀0 in [D1,2(R3)]∗ as n → ∞, k, l ∈ �, k �= l;

(3) ‖un‖2D = ‖u‖2D + ∑
k∈� ‖Uk‖2D + ‖γn‖2D + o(1), as n → ∞. From property (3)

of (2.5), by the method of the Brézis–Lieb’s lemma and [25], one has
(4) γn → 0 in L6(R3) and

∫

Br

u6
ndx =

∫

Br

u6dx +
∑

k∈�

∫

R3
|Uk |6dx + o(1), as n → ∞.

Here for a sequence {gn} ofD, we say gn⇀0 in [D1,2(R3)]∗, if for all v ∈ D1,2(R3),
gnv⇀0 in D1,2(R3). Moreover, since {un} is bounded in H , we have σn,k → ∞ as
n → ∞, k ∈ �.

We deduce the system of coupled equations satisfied by the weak limit function u
and the bubbles Uk, k ∈ �. Inspired by Lemma 2.1 in [30], we obtain the following
conclusion.
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Positive Solutions for a Kirchhoff-Type... 1589

Lemma 2.3 Let {un} be a Palais–Smale sequence of I , An �
∫

Br
|∇un|2dx → A as

n → ∞.

(1) Assume un⇀u in H , then u satisfies the equation:

M(A)

∫

Br

∇u∇ϕdx =
∫

Br

u5ϕdx +
∫

Br

|x |β
1 + |x |β u p−1ϕdx, f or ϕ ∈ H . (2.6)

(2) Let gn = gσn ,yn ∈ D, σn → ∞ as n → ∞ and yn ∈ Br . Assume ũn =
g−1

n un⇀U �= 0 in D1,2(R3). Then, U satisfies the equation:

M(A)

∫

R3
∇U∇φdx =

∫

R3
U 5φdx, f or φ ∈ D1,2(R3). (2.7)

Proof (1) Since {un} is (P S) sequence of I , by (2.1), we have

M

(∫

Br

|∇un|2dx

) ∫

Br

∇un∇ϕdx

−
∫

Br

u5
nϕdx −

∫

Br

|x |β
1 + |x |β u p−1

n ϕdx = o(1) (2.8)

for ϕ ∈ H . Letting n → ∞, which deduce that (2.6) holds.
(2) Denote

dn = σndist(yn, ∂ Br ).

We first assume dn → ∞. Let ϕ be a smooth function in ϕ ∈ C∞
0 (R3) and

ψ = gnϕ = σ
1
2

n ϕ(σn(· − xn)). For n large enough ψ ∈ C∞
0 (Br ). Taking ψ as a

test function in (2.8), we have

M

(∫

Br

|∇un|2dx

) ∫

Br

∇un∇ψdx

=
∫

Br

u5
nψdx +

∫

Br

|x |β
1 + |x |β u p−1

n ψdx + o(1). (2.9)

Making a variable change, we get

y = σn(x − yn).

Set ũn = g−1
n un . In view of

g−1
n un = σ

− 1
2

n un(σ−1
n (· + xn)),
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1590 C.Y. Lei and J.F. Liao

we see that

∇g−1
n un = σ

− 1
2

n
1

σn
∇un .

Consequently, we obtain

∫

R3
∇un∇(gnϕ)dx =

∫

�n

σnσ
1
2 ∇g−1

n unσ
1
2

n σn∇ϕ
1

σ 3
n

dy (let σn(x − xn) = y)

=
∫

�n

∇g−1
n un∇ϕdx

=
∫

�n

∇ũn∇ϕdx,

∫

R3
u5

ngnϕdx =
∫

�n

σ
5
2

n (σ
− 1

2
n un(

y

σn
+ xn))5gnϕ(x)

1

σ 3
n

dy

=
∫

�n

σ
5
2

n (σ
− 1

2
n un(

y

σn
+ xn))5σ

1
2

n ϕ(y)
1

σ 3
n

dy

=
∫

�n

ũ5
nϕdx

where �n = {y|y ∈ R
3, x = σ−1

n y + yn ∈ Br },
∫

R3

|x |β
1 + |x |β u p−1

n gnϕdx = σ
− 6−p

2
n

∫

�n

|x |β
1 + |x |β ũ p−1

n ϕdx .

Consequently, (2.9) becomes

M

(∫

Br

|∇un|2dx

) ∫

�n

∇ũn∇ϕdx

=
∫

�n

ũ5
nϕdx + σ

− 6−p
2

n

∫

�n

|x |β
1 + |x |β ũ p−1

n ϕdx + o(1), (2.10)

Since ũn = g−1
n un⇀U and σn → ∞ as n → ∞, taking the limit n → ∞ in

(2.10), we obtain

M(A)

∫

R3
∇U∇ϕdx −

∫

R3
U 5ϕdx = 0, for ϕ ∈ C∞

0 (R3).

By a density argument, we obtain

M(A)

∫

R3
∇U∇V dx −

∫

R3
U 5V dx = 0

for V ∈ D1,2(R3).
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Positive Solutions for a Kirchhoff-Type... 1591

Finally, in the case dn = σndist(yn, ∂ Br ) → d < +∞. Without loss of generality,
we assume d = 0. In this case, we can prove that U satisfies U = 0 in R3\R3+ and

M(A)

∫

R
3+

∇U∇V dx =
∫

R
3+

U 5V dx, for V ∈ D1,2(R3), V = 0 in R
3\R3+.

By the uniqueness theory in [27] for positive solutions of the equation

⎧
⎪⎨

⎪⎩

�u + u2∗−1 = 0, in R
N ,

u > 0, in R
N ,

u(x) → 0, as |x | → ∞,

(2.11)

U ≡ 0 in R3, which is a contradiction. The proof is complete. ��
We continue the concentration compactness analysis on Palais–Smale sequences.

Lemma 2.4 Let {un} be a Palais–Smale sequence of I . Assume the profile decompo-
sition (2.5) holds, namely

un = u +
∑

k∈�

gn,kUk + γn .

Then,

(1) the index set � is finite, say � = {1, 2, ..., N } (� may be empty and N = 0).
(2) There exist VN ∈ D1,2(R3) and gn ∈ D, k = 1, 2, ..., N such that

(2a) Uk = gk VN , k = 1, 2..., N and the profile decomposition (2.5) reduces to

un = u +
N∑

k=1

gn,k VN + γn . (2.12)

(2b) u and VN satisfy the system

⎧
⎪⎪⎨

⎪⎪⎩

M(‖u‖2 + N
∫

R3
|∇VN |2dx)

∫

Br

∇u∇ϕdx =
∫

Br

(u5 + |x |β
1 + |x |β u p−1)ϕdx, ϕ ∈ H ,

M(‖u‖2 + N
∫

R3
|∇VN |2dx)

∫

R3
∇VN ∇φdx =

∫

R3
V 5

N φdx, φ ∈ D1,2(R3).

(2c) There hold that

⎧
⎪⎪⎨

⎪⎪⎩

∫

Br

|∇un|2dx =
∫

Br

|∇u|2dx + N
∫

R3
|∇VN |2dx + o(1),

∫

Br

u6
ndx =

∫

Br

u6dx + N
∫

R3
V 6

N dx + o(1), as n → ∞.
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Proof (1) By Lemma 2.3, we have the system

⎧
⎪⎪⎨

⎪⎪⎩

M(A)

∫

Br

∇u∇ϕdx =
∫

Br

u5ϕdx +
∫

Br

|x |β
1 + |x |β u p−1ϕdx, ϕ ∈ H ,

M(A)

∫

R3
∇Uk∇φdx =

∫

R3
U 5

k φdx, φ ∈ D1,2(R3), k ∈ �,

(2.13)

where A = limn→∞
∫

Br
|∇un|2dx . Taking φ = Uk as test function in the second

equation of (2.13), we have

a
∫

R3
|∇Uk |2dx ≤ m(A)

∫

R3
|∇Uk |2dx =

∫

R3
U 6

k dx

≤ S−3
(∫

R3
|∇Uk |2dx

)3

,

where S is the Sobolev constant for the embedding D1,2(R3) ↪→ L6(R3). We
deduce that

∫

R3
|∇Uk |2dx ≥

√
aS3. (2.14)

By the property (3) of the profile decomposition (2.5), � is a finite set, say � =
{1, 2, ..., N }.

(2) By the second equationof (2.13) and the uniqueness theory [27] of the positive solu-
tions of the equation (2.11), there exist Vk ∈ D1,2(R3), gk ∈ D, k = 1, 2, ..., N
such that Uk = gk VN and VN satisfies

M(A)

∫

R3
∇VN ∇φdx =

∫

R3
V 5

N φdx, φ ∈ D1,2(R3).

Replacing gn,k by gn,k gk in the profile decomposition in (2.5), we obtain

un = u +
N∑

k=1

gn,k VN + γn .

Noting that un satisfies the inequality

∫

Br

|x |β
1 + |x |β u p−1

n vdx = M

(∫

Br

|∇un|2dx

) ∫

Br

∇un∇vdx

−
∫

Br

u5
nvdx + o(1)

for v ∈ H . Taking v = un as test function in the above inequality, it yields

M

(∫

Br

|∇un|2dx

) ∫

Br

|∇un|2dx
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−
∫

Br

u6
ndx −

∫

Br

|x |β
1 + |x |β u p−1

n dx = o(1). (2.15)

By (2.13)

⎧
⎪⎪⎨

⎪⎪⎩

M(A)

∫

Br

|∇u|2dx =
∫

Br

u6dx +
∫

Br

|x |β
1 + |x |β u pdx,

M(A)

∫

R3
|∇Uk |2dx =

∫

R3
U 6

k dx, k ∈ �

(2.16)

and the property (4) of the profile decomposition (2.5)

∫

Br

u6
ndx =

∫

Br

u6dx +
N∑

k=1

∫

R3
U 6

k dx + o(1). (2.17)

Notice that
∫

Br

|∇un|2dx → A,

∫

Br

|x |β
1 + |x |β u p

n dx →
∫

Br

|x |β
1 + |x |β u pdx

as n → ∞. It follows from (2.15), (2.16) and (2.17) that

∫

Br

|∇un|2dx =
∫

Br

|∇u|2dx +
N∑

k=1

∫

R3
|∇Uk |2dx + o(1). (2.18)

Finally, since gk ∈ D, k = 1, 2, ..., N are isometry in both L6(R3) and D1,2(R3),
we have

∫

R3
|∇Uk |2dx =

∫

R3
|∇VN |2dx,

and
∫

R3
V 6

k dx =
∫

R3
V 6

N dx,

where k = 1, 2, ..., N . Hence, (2.17) and (2.18) can be rewritten as, respectively.

∫

Br

|∇un|2dx =
∫

Br

|∇u|2dx + N
∫

R3
|∇VN |2dx + o(1),

and
∫

Br

u6
ndx =

∫

Br

u6dx + N
∫

R3
V 6

N dx + o(1)
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as n → ∞. In particular,

A = lim
n→∞

∫

Br

|∇un|2dx =
∫

Br

|∇u|2dx + N
∫

R3
|∇VN |2dx,

and u, VN satisfy the system in (2b). The proof is complete. ��

3 Threshold Value and the Proof of Theorem 1.2

In this section, we determine the threshold value, belowwhich the functional I satisfies
the (P S)c condition, and then show that this level is less than the threshold value.
Consequently, we prove the existence of the mountain pass-type solution.

Assume that {un} is a (P S)c sequence of I and the profile decomposition (2.12)
holds, namely

un = u +
N∑

k=1

gn,k VN + γn .

By Lemma 2.4, we have

lim
n→∞ I (un) = 1

2
M̂(‖u‖2 + N

∫

R3
|∇VN |2dx) − 1

p

∫

Br

|x |β
1 + |x |β u pdx

−1

6

(∫

Br

u6dx + N
∫

R3
V 6

N dx

)

= 1

2
M̂(‖u‖2 + N

∫

R3
|∇VN |2dx) −

(
1

p
− 1

6

)∫

Br

|x |β
1 + |x |β u pdx

−1

6
M(‖u‖2 + N

∫

R3
|∇VN |2dx)

(

‖u‖2 + N
∫

R3
|∇VN |2dx

)

,

(3.1)

where we have used the fact that,

⎧
⎪⎪⎨

⎪⎪⎩

M(‖u‖2 + N
∫

R3
|∇VN |2dx)

∫

Br

‖u‖2 =
∫

Br

u6dx +
∫

Br

|x |β
1 + |x |β u pdx,

M(‖u‖2 + N
∫

R3
|∇VN |2dx)

∫

R3
|∇VN |2dx =

∫

R3
V 6

N dx .

Noting that

S−3
(∫

R3
|∇VN |2dx

)3

=
∫

R3
V 6

N dx

= M

(

‖u‖2 + N
∫

R3
|∇VN |2dx

) ∫

R3
|∇VN |2dx . (3.2)
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Using the following lemma, we can solve equation (3.2) for
∫

R3
|∇VN |2dx .

Lemma 3.1 Give s ≥ 0, the equation M(s + Nt) = S−3t2 has a unique positive
solution t := FN (s). The function FN is continuously differentiable. Moreover,
FN (s) ≥ F1(0) := T , where T is the unique positive solution of the equation
M(t) = S−3t2.

Proof By the assumption (M2), the function

g(t, s) = M(s + Nt)

t2
= M(s + Nt)

(s + Nt)2
(s + Nt)2

t2

is strictly decreasing in t , and

lim
t→+∞ g(t, s) = 0, lim

t→0+ g(t, s) = +∞.

Hence, there exists a unique t > 0, denoted by FN (s), satisfies the equation g(t, s) =
S−3, that is,

M(s + Nt) = S−3t2.

Since M is a continuously differentiable function and

∂

∂t
g(t, s) = 1

t3
(Nt M ′(s + Nt) − 2M(s + Nt)) < 0,

so is the function t = FN (s) by the implicit function theorem. Finally, by the assump-
tion (M1) for t = FN (s)

M(s + FN (s))

F2
N (s)

= S−3 = g(t) = M(s + Nt)

t2
≥ M(t)

t2
,

and by assumption (M3), FN (s) = t ≥ T = F1(0). The proof is complete. ��

As a result of (3.2) and Lemma 3.1, we obtain

∫

R3
|∇VN |2dx = FN (‖u‖2) (3.3)
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and rewrite Formula (3.1) as

lim
n→∞ I (un) = 1

2
M̂(‖u‖2 + N

∫

R3
|∇VN |2dx) − 1

p

∫

Br

|x |β
1 + |x |β u pdx

−1

6

(∫

Br

u6dx + N
∫

R3
V 6

N dx

)

= 1

2
M̂(‖u‖2 + NFN (‖u‖2)) − 1

p

∫

Br

|x |β
1 + |x |β u pdx (by (3.3))

−1

6

(∫

Br

u6dx + N S−3F3
N (‖u‖2)

)

= IN (u)

(3.4)

where

∫

R3
V 6

N dx = S−3
(∫

R3
|∇VN |2dx

)3

= S−3F3
N (‖u‖2).

Also, we rewrite equation (in Lemma 2.4 (2b)) satisfied by u as

M(‖u‖2 + NFN (‖u‖2))
∫

Br

∇u∇ϕdx =
∫

Br

u5ϕdx +
∫

Br

|x |β
1 + |x |β u p−1ϕdx

(3.5)

for ϕ ∈ H . Define

�N = {u|u ∈ H , u satisfiesthattheequation(3.5)},
μN = inf{IN (u)|u ∈ �N }.

The following lemma gives the lower bound for μN .

Lemma 3.2 There exists a constant C1 (independent of N) such that μN ≥ N D, where

D = 1
2 M̂(T ) − 1

6 M(T )T and T =
∫

R3
|∇VN |2dx .

Proof Let u ∈ �N , it follows that

M(‖u‖2 + NFN (‖u‖2))‖u‖2 =
∫

Br

u6dx +
∫

Br

|x |β
1 + |x |β u pdx .

It follows from (3.2) and (3.3) that

M(‖u‖2 + NFN (‖u‖2)) = S−3F2
N (‖u‖2).
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At this moment, by (3.4), we have

IN (u) = 1

2
M̂(‖u‖2 + NFN (‖u‖2)) − 1

p

∫

Br

|x |β
1 + |x |β u pdx

−1

6

(∫

Br

u6dx + N S−3F3
N (‖u‖2)

)

= 1

2
M̂(‖u‖2 + NFN (‖u‖2)) − 1

6
M(‖u‖2 + NFN (‖u‖2))‖u‖2

+
(
1

6
− 1

p

) ∫

Br

|x |β
1 + |x |β u pdx − 1

6
N S−3F3

N (‖u‖2))

= 1

2
M̂(‖u‖2 + NFN (‖u‖2)) +

(
1

6
− 1

p

)∫

Br

|x |β
1 + |x |β u pdx

−1

6
M(‖u‖2 + NFN (‖u‖2))(‖u‖2 + NFN (‖u‖2)). (3.6)

Let

h(s) = 1

2
M̂(s) − 1

6
M(s)s.

By the assumption (M3), one has

h(a + b) ≥ h(a) + h(b), for a, b ∈ R
+. (3.7)

In fact

h(a + b) = a · h(a + b)

a + b
+ b · h(a + b)

a + b

≥ a · h(a)

a
+ b · h(a)

b= h(a) + h(b).

By (3.7), (3.6) can be reduced to

IN (u) ≥ 1

2
M̂(‖u‖2) +

(
1

6
− 1

p

) ∫

Br

|x |β
1 + |x |β u pdx − 1

6
M(‖u‖2)‖u‖2

+1

2
M̂(NFN (‖u‖2)) − 1

6
M

(
NFN (‖u‖2)

)
NFN (‖u‖2)

� J (u) + G N (u),

(3.8)

where

J (u) = 1

2
M̂(‖u‖2) +

(
1

6
− 1

p

) ∫

Br

|x |β
1 + |x |β u pdx − 1

6
M(‖u‖2)‖u‖2,
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and

G N (u) = 1

2
M̂(NFN (‖u‖2)) − 1

6
M(NFN (‖u‖2))NFN (‖u‖2).

Since p > 6, using the assumption (M3) again, we get

J (u) = 1

2
M̂(‖u‖2) +

(
1

6
− 1

p

) ∫

Br

|x |β
1 + |x |β u pdx − 1

6
M(‖u‖2)‖u‖2

≥ 1

2
M̂(‖u‖2) − 1

6
M(‖u‖2)‖u‖2

≥ 1

3
a‖u‖2

≥ 0.

(3.9)

If N ≥ 1, by Lemma 3.1, one obtains

NFN (‖u‖2) ≥ N T ≥ T .

Hence, by the assumption (M3) again,

1
2 M̂(NFN (‖u‖2)) − 1

6 M
(
NFN (‖u‖2)) NFN (‖u‖2)

NFN (‖u‖2)
≥

1
2 M̂(N T ) − 1

6 M(N T )T

N T

≥
1
2 M̂(T ) − 1

6 M(T )T

T
.

As a result,

G N (u) = 1

2
M̂(NFN (‖u‖2)) − 1

6
M

(
NFN (‖u‖2)

)
NFN (‖u‖2)

≥
[
1

2
M̂(T ) − 1

6
M(T )T

]
NFN (‖u‖2)

T

≥ N

[
1

2
M̂(T ) − 1

6
M(T )T

]

� N D.

(3.10)

Therefore, the estimate for μN follows from relations (3.8), (3.9) and (3.10), that is,

μN = inf{IN (u)|u ∈ �N }
≥ inf

u∈�N
J (u) + inf

u∈�N
G N (u)

≥ N D.

The proof is complete. ��
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Lemma 3.3 μ1 is achieved at the point 0 and μ1 = D, where D is defined in Lemma
3.2.

Proof Since 0 ∈ �1, and

I1(0) = 1

2
M̂(F1(0)) − 1

6
S−3F3

1 (0)

= 1

2
M̂(F1(0)) − 1

6
M(F1(0))F1(0)

= 1

2
M̂(T ) − 1

6
M(T )T

= D.

(3.11)

By Lemma 3.2, for any u ∈ �1, we know that

I1(u) ≥ J (u) + G1(u)

≥ G1(u)

≥ D.

Hence, by the definition of μ1 and (3.11), which is achieved at 0 and μ1 = D, the
proof is complete. ��
Lemma 3.4 Under the assumptions of Theorem 1.1, the functional I satisfies the (P S)c

condition provided c < D, where D is defined in Lemma 3.2.

Proof Let {un} ⊂ H be such that

I (un) → c, I ′(un) → 0

as n → ∞. By Lemma 2.4, {un} has the profile decomposition (2.12)

un = u +
N∑

k=1

gn,k VN + γn .

By Lemma 3.2, we deduce that

D > c = lim
n→∞ I (un) = IN (u) ≥ J (u) + G N ≥ G N (u) ≥ μN ≥ N D.

which implies that N = 0. Consequently, un = u + o(1) in H as n → ∞. That is,

∫

Br

|∇un|2dx →
∫

Br

|∇u|2dx,

∫

Br

u6
ndx →

∫

Br

u6dx

as n → 0. The proof is complete. ��
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In the following, we estimate the threshold value of I . Denote

U (x) = 3
1
4

(1 + |x |2) 1
2

, Uε(x) = 3
1
4 ε

1
2

(ε2 + |x |2) 1
2

, x ∈ R
3, ε > 0. (3.12)

U (and Uε) satisfies the limit equation

�U + U 5 = 0, U > 0 in R
3.

Choose η ∈ C∞
0 (B1(x0), [0, 1]) where B1(x0) ⊂ Br such that η(x) = 1 near x = x0.

Denote ϕε = Uεη.

Lemma 3.5 Assume that (M1) and (M2) hold. Then, supt≥0 I (tϕε) < D for sufficient
small ε > 0, where D is defined in Lemma 3.2.

Proof From Lemma 1.1 in [28], we know

⎧
⎪⎪⎨

⎪⎪⎩

∫

Br

|∇ϕε|2dx =
∫

R3
|∇U |2dx + O(ε) = S

3
2 + O(ε),

∫

Br

ϕ6
ε dx =

∫

R3
U 6dx + O(ε3) = S

3
2 + O(ε3).

Therefore, we deduce that

∫

Br

|∇ϕε|2dx →
∫

R3
|∇U |2dx as ε → 0.

Consequently, according to the continuity of M̂ , we obtain

M̂

(∫

Br

|∇ϕε|2dx

)

= M̂

(∫

R3
|∇U |2dx

)

+ O(ε).
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By the definition of ϕε, we infer that

∫

Br

|x |β
1 + |x |β ϕ p

ε dx = C
∫

|x |≤1

|x |β
1 + |x |β

ε
p
2

(ε2 + |x |2) p
2

dx

≥ C
∫

|x |≤1

|x |β
2

ε
p
2

(ε2 + |x |2) p
2

dx

= Cεβ+3− p
2

∫ 1/ε

0

t2+β

(1 + t2)
p
2

dt

= Cεβ+3− p
2

∫ 1

0

t2+β

(1 + t2)
p
2

dt + Cεβ+3− p
2

∫ 1/ε

0

t2+β

(1 + t2)
p
2

dt

= Cεβ+3− p
2

∫ 1

0

t2+β

(1 + t2)
p
2

dt

≥ Cεβ+3− p
2

∫ 1

0
t2+βdt

= Cεβ+3− p
2

for some C > 0. Since M(t) = o(t2), M̂(t) = o(t3) as t → +∞, I (tϕε) → −∞ as
t → ∞. We can assume there exist 0 < t1 < t2 such that

sup
t≥0

I (tϕε) = sup
t∈[t1,t2]

I (tϕε).

From the above information, there holds

I (tϕε) = 1

2
M̂

(

t2
∫

R3
|∇U |2dx

)

− t6

6

∫

R3
U6dx − t p

p

∫

Br

|x |β
1 + |x |β ϕ

p
ε dx + O(ε)

≤ 1

2
M̂

(

t2
∫

R3
|∇U |2dx

)

− t6

6

∫

R3
U6dx − t p

1
p

∫

Br

|x |β
1 + |x |β ϕ

p
ε dx + O(ε)

≤ 1

2
M̂

(

t2
∫

R3
|∇U |2dx

)

− t6

6

∫

R3
U6dx − Cεβ+3− p

2 + Cε.

(3.13)

Define

g(t) = 1

2
M̂

(

t2
∫

R3
|∇U |2dx

)

− t6

6

∫

R3
U 6dx .

Then,

g′(t) = t M

(

t2
∫

R3
|∇U |2dx

) ∫

R3
|∇U |2dx − t5

∫

R3
U 6dx

= t M

(

t2
∫

R3
|∇U |2dx

) ∫

R3
|∇U |2dx − t5S−3

(∫

R3
|∇U |2dx

)3

= t
∫

R3
|∇U |2dx

[

M

(

t2
∫

R3
|∇U |2dx

)

− S−3
(

t2
∫

R3
|∇U |2dx

)2
]

.
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Let t0 > 0 be the unique positive zero, according to g′(t0) = 0, one has

M

(

t20

∫

R3
|∇U |2dx

)

= S−3
(

t20

∫

R3
|∇U |2dx

)2

. (3.14)

By Lemma 3.1 and (3.14), we have

t20

∫

R3
|∇U |2dx = F1(0).

Furthermore, we have

g(t0) = 1

2
M̂

(

t20

∫

R3
|∇U |2dx

)

− t60
6

∫

R3
U 6dx

= 1

2
M̂

(

t20

∫

R3
|∇U |2dx

)

− 1

6
S−3

(

t20

∫

R3
|∇U |2dx

)3

= 1

2
M̂ (F1(0)) − 1

6
S−3F3

1 (0)

= 1

2
M̂ (F1(0)) − 1

6
M(F1(0))F1(0)

= 1

2
M̂(T ) − 1

6
M(T )T

= μ1 = D.

(3.15)

Moreover, we have

g′′(t) = M

(

t2
∫

R3
|∇U |2dx

) ∫

R3
|∇U |2dx

+2t2M ′
(

t2
∫

R3
|∇U |2dx

) (∫

R3
|∇U |2dx

)2

− 5t4
∫

R3
U 6dx .

Noting that

0 = g′(t0) = t0M

(

t2
∫

R3
|∇U |2dx

) ∫

R3
|∇U |2dx − t50

∫

R3
U 6dx,

and hence by the assumption (M1), (M2), we have

g′′(t0) = −4M

(

t20

∫

R3
|∇U |2dx

) ∫

R3
|∇U |2dx

+ 2t20 M ′
(

t20

∫

R3
|∇U |2dx

) (∫

R3
|∇U |2dx

)2

≤ − 2t20 M ′
(

t20

∫

R3
|∇U |2dx

) ∫

R3
|∇U |2dx

< 0
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provided M ′ (t20
∫

R3 |∇U |2dx
)

> 0. In case

M ′
(

t20

∫

R3
|∇U |2dx

)

= 0,

then

g′′(t0) = −4M

(

t20

∫

R3
|∇U |2dx

) ∫

R3
|∇U |2dx .

Again,weobtain g′′(t0) < 0. Since t0 is the unique stationarypoint of g and g′′(t0) < 0,
which implies that g achieves its maximum at t0, namely

g(t) ≤ g(t0), for t ∈ [t1, t2].

Therefore, by (3.13) and (3.15), we have for t ∈ [t1, t2]

I (tϕε) ≤ 1

2
M̂

(

t2
∫

R3
|∇U |2dx

)

− t6

6

∫

R3
U 6dx − Cεβ+3− p

2 + Cε

≤ g(t0) + Cε − Cεβ+3− p
2

< D

for some C > 0 and ε > 0 is small enough. This leads us to the proof. ��
Proof of Theorem 1.1. It is easy to verify that I has a mountain pass geometry. Indeed,
by condition (M1), we have

I (u) ≥ a

2
‖u‖2 − 1

6

∫

Br

|u|6dx − 1

p

∫

Br

|x |β
1 + |x |β |u|pdx

≥ a

2
‖u‖2 − C1‖u‖6 − C2‖u‖p (by (2.2), (2.3)),

where C1, C2 > 0. Thus, there exist α, ρ > 0 and e ∈ H with ‖e‖ > ρ such that
I (u) > α for all ‖u‖ = ρ, and I (e) < 0 (since limt→+∞ I (tu) → −∞). Applying
the mountain pass lemma [29], there is a sequence {un} ⊂ H such that

I (un) → c > 0 and I ′(un) → 0,

where

c = inf
γ∈�

max
t∈[0,1] I (γ (t)),

and

� = {γ ∈ C([0, 1], H) : γ (0) = 0, γ (1) = e} .
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From Lemmas 3.4 and 3.5, {un} has a convergent subsequence (still denoted by {un})
and there exists u∗ ∈ H such that un → u∗ in H . Moreover, u∗ is a solution of
problem (1.1) and

0 < c = lim
n→∞ I (un) = I (u∗) < D.

Therefore, we infer that u∗ �≡ 0. By the strong maximum principle, we obtain u∗ > 0
in Br .

By the Pohozaev equality, there holds

1

2
M(‖u∗‖2)‖u∗‖2 = 1

2

∫

Br

u6∗dx + 3

p

∫

Br

|x |β
1 + |x |β u p∗ dx

−1

2
M(‖u∗‖2)

∫

∂ Br

(
∂u∗
∂n

)2 · x · ndδ.

Noting that x · n ≥ 0, we have

1

2
M(‖u∗‖2)‖u∗‖2 ≤ 1

2

∫

Br

u6∗dx + 3

p

∫

Br

|x |β
1 + |x |β u p∗ dx . (3.16)

Since u∗ is a positive solution of problem (1.1), it follows that

M(‖u∗‖2)‖u∗‖2 =
∫

Br

u6∗dx +
∫

Br

|x |β
1 + |x |β u p∗ dx . (3.17)

It follows from (3.16) and (3.17) that

(
1

2
− 3

p

)

M(‖u∗‖2)‖u∗‖2 ≤
(
1

2
− 3

p

) ∫

Br

u6∗dx .

By condition (M1), we deduce that

a‖u∗‖2 ≤ M(‖u∗‖2)‖u∗‖2 ≤
∫

Br

u6∗dx ≤ S3‖u∗‖6,

that is,

‖u∗‖2 ≥
√

aS3.
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Besides, by (3.17) and condition (M1)

D > c = I (u∗) − 1

6
〈I ′(u∗), u∗〉

= 1

2
M̂(‖u∗‖2) − 1

6
M(‖u∗‖2)‖u∗‖2

+
(
1

6
− 1

p

) ∫

Br

|x |β
1 + |x |β u p∗ dx

≥ a

4
‖u∗‖2,

which implies that

√
aS3 ≤ ‖u∗‖2 ≤ 4D

a
< +∞.

Therefore,

0 ≤ lim
r→∞ u∗(r) ≤ lim

r→∞
C‖u∗‖√

r
= 0,

that is, limr→∞ u∗(r) = 0. The proof is complete. ��
Acknowledgements The authors express their gratitude to the reviewers for careful reading and helpful
suggestions which led to an improvement in the original manuscript.
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