

Arithmetic Properties of 5-Tuple Partitions with 3-Cores

Xin-Qi Wen¹

Received: 16 October 2021 / Revised: 21 February 2022 / Accepted: 16 March 2022 /

Published online: 19 April 2022

© The Author(s), under exclusive licence to Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2022

Abstract

Let $A_{3,5}(n)$ denote the number of 5-tuple partitions of n with 3-cores. We establish some congruences modulo 2, 4, 5, 8 and 10 for $A_{3,5}(n)$ by employing q-series identities. For example, we prove for any prime $p \ge 5$, $\alpha \ge 1$, $\beta \ge 0$ and $n \ge 0$,

$$A_{3,5}\left(2^{2\alpha+2}p^{2\beta+2}n + \frac{(6j+p)\cdot 2^{2\alpha+1}p^{2\beta+1} - 5}{3}\right) \equiv 0 \pmod{2},$$

where $1 \le j \le p - 1$.

Keywords Partition · Congruence · k-tuple · t-core · Ramanujan's theta function

Mathematics Subject Classification Primary 11P83, Secondary 05A17

1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers called parts whose sum is n. For convenience, we use the following notation

$$(a; q)_{\infty} = \prod_{n=0}^{\infty} (1 - aq^n), \text{ and } f_k = (q^k; q^k)_{\infty}.$$

A partition λ of a positive integer n is said to be t-core if it has no hook numbers that are multiples of t. Let $a_t(n)$ denote the number of t-core partitions of n. In [7,Eq.

Communicated by Emrah Kilic.

School of Mathematics, Tianjin University, Tianjin 300350, People's Republic of China

(2.1)], the generating function of $a_t(n)$ is given by

$$\sum_{n=0}^{\infty} a_t(n)q^n = \frac{f_t^t}{f_1}.$$
 (1.1)

A k-tuple partition $(\lambda_1, \lambda_2, ..., \lambda_k)$ of n is a k-tuple of partitions $(\lambda_1, \lambda_2, ..., \lambda_k)$ such that the sum of all the parts equals n. A k-tuple partition $(\lambda_1, \lambda_2, ..., \lambda_k)$ of n with t-cores means that each λ_i is t-core for i = 1, 2, ..., k. Let $A_{t,k}(n)$ denote the number of k-tuple partitions of n with t-cores. The generating function of $A_{t,k}(n)$ is

$$\sum_{n=0}^{\infty} A_{t,k}(n)q^n = \frac{f_t^{kt}}{f_1^k}.$$
 (1.2)

Many authors have studied arithmetic properties of $A_{3,2}(n)$ and obtained some Ramanujan-type congruences. Lin [11] established some infinite families of congruences modulo 4, 5, 7 and 8 for $A_{3,2}(n)$. Based on Lin's study, Xia [18] added proofs of several infinite families of congruences modulo 4, 8 and $\frac{4^k-1}{3}$ ($k \ge 2$) for $A_{3,2}(n)$. For more results about $A_{3,2}(n)$, see [2, 5, 17, 18, 21].

Wang [16] proved some infinite families of identities and congruences for $A_{3,3}(n)$ by using some identities of q-series. In [17], Wang established some explicit formulas for $A_{3,2}(n)$ and $A_{3,3}(n)$. After that, Chern [5] extended the work of Wang [17] and studied some arithmetic identities of $A_{t,k}(n)$ for (t,k)=(3,4),(3,6),(4,2),(5,1),(5,2) and (7,1) by applying the theory of modular form.

Saikia and Boruah [13] proved some infinite families of congruences modulo 2, 3 for $A_{4,2}(n)$ and $A_{4,3}(n)$. Dasappa [6] discovered a nice congruence modulo 5^{α} ($\alpha \ge 1$) for $A_{5,2}(n)$. Saikia and Boruah [14] also studied arithmetic properties of $A_{5,2}(n)$ and proved some congruences modulo 2 and 5. In sequel, they [15] established some Ramanujan-type congruences for $A_{t,k}(n)$ when (t,k) = (3,4), (3,9), (4,8), (5,6), (8,4), (9,3) and (9,6) by employing q-series identities.

Zou [22] proved some congruences modulo 2 for $A_{t,2}(n)$; t is a prime such that $7 \le t \le 23$. In 2020, Naika and Nayaka [12] established some Ramanujan-type congruences modulo 5, 7 and 8 for $A_{t,4}(n)$, t = 3, 5, 7, 25.

In this paper, we mainly study arithmetic properties of $A_{3,5}(n)$. Its generating function is given by

$$\sum_{n=0}^{\infty} A_{3,5}(n)q^n = \frac{f_3^{15}}{f_1^5}.$$
 (1.3)

We establish some results about congruences modulo 2, 4, 5, 8 and 10 for $A_{3,5}(n)$. To be specific, by using some dissection formulae, we obtain some infinite families of congruences modulo 2 for $A_{3,5}(n)$ as follows.

Theorem 1.1 *For any integer* $n \ge 0$ *, we have*

$$A_{3,5} (8n+5) \equiv 0 \pmod{2}.$$
 (1.4)

and for $\alpha \geq 1$,

$$A_{3,5}\left(2^{2\alpha+3}n + \frac{7\cdot 2^{2\alpha+1} - 5}{3}\right) \equiv 0 \pmod{2},\tag{1.5}$$

$$A_{3,5}\left(2^{2\alpha+4}n + \frac{13\cdot 2^{2\alpha+1} - 5}{3}\right) \equiv 0 \pmod{2}.$$
 (1.6)

Theorem 1.2 *For any prime* $p \ge 5$, $\alpha \ge 1$, $\beta \ge 0$, and $n \ge 0$,

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+2} p^{2\beta} n + \frac{2^{2\alpha+1} p^{2\beta} - 5}{3} \right) q^n \equiv f(-q^4) \pmod{2}. \tag{1.7}$$

We deduce the following infinite families of congruences with two parameters α , β modulo 2 for $A_{3,5}(n)$.

Corollary 1.1 For any prime $p \ge 5$, $\alpha \ge 1$, $\beta \ge 0$, if n cannot be represented as 2k(3k+1) for some integer k, then

$$A_{3,5}\left(2^{2\alpha+2}p^{2\beta}n + \frac{2^{2\alpha+1}p^{2\beta} - 5}{3}\right) \equiv 0 \pmod{2}.$$
 (1.8)

and for any integer $n \geq 0$,

$$A_{3,5}\left(2^{2\alpha+2}p^{2\beta+2}n + \frac{(6j+p)\cdot 2^{2\alpha+1}p^{2\beta+1} - 5}{3}\right) \equiv 0 \pmod{2}, \quad j \in \{1, 2\cdots p - 1\}.$$
(1.9)

$$A_{3,5}\left(7^2\cdot 2^{2\alpha+2}p^{2\beta}n+\frac{(42k+7)\cdot 2^{2\alpha+1}p^{2\beta}-5}{3}\right)\equiv 0\pmod{2},\quad k\in\{0,2,3,4,5,6\}.$$

and

$$A_{3,5}\left(13^2 \cdot 2^{2\alpha+2}p^{2\beta}n + \frac{(78k+13) \cdot 2^{2\alpha+1}p^{2\beta} - 5}{3}\right) \equiv 0 \pmod{2},$$

$$k \in \{0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}.$$
(1.11)

We find the following congruences modulo 5 and 10 for $A_{3,5}(n)$ hold.

Theorem 1.3 *For* $n \ge 0$, *we have*

$$A_{3,5}(4n+3) \equiv 0 \pmod{10},\tag{1.12}$$

$$A_{3,5}(5n+k) \equiv 0 \pmod{5}, \quad k \in \{1, 2, 3, 4\}.$$
 (1.13)

$$A_{3,5}(20n+15) \equiv 0 \pmod{5},$$
 (1.14)

and for $\alpha \geq 0$, we get

$$A_{3,5}\left(5 \cdot 2^{2\alpha}n + \frac{5 \cdot 2^{2\alpha} - 5}{3}\right) \equiv A_{3,5}(5n) \pmod{5},\tag{1.15}$$

$$A_{3,5}\left(5 \cdot 2^{2\alpha+2}n + \frac{5^2 \cdot 2^{2\alpha+1} - 5}{3}\right) \equiv 0 \pmod{5}.$$
 (1.16)

We also establish the following congruences modulo 4, 8 for $A_{3,5}(n)$.

Theorem 1.4 For $\alpha \geq 2$ and $n \geq 0$, we have

$$A_{3,5}\left(2^{2\alpha+1}n + \frac{5\cdot 2^{2\alpha} - 5}{3}\right) \equiv 0 \pmod{4}.$$
 (1.17)

Let $p \ge 3$ be a prime and a be an integer. The Legendre symbol is defined by

$$\left(\frac{a}{p}\right) = \begin{cases} 1, & \text{if } a \text{ is a quadratic residue modulo } p \text{ and } a \not\equiv 0 \pmod{p}, \\ 0, & \text{if } a \equiv 0 \pmod{p}, \\ -1, & \text{if } a \text{ is a quadratic non-residue modulo } p. \end{cases}$$

Theorem 1.5 For any prime $p \ge 5$ such that $\left(\frac{-6}{p}\right) = -1$, $\alpha \ge 0$, and $n \ge 0$,

$$\sum_{n=0}^{\infty} A_{3,5} \left(16 \cdot p^{2\alpha} n + \frac{14 \cdot p^{2\alpha} - 5}{3} \right) q^n \equiv 2f(-q)\psi(q^2) \pmod{4}. \tag{1.18}$$

Corollary 1.2 For any prime $p \ge 5$ such that $\left(\frac{-6}{p}\right) = -1$, $\alpha \ge 0$, if n cannot be represented as the sum of a pentagonal number and twice a triangular number, then

$$A_{3,5}\left(16 \cdot p^{2\alpha}n + \frac{14 \cdot p^{2\alpha} - 5}{3}\right) \equiv 0 \pmod{4}.$$
 (1.19)

and for any integer $n \geq 0$,

$$A_{3,5}\left(16 \cdot p^{2\alpha+2}n + \frac{(48j+14p) \cdot p^{2\alpha+1} - 5}{3}\right) \equiv 0 \pmod{4},\tag{1.20}$$

where $1 \le j \le p-1$.

Theorem 1.6 For any prime $p \ge 5$ such that $\left(\frac{-18}{p}\right) = -1$, $\alpha \ge 0$, and $n \ge 0$,

$$\sum_{n=0}^{\infty} A_{3,5} \left(16 \cdot p^{2\alpha} n + \frac{38 \cdot p^{2\alpha} - 5}{3} \right) q^n \equiv 2f(-q)\psi(q^6) \pmod{4}. \tag{1.21}$$

Corollary 1.3 For any prime $p \ge 5$ such that $\left(\frac{-18}{p}\right) = -1$, $\alpha \ge 0$, if n cannot be represented as the sum of a pentagonal number and six times a triangular number, then

$$A_{3,5}\left(16 \cdot p^{2\alpha}n + \frac{38 \cdot p^{2\alpha} - 5}{3}\right) \equiv 0 \pmod{4}.$$
 (1.22)

and for any integer $n \geq 0$,

$$A_{3,5}\left(16 \cdot p^{2\alpha+2}n + \frac{(48j+38p) \cdot p^{2\alpha+1} - 5}{3}\right) \equiv 0 \pmod{4},\tag{1.23}$$

where $1 \le j \le p-1$.

Theorem 1.7 *For* $n \ge 0$, we have

$$A_{3.5}(4n+2) \equiv 0 \pmod{4},\tag{1.24}$$

$$A_{3,5}(16n+13) \equiv 0 \pmod{8}.$$
 (1.25)

Theorem 1.8 For any prime $p \ge 5$ such that $\left(\frac{-9}{p}\right) = -1$, $\alpha \ge 0$, and $n \ge 0$,

$$\sum_{n=0}^{\infty} A_{3,5} \left(2 \cdot p^{2\alpha} n + \frac{5 \cdot p^{2\alpha} - 5}{3} \right) q^n \equiv (-1)^{\alpha(\frac{\pm p - 1}{6})} f(-q^2) \psi(q^6) \pmod{4}.$$
(1.26)

Corollary 1.4 For any prime $p \ge 5$ such that $\left(\frac{-9}{p}\right) = -1$, $\alpha \ge 0$, if n cannot be represented as the sum of a pentagonal number and three times a triangular number, then

$$A_{3,5}\left(4 \cdot p^{2\alpha}n + \frac{5 \cdot p^{2\alpha} - 5}{3}\right) \equiv 0 \pmod{4}.$$
 (1.27)

and for any integer $n \geq 0$,

$$A_{3,5}\left(2 \cdot p^{2\alpha+2}n + \frac{(6j+5p) \cdot p^{2\alpha+1} - 5}{3}\right) \equiv 0 \pmod{4},\tag{1.28}$$

where $1 \le j \le p-1$.

Theorem 1.9 For any prime $p \ge 5$ such that $\left(\frac{-9}{p}\right) = -1$, $\alpha \ge 0$ and $n \ge 0$,

$$\sum_{n=0}^{\infty} A_{3,5} \left(8 \cdot p^{2\alpha} n + \frac{20 \cdot p^{2\alpha} - 5}{3} \right) q^n \equiv 6(-1)^{\alpha(\frac{\pm p - 1}{6})} f(-q^2) \psi(q^6) \pmod{8}. \tag{1.29}$$

Corollary 1.5 For any prime $p \ge 5$ such that $\left(\frac{-9}{p}\right) = -1$, $\alpha \ge 0$, if n cannot be represented as the sum of a pentagonal number and three times a triangular number, then

$$A_{3,5}\left(16 \cdot p^{2\alpha}n + \frac{20 \cdot p^{2\alpha} - 5}{3}\right) \equiv 0 \pmod{8}.$$
 (1.30)

and for any integer $n \geq 0$,

$$A_{3,5}\left(8 \cdot p^{2\alpha+2}n + \frac{(24j+20p) \cdot p^{2\alpha+1} - 5}{3}\right) \equiv 0 \pmod{8},\tag{1.31}$$

where $1 \le j \le p-1$.

This paper is organized as follows. In Sect. 2, we shall prove some theorems about congruences for $A_{3,5}(n)$ modulo 2, 5 and 10. In Sect. 3, we give the proofs of remaining theorems about congruences modulo 4, 8 for $A_{3,5}(n)$.

2 Proofs of Theorems 1.1-1.3 and Corollary 1.1

Proof of Theorem 1.1. In order to prove Theorem 1.1, we first prove the following lemma.

Lemma 2.1 *For* $\alpha \ge 1$ *and* $n \ge 0$, *we have*

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha} n + \frac{2^{2\alpha+1} - 5}{3} \right) q^n \equiv \frac{f_3^6}{f_1^2} \pmod{2}. \tag{2.1}$$

Proof Hirschhorn, Garvan and Borwein [9] proved that

$$\frac{f_3^3}{f_1} = \frac{f_4^3 f_6^2}{f_2^2 f_{12}} + q \frac{f_{12}^3}{f_4}.$$
 (2.2)

By the binomial theorem, for any positive integer k and any prime p,

$$f_1^{p^k} \equiv f_p^{p^{k-1}} \pmod{p^k}.$$
 (2.3)

Substituting (2.2) into (1.3) and employing (2.3), we obtain that

$$\sum_{n=0}^{\infty} A_{3,5}(n)q^n = \frac{f_3^{12}}{f_1^4} \frac{f_3^3}{f_1} \equiv \frac{f_6^6}{f_2^2} \left(\frac{f_4^3 f_6^2}{f_2^2 f_{12}} + q \frac{f_{12}^3}{f_4} \right)$$

$$\equiv \frac{f_4^3 f_6^8}{f_2^4 f_{12}} + q \frac{f_6^6 f_{12}^3}{f_2^2 f_4} \pmod{2}. \tag{2.4}$$

Extracting the terms involving q^{2n+1} from both sides of (2.4), dividing by q and replacing q^2 by q, then employing (2.3), we get

$$\sum_{n=0}^{\infty} A_{3,5}(2n+1)q^n \equiv \frac{f_3^6 f_6^3}{f_1^2 f_2} \equiv \frac{f_6^6}{f_2^2} \pmod{2}.$$
 (2.5)

Hence,

$$\sum_{n=0}^{\infty} A_{3,5}(4n+1)q^n \equiv \frac{f_3^6}{f_1^2} \pmod{2},\tag{2.6}$$

which is the case $\alpha = 1$ of (2.1).

Suppose that (2.1) holds for $\alpha \geq 1$. Utilizing (2.2), we have

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha} n + \frac{2^{2\alpha+1} - 5}{3} \right) q^n \equiv \frac{f_3^6}{f_1^2} \equiv \left(\frac{f_4^3 f_6^2}{f_2^2 f_{12}} + q \frac{f_{12}^3}{f_4} \right)^2$$

$$\equiv \frac{f_4^6 f_6^4}{f_2^4 f_{12}^2} + q^2 \frac{f_{12}^6}{f_4^2} \pmod{2}. \tag{2.7}$$

Hence,

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+1} n + \frac{2^{2\alpha+1} - 5}{3} \right) q^n \equiv \frac{f_2^6 f_3^4}{f_1^4 f_6^2} + q \frac{f_6^6}{f_2^2} \equiv f_8 + q \frac{f_6^6}{f_2^2} \pmod{2}.$$
(2.8)

Extracting the terms involving q^{2n+1} from both sides of (2.8), dividing by q and replacing q^2 by q, we get

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+2} n + \frac{2^{2\alpha+3} - 5}{3} \right) q^n \equiv \frac{f_3^6}{f_1^2} \pmod{2}, \tag{2.9}$$

which is the case $\alpha + 1$ of (2.1). The proof of Lemma 2.1 is completed by induction on α .

Now, we turn to prove Theorem 1.1. It follows from (2.3) that

$$\sum_{n=0}^{\infty} A_{3,5}(4n+1)q^n \equiv \frac{f_3^6}{f_1^2} \equiv \frac{f_6^3}{f_2} \pmod{2},\tag{2.10}$$

which implies (1.4).

Extracting the terms involving q^{2n} from both sides of (2.8) and replacing q^2 by q, we get

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+2} n + \frac{2^{2\alpha+1} - 5}{3} \right) q^n \equiv f_4 \pmod{2}. \tag{2.11}$$

which implies that

$$A_{3,5}\left(2^{2\alpha+2}(2n+1) + \frac{2^{2\alpha+1}-5}{3}\right) \equiv 0 \pmod{2},\tag{2.12}$$

$$A_{3,5}\left(2^{2\alpha+2}(4n+2) + \frac{2^{2\alpha+1}-5}{3}\right) \equiv 0 \pmod{2}.$$
 (2.13)

We thus obtain (1.5) and (1.6). This completes the proof of Theorem 1.1.

Proof of Theorem 1.2 and Corollary 1.1.

We first recall that Ramanujan's general theta function f(a, b) is defined by

$$f(a,b) = \sum_{n=-\infty}^{\infty} a^{\frac{n(n+1)}{2}} b^{\frac{n(n-1)}{2}}, \quad |ab| < 1.$$
 (2.14)

Two important cases of f(a, b) are the theta functions $\psi(q)$ and f(-q) [1,p.36. Entry 22], which are given by

$$\psi(q) := f(q, q^3) = \sum_{n=0}^{\infty} q^{\frac{n(n+1)}{2}} = \frac{f_2^2}{f_1},$$
(2.15)

$$f(-q) := f(-q, -q^2) = \sum_{n = -\infty}^{\infty} (-1)^n q^{\frac{n(3n+1)}{2}} = f_1.$$
 (2.16)

Cui and Gu [4] proved the following p-dissection identities for $\psi(q)$ and f(-q).

Lemma 2.2 [4,Theorem 2.1] *For any odd prime p*,

$$\psi(q) = \sum_{k=0}^{\frac{p-3}{2}} q^{\frac{k^2+k}{2}} f(q^{\frac{p^2+(2k+1)p}{2}}, q^{\frac{p^2-(2k+1)p}{2}}) + q^{\frac{p^2-1}{8}} \psi(q^{p^2}), \tag{2.17}$$

Furthermore, for $0 \le k \le \frac{p-3}{2}$,

$$\frac{k^2 + k}{2} \not\equiv \frac{p^2 - 1}{8} \pmod{p}.$$

Lemma 2.3 [4,Theorem 2.2] *For any prime* $p \ge 5$,

$$f(-q) = \sum_{k=-\frac{p-1}{2}, k \neq \frac{\pm p-1}{6}}^{\frac{p-1}{2}} (-1)^k q^{\frac{3k^2+k}{2}} f(-q^{\frac{3p^2+(6k+1)p}{2}}, -q^{\frac{3p^2-(6k+1)p}{2}}) + (-1)^{\frac{\pm p-1}{6}} q^{\frac{p^2-1}{24}} f(-q^{p^2}),$$

$$(2.18)$$

where

$$\frac{\pm p - 1}{6} := \begin{cases} \frac{p - 1}{6}, & \text{if } p \equiv 1 \pmod{6}, \\ \frac{-p - 1}{6}, & \text{if } p \equiv -1 \pmod{6}. \end{cases}$$

Furthermore, for $-\frac{p-1}{2} \le k \le \frac{p-1}{2}$ and $k \ne \frac{\pm p-1}{6}$,

$$\frac{3k^2 + k}{2} \not\equiv \frac{p^2 - 1}{24} \pmod{p}.$$

It follows from (2.11) and (2.16) that

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+2} n + \frac{2^{2\alpha+1} - 5}{3} \right) q^n \equiv f(-q^4) \pmod{2}, \tag{2.19}$$

which is the case $\beta = 0$ of (1.7).

Now, suppose that (1.7) holds for $\beta \ge 0$. Invoking Lemma 2.3, we get that for any prime $p \ge 5$,

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+2} p^{2\beta} (pn + \frac{p^2 - 1}{6}) + \frac{2^{2\alpha+1} p^{2\beta} - 5}{3} \right) q^n$$

$$= \sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+2} p^{2\beta+1} n + \frac{2^{2\alpha+1} p^{2\beta+2} - 5}{3} \right) q^n \equiv f(-q^{4p}) \pmod{2},$$
(2.20)

which implies that

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+2} p^{2\beta+2} n + \frac{2^{2\alpha+1} p^{2\beta+2} - 5}{3} \right) q^n \equiv f(-q^4) \pmod{2}, \quad (2.21)$$

which is the case $\beta + 1$ of (1.7). The proof of Theorem 1.2 is completed by induction on β .

Combining (1.7) and (2.16), we have

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+2} p^{2\beta} n + \frac{2^{2\alpha+1} p^{2\beta} - 5}{3} \right) q^n \equiv \sum_{k=-\infty}^{\infty} (-1)^k q^{2k(3k+1)} \pmod{2}, \tag{2.22}$$

which implies (1.8).

Applying (2.20) yields that for j = 1, 2, ..., p - 1,

$$A_{3,5}\left(2^{2\alpha+2}p^{2\beta+1}(pn+j) + \frac{2^{2\alpha+1}p^{2\beta+2} - 5}{3}\right) \equiv 0 \pmod{2},$$

which implies (1.9).

Following Hirschhorn [10], for a positive integer k and a power series $\sum_{n=0}^{\infty} a(n)q^n$, we introduce an operator H_k , which acts on series of (positive and negative) powers of a single variable and picks out those terms in which the power is congruent to 0 modulo k. That is

$$H_k\left(\sum_{n=0}^{\infty} a(n)q^n\right) := \sum_{n=0}^{\infty} a(kn)q^{kn}.$$
 (2.23)

Garvan [8] proved the following results. Let

$$\xi = \frac{f(-q)}{q^2 f(-q^{49})}$$
 and $T = \frac{f(-q^7)^4}{q^7 f(-q^{49})^4}$. (2.24)

We have

$$H_7(\xi) = -1,$$
 $H_7(\xi^2) = 1,$ $H_7(\xi^3) = -7,$
 $H_7(\xi^4) = -4T - 7,$ $H_7(\xi^5) = 10T + 49,$ $H_7(\xi^6) = 49.$ (2.25)

Applying (2.3) and (2.24) in Theorem 1.2, for any prime $p \ge 5$, $\alpha \ge 1$ and $\beta \ge 0$, we get

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+2} p^{2\beta} n + \frac{2^{2\alpha+1} p^{2\beta} - 5}{3} \right) q^n \equiv f(-q)^4 \equiv q^8 f(-q^{49})^4 \xi^4 \pmod{2}. \tag{2.26}$$

Then, we have

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+2} p^{2\beta} (7n+1) + \frac{2^{2\alpha+1} p^{2\beta} - 5}{3} \right) q^{7n+1} \equiv q^8 f (-q^{49})^4 H_7(\xi^4)$$

$$\equiv q^8 f (-q^{49})^4 \pmod{2}.$$
(2.27)

Furthermore,

$$\sum_{n=0}^{\infty} A_{3,5} \left(7 \cdot 2^{2\alpha+2} p^{2\beta} n + \frac{7 \cdot 2^{2\alpha+1} p^{2\beta} - 5}{3} \right) q^n \equiv q f(-q^7)^4 \pmod{2}. \tag{2.28}$$

Therefore, for $k \in \{0, 2, 3, 4, 5, 6\}$, we get

$$A_{3,5}\left(7 \cdot 2^{2\alpha+2}p^{2\beta}(7n+k) + \frac{7 \cdot 2^{2\alpha+1}p^{2\beta} - 5}{3}\right) \equiv 0 \pmod{2},\tag{2.29}$$

which implies (1.10).

Hirschhorn [11] stated the following results. Denote

$$\zeta = \frac{f(-q)}{q^7 f(-q^{169})} \quad and \quad S = \frac{f(-q^{13})^2}{q^{13} f(-q^{169})^2}.$$
 (2.30)

We have

$$H_{13}(\zeta) = 1,$$
 $H_{13}(\zeta^2) = -2S - 1,$
 $H_{13}(\zeta^3) = 13,$ $H_{13}(\zeta^4) = 2S^2 - 13.$ (2.31)

Applying (2.3) and (2.30) in Theorem 1.2, for any prime $p \ge 5$, $\alpha \ge 1$ and $\beta \ge 0$, we get

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+2} p^{2\beta} n + \frac{2^{2\alpha+1} p^{2\beta} - 5}{3} \right) q^n \equiv f(-q)^4 \equiv q^{28} f(-q^{169})^4 \zeta^4 \pmod{2}. \tag{2.32}$$

Then,

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+2} p^{2\beta} (13n+2) + \frac{2^{2\alpha+1} p^{2\beta} - 5}{3} \right) q^{13n+2} \equiv q^{28} f(-q^{169})^4 H_{13}(\zeta^4)$$

$$\equiv q^{28} f(-q^{169})^4 \pmod{2}.$$
(2.33)

Furthermore, we get

$$\sum_{n=0}^{\infty} A_{3,5} \left(13 \cdot 2^{2\alpha+2} p^{2\beta} n + \frac{13 \cdot 2^{2\alpha+1} p^{2\beta} - 5}{3} \right) q^n \equiv q^2 f (-q^{13})^4 \pmod{2}. \tag{2.34}$$

Therefore, for $k \in \{0, 1, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$,

$$A_{3,5}\left(13\cdot 2^{2\alpha+2}p^{2\beta}(13n+k) + \frac{13\cdot 2^{2\alpha+1}p^{2\beta} - 5}{3}\right) \equiv 0 \pmod{2}, \tag{2.35}$$

which implies (1.11). This completes the proof of Theorem 1.2 and Corollary 1.1.

Proof of Theorem 1.3. Using (2.2) in (1.3), we obtain

$$\sum_{n=0}^{\infty} A_{3,5}(n)q^n = \frac{f_3^{15}}{f_1^5} = \left(\frac{f_3^3}{f_1}\right)^5 = \left(\frac{f_4^3 f_6^2}{f_2^2 f_{12}} + q \frac{f_{12}^3}{f_4}\right)^5$$

$$\equiv \frac{f_4^{15} f_6^{10}}{f_2^{10} f_{12}^5} + 5q \frac{f_4^{11} f_6^8}{f_2^8 f_{12}} + 5q^4 \frac{f_6^2 f_{12}^{11}}{f_2^2 f_4} + q^5 \frac{f_{12}^{15}}{f_4^5} \pmod{10}. \tag{2.36}$$

Extracting the terms involving q^{2n+1} from both sides of (2.36), dividing by q and replacing q^2 by q, then employing (2.3), we get

$$\sum_{n=0}^{\infty} A_{3,5}(2n+1)q^n \equiv 5 \frac{f_2^{11} f_3^8}{f_1^8 f_6} + q^2 \frac{f_6^{15}}{f_2^5} \equiv 5 f_2^7 f_6^3 + q^2 \frac{f_6^{15}}{f_2^5} \pmod{10}, \quad (2.37)$$

which implies (1.12).

Utilizing (2.3) in (1.3), we have

$$\sum_{n=0}^{\infty} A_{3,5}(n)q^n = \frac{f_3^{15}}{f_1^5} \equiv \frac{f_{15}^3}{f_5} \pmod{5}.$$
 (2.38)

This yields that for $k \in \{1, 2, 3, 4\}$, $A_{3,5}(5n + k) \equiv 0 \pmod{5}$, which is (1.13). Combining (2.2) and (2.38), we have that

$$\sum_{n=0}^{\infty} A_{3,5}(5n)q^n \equiv \frac{f_3^3}{f_1} = \frac{f_4^3 f_6^2}{f_2^2 f_{12}} + q \frac{f_{12}^3}{f_4} \pmod{5}.$$
 (2.39)

Extracting the terms involving q^{2n+1} from both sides of (2.39), dividing by q and replacing q^2 by q, we get

$$\sum_{n=0}^{\infty} A_{3,5}(10n+5)q^n \equiv \frac{f_6^3}{f_2} \pmod{5}.$$
 (2.40)

Then, we have

$$A_{3.5}(20n+15) \equiv 0 \pmod{5},\tag{2.41}$$

which is (1.14). And we obtain

$$\sum_{n=0}^{\infty} A_{3,5}(20n+5)q^n \equiv \frac{f_3^3}{f_1} \pmod{5}.$$
 (2.42)

In view of (2.39) and (2.42), we have

$$A_{3.5}(20n+5) \equiv A_{3.5}(5n) \pmod{5}.$$
 (2.43)

Utilizing (2.43) and by mathematical induction on α , we get (1.15). Combining (2.41) and (1.15), we thus arrive at (1.16). This completes the proof of Theorem 1.3.

3 Proofs of Theorems 1.4–1.9 and Corollaries 1.2–1.5

In this section, we prove the remaining theorems and corollaries about congruences modulo 4, 8 for $A_{3,5}(n)$.

Proof of Theorem 1.4. In order to prove Theorem 1.4, we first prove the following lemma.

Lemma 3.1 *For* $\alpha \geq 2$ *and* $n \geq 0$, *we have*

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha} n + \frac{2^{2\alpha+1} - 5}{3} \right) q^n \equiv -\frac{f_6^3}{f_2} \pmod{4}. \tag{3.1}$$

Proof Baruah and Ojah [3] established that

$$\frac{1}{f_1 f_3} = \frac{f_8^2 f_{12}^5}{f_2^2 f_4 f_6^4 f_{24}^2} + q \frac{f_4^5 f_{24}^2}{f_2^4 f_6^2 f_8^2 f_{12}}.$$
 (3.2)

Using (3.2) in (1.3), we obtain

$$\sum_{n=0}^{\infty} A_{3,5}(n)q^n = \frac{f_3^{15}}{f_1^5} = \frac{f_3^{16}}{f_1^4} \frac{1}{f_1 f_3}$$

$$\equiv \frac{f_6^8}{f_2^2} \left(\frac{f_8^2 f_{12}^5}{f_2^2 f_4 f_6^4 f_{24}^2} + q \frac{f_4^5 f_{24}^2}{f_2^4 f_6^2 f_8^2 f_{12}} \right)$$

$$\equiv \frac{f_6^4 f_8^2 f_{12}^5}{f_2^4 f_4 f_{24}^2} + q \frac{f_4^5 f_6^6 f_{24}^2}{f_2^6 f_8^2 f_{12}} \pmod{4}. \tag{3.3}$$

Xia and Yao [19] proved the following identity

$$\frac{f_3^2}{f_1^2} = \frac{f_4^4 f_6 f_{12}^2}{f_2^5 f_8 f_{24}} + 2q \frac{f_4 f_6^2 f_8 f_{24}}{f_2^4 f_{12}}.$$
 (3.4)

Extracting the terms involving q^{2n+1} from both sides of (3.3), dividing by q and replacing q^2 by q, then employing (3.4), we get

$$\sum_{n=0}^{\infty} A_{3,5}(2n+1)q^n \equiv \frac{f_2^5 f_3^6 f_{12}^2}{f_1^6 f_4^2 f_6} \equiv \frac{f_2^5 f_{12}^2}{f_4^2 f_6} \left(\frac{f_3^2}{f_1^2}\right)^3$$

$$\equiv \frac{f_2^5 f_{12}^2}{f_4^2 f_6} \left(\frac{f_4^4 f_6 f_{12}^2}{f_2^5 f_8 f_{24}} + 2q \frac{f_4 f_6^2 f_8 f_{24}}{f_2^4 f_{12}}\right)^3$$

$$\equiv \frac{f_4^{10} f_6^2 f_{12}^8}{f_2^{10} f_8^3 f_{24}^3} + 2q \frac{f_4^7 f_6^3 f_{12}^5}{f_2^9 f_8 f_{24}} \pmod{4}. \tag{3.5}$$

Extracting the terms involving q^{2n} from both sides of (3.5), replacing q^2 by q and using (3.4), we obtain

$$\sum_{n=0}^{\infty} A_{3,5}(4n+1)q^n \equiv \frac{f_2^{10} f_3^2 f_6^8}{f_1^{10} f_4^3 f_{12}^3} \equiv \frac{f_2^6 f_6^8}{f_4^3 f_{13}^3} \frac{f_2^2}{f_1^3}$$

$$\equiv \frac{f_2^6 f_6^8}{f_4^3 f_{12}^3} \left(\frac{f_4^4 f_6 f_{12}^2}{f_2^5 f_8 f_{24}} + 2q \frac{f_4 f_6^2 f_8 f_{24}}{f_2^4 f_{12}} \right)$$

$$\equiv \frac{f_2 f_4 f_6^9}{f_8 f_{12} f_{24}} + 2q \frac{f_2^2 f_6^{10} f_8 f_{24}}{f_4^2 f_{12}^4} \pmod{4}. \tag{3.6}$$

Xia and Yao [20] proved the following 2-dissection formula.

$$f_1 f_3 = \frac{f_2 f_8^2 f_{12}^4}{f_4^2 f_6 f_{24}^2} - q \frac{f_4^4 f_6 f_{24}^2}{f_2 f_8^2 f_{12}^2}.$$
 (3.7)

Extracting the terms involving q^{2n} from both sides of (3.6), replacing q^2 by q and using (3.7), we get

$$\sum_{n=0}^{\infty} A_{3,5}(8n+1)q^n \equiv \frac{f_1 f_2 f_3^9}{f_4 f_6 f_{12}} \equiv \frac{f_2 f_6^3}{f_4 f_{12}} \cdot f_1 f_3$$

$$\equiv \frac{f_2 f_6^3}{f_4 f_{12}} \cdot \left(\frac{f_2 f_8^2 f_{12}^4}{f_4^2 f_6 f_{24}^2} - q \frac{f_4^4 f_6 f_{24}^2}{f_2 f_8^2 f_{12}^2} \right)$$

$$\equiv \frac{f_2^2 f_6^2 f_8^2 f_{12}^3}{f_4^3 f_{24}^2} - q \frac{f_4^3 f_6^4 f_{24}^2}{f_8^2 f_{12}^3} \pmod{4}. \tag{3.8}$$

Extracting the terms involving q^{2n+1} from both sides of (3.8), dividing by q and replacing q^2 by q, then using (2.3), we get

$$\sum_{n=0}^{\infty} A_{3,5}(16n+9)q^n \equiv -\frac{f_2^3 f_3^4 f_{12}^2}{f_4^2 f_6^3} \equiv -\frac{f_6^3}{f_2} \pmod{4},\tag{3.9}$$

which is the case $\alpha = 2$ of (3.1).

Suppose that (3.1) is true for $\alpha \ge 2$. According to (3.1) and employing (2.2), we have

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+1} n + \frac{2^{2\alpha+1} - 5}{3} \right) q^n \equiv -\frac{f_3^3}{f_1} \equiv -\frac{f_4^3 f_6^2}{f_2^2 f_{12}} - q \frac{f_{12}^3}{f_4} \pmod{4}.$$
(3.10)

Extracting the terms involving q^{2n+1} from both sides of (3.10), dividing by q and replacing q^2 by q, we get

$$\sum_{n=0}^{\infty} A_{3,5} \left(2^{2\alpha+2} n + \frac{2^{2\alpha+3} - 5}{3} \right) q^n \equiv -\frac{f_6^3}{f_2} \pmod{4}, \tag{3.11}$$

which is the case $\alpha + 1$ of (3.1). The proof of Lemma 3.1 is completed by induction on α .

Now, we turn to prove Theorem 1.4. According to (3.1), we have

$$A_{3,5}\left(2^{2\alpha}(2n+1) + \frac{2^{2\alpha+1} - 5}{3}\right) \equiv 0 \pmod{4},\tag{3.12}$$

which is (1.17). This completes the proof of Theorem 1.4.

Proof of Theorem 1.5 and Corollary 1.2. Hirschhorn, Garvan and Borwein [9] proved that

$$\frac{f_3}{f_1^3} = \frac{f_4^6 f_6^3}{f_2^9 f_{12}^2} + 3q \frac{f_4^2 f_6 f_{12}^2}{f_7^7}.$$
 (3.13)

Extracting the terms involving q^{2n+1} from both sides of (3.5), dividing by q and replacing q^2 by q, then using (3.13), we get

$$\sum_{n=0}^{\infty} A_{3,5}(4n+3)q^n \equiv 2\frac{f_2^7 f_6^5}{f_4 f_{12}} \frac{f_3^3}{f_1^9} \equiv 2\frac{f_2^7 f_6^5}{f_4 f_{12}} \left(\frac{f_4^6 f_6^3}{f_2^9 f_{12}^2} + 3q \frac{f_4^2 f_6 f_{12}^2}{f_2^7}\right)^3$$

$$\equiv 2\frac{f_4^{17} f_6^{14}}{f_2^{20} f_{12}^7} + 2q \frac{f_4^{13} f_6^{12}}{f_2^{18} f_{12}^3} + 2q^2 \frac{f_4^9 f_6^{10} f_{12}}{f_2^{16}} + 2q^3 \frac{f_4^5 f_6^8 f_{12}^5}{f_2^{14}} \pmod{4}.$$
(3.14)

Extracting the terms involving q^{2n} from both sides of (3.14), replacing q^2 by q, we get

$$\sum_{n=0}^{\infty} A_{3,5}(8n+3)q^n \equiv 2\frac{f_2^{17}f_3^{14}}{f_1^{20}f_6^7} + 2q\frac{f_2^9f_3^{10}f_6}{f_1^{16}} \pmod{4}.$$
 (3.15)

By (2.3), we see that

$$\frac{f_2^{17} f_3^{14}}{f_1^{20} f_6^7} \equiv f_2 f_4^3 \pmod{2},\tag{3.16}$$

$$\frac{f_2^9 f_3^{10} f_6}{f_1^{16}} \equiv f_2 f_{12}^3 \pmod{2}.$$
 (3.17)

Combining (3.15), (3.16) and (3.17), we deduce that

$$\sum_{n=0}^{\infty} A_{3,5}(8n+3)q^n \equiv 2f_2f_4^3 + 2qf_2f_{12}^3 \pmod{4},\tag{3.18}$$

which yields

$$\sum_{n=0}^{\infty} A_{3,5}(16n+3)q^n \equiv 2f_1 f_2^3 \pmod{4},\tag{3.19}$$

$$\sum_{n=0}^{\infty} A_{3,5}(16n+11)q^n \equiv 2f_1f_6^3 \pmod{4}.$$
 (3.20)

Using (2.3) in (2.15), we obtain

$$\psi(q) \equiv f_1^3 \pmod{4}. \tag{3.21}$$

Furthermore, in view of (2.16) and (3.21), we get

$$\sum_{n=0}^{\infty} A_{3,5}(16n+3)q^n \equiv 2f(-q)\psi(q^2) \pmod{4},\tag{3.22}$$

$$\sum_{n=0}^{\infty} A_{3,5}(16n+11)q^n \equiv 2f(-q)\psi(q^6) \pmod{4}.$$
 (3.23)

By (3.22), we find (1.18) holds for $\alpha = 0$. Assume that (1.18) holds for $\alpha \geq 0$. Employing Lemmas 2.2 and 2.3 in (1.18), we consider the congruence

$$\frac{3k^2 + k}{2} + 2 \cdot \frac{m^2 + m}{2} \equiv \frac{7p^2 - 7}{24} \pmod{p},\tag{3.24}$$

where $-\frac{p-1}{2} \le k \le \frac{p-1}{2}$ and $0 \le m \le \frac{p-3}{2}$. The congruence (3.24) is equivalent to

$$(6k+1)^2 + 6(2m+1)^2 \equiv 0 \pmod{p}.$$
 (3.25)

For $\left(\frac{-6}{p}\right) = -1$, the congruence (3.25) holds if and only if $k = \frac{\pm p - 1}{6}$ and $m = \frac{p - 1}{2}$.

Extracting the terms containing $q^{pn+\frac{7p^2-7}{24}}$ from both sides of (1.18), dividing by $a^{\frac{7p^2-7}{24}}$ and replacing q^p by q, we arrive at

$$\sum_{n=0}^{\infty} A_{3,5} \left(16 \cdot p^{2\alpha+1} n + \frac{14 \cdot p^{2\alpha+2} - 5}{3} \right) q^n \equiv 2f(-q^p) \psi(q^{2p}) \pmod{4}.$$
(3.26)

This implies that

$$\sum_{n=0}^{\infty} A_{3,5} \left(16 \cdot p^{2\alpha+2} n + \frac{14 \cdot p^{2\alpha+2} - 5}{3} \right) q^n \equiv 2f(-q) \psi(q^2) \pmod{4}, \tag{3.27}$$

which is the case $\alpha + 1$ of (1.18). The proof of Theorem 1.5 is completed by induction

Combining (1.18), (2.15) and (2.16), we obtain

$$\sum_{n=0}^{\infty} A_{3,5} \left(16 \cdot p^{2\alpha} n + \frac{14 \cdot p^{2\alpha} - 5}{3} \right) q^n \equiv 2 \sum_{n=-\infty}^{\infty} \sum_{k=0}^{\infty} q^{\frac{n(3n+1)}{2} + k(k+1)} \pmod{4},$$
(3.28)

which implies (1.19).

Applying (3.26) yields that for $j = 1, 2, \ldots, p - 1$,

$$A_{3,5}\left(16 \cdot p^{2\alpha+1}(pn+j) + \frac{14 \cdot p^{2\alpha+2} - 5}{3}\right)q^n \equiv 0 \pmod{4},\tag{3.29}$$

which implies (1.20). This completes the proof of Theorem 1.5 and Corollary 1.2. \square **Proof of Theorem 1.6 and Corollary 1.3.** It follows from (3.23) that (1.21) holds for $\alpha =$ 0. Suppose that (1.21) holds for $\alpha \geq 0$. Employing Lemma 2.2 and Lemma 2.3 in (1.21), we consider the congruence

$$\frac{3k^2 + k}{2} + 6 \cdot \frac{m^2 + m}{2} \equiv \frac{19p^2 - 19}{24} \pmod{p},\tag{3.30}$$

where $-\frac{p-1}{2} \le k \le \frac{p-1}{2}$ and $0 \le m \le \frac{p-3}{2}$. The congruence (3.30) is equivalent to

$$(6k+1)^2 + 18(2m+1)^2 \equiv 0 \pmod{p}.$$
 (3.31)

For $\left(\frac{-18}{p}\right) = -1$, the congruence (3.31) holds if and only if $k = \frac{\pm p - 1}{6}$ and $m = \frac{p - 1}{2}$.

Extracting the terms containing $q^{pn+\frac{19p^2-19}{24}}$ from both sides of (1.21), dividing by $q^{\frac{19p^2-19}{24}}$ and replacing q^p by q, we arrive at

$$\sum_{n=0}^{\infty} A_{3,5} \left(16 \cdot p^{2\alpha+1} n + \frac{38 \cdot p^{2\alpha+2} - 5}{3} \right) q^n \equiv 2f(-q^p) \psi(q^{6p}) \pmod{4}.$$
(3.32)

This implies that

$$\sum_{n=0}^{\infty} A_{3,5} \left(16 \cdot p^{2\alpha+2} n + \frac{38 \cdot p^{2\alpha+2} - 5}{3} \right) q^n \equiv 2f(-q) \psi(q^6) \pmod{4}, \tag{3.33}$$

which is the case $\alpha + 1$ of (1.21). The proof of Theorem 1.6 is completed by induction on α .

Combining (1.21), (2.15) and (2.16), we have

$$\sum_{n=0}^{\infty} A_{3,5} \left(16 \cdot p^{2\alpha} n + \frac{38 \cdot p^{2\alpha} - 5}{3} \right) q^n \equiv 2 \sum_{n=-\infty}^{\infty} \sum_{k=0}^{\infty} q^{\frac{n(3n+1)}{2} + 3k(k+1)} \pmod{4},$$
(3.34)

which implies (1.22).

Applying (3.32) yields that for $1 \le j \le p - 1$,

$$A_{3,5}\left(16 \cdot p^{2\alpha+1}(pn+j) + \frac{38 \cdot p^{2\alpha+2} - 5}{3}\right) \equiv 0 \pmod{4},\tag{3.35}$$

which implies (1.23). This completes the proof of Theorem 1.6 and Corollary 1.3. \Box

Proof of Theorem 1.7 Xia and Yao [19] proved the following 2-dissection formulae.

$$\frac{f_1^3}{f_3} = \frac{f_4^3}{f_{12}} - 3q \frac{f_2^2 f_{12}^3}{f_4 f_6^2},\tag{3.36}$$

$$\frac{1}{f_1^2 f_3^2} = \frac{f_8^5 f_{24}^5}{f_2^5 f_6^5 f_{16}^2 f_{48}^2} + 2q \frac{f_4^4 f_{12}^4}{f_2^6 f_6^6} + 4q^4 \frac{f_4^2 f_{12}^2 f_{16}^4 f_{48}^2}{f_2^5 f_6^5 f_8 f_{24}}.$$
 (3.37)

In view of (3.36), we have

$$\sum_{n=0}^{\infty} A_{3,5}(n)q^n = \frac{f_3^{16}}{f_1^8} \frac{f_1^3}{f_3} \equiv \frac{f_6^8}{f_2^4} \left(\frac{f_4^3}{f_{12}} - 3q \frac{f_2^2 f_{12}^3}{f_4 f_6^2} \right)$$

$$\equiv \frac{f_6^8 f_4^3}{f_2^4 f_{12}} - 3q \frac{f_6^6 f_{12}^3}{f_2^2 f_4} \pmod{8}.$$
(3.38)

Utilizing (2.3), we get

$$\sum_{n=0}^{\infty} A_{3,5}(2n)q^n \equiv \frac{f_3^8 f_2^3}{f_1^4 f_6} \equiv f_2 f_6^3 \pmod{4},\tag{3.39}$$

which implies (1.24).

Extracting the terms involving q^{2n+1} from both sides of (3.38), dividing by q and replacing q^2 by q, then using (3.37), we get

$$\sum_{n=0}^{\infty} A_{3,5}(2n+1)q^n \equiv -3\frac{f_3^6 f_6^3}{f_1^2 f_2} \equiv 5\frac{f_3^6 f_6^3}{f_1^2 f_2} \equiv 5\frac{f_3^8 f_6^3}{f_2 f_1^2 f_3^2} \equiv 5\frac{f_6^7}{f_2} \frac{1}{f_1^2 f_3^2}$$

$$\equiv 5\frac{f_6^7}{f_2} \left(\frac{f_8^5 f_{24}^5}{f_2^5 f_6^5 f_{16}^2 f_{48}^2} + 2q\frac{f_4^4 f_{12}^4}{f_6^2 f_6^6} + 4q^4 \frac{f_4^2 f_{12}^2 f_{16}^4 f_{48}^2}{f_2^5 f_6^5 f_8 f_{24}} \right)$$

$$\equiv 5\frac{f_6^2 f_8^5 f_{24}^5}{f_2^6 f_{16}^2 f_{48}^2} + 2q\frac{f_4^4 f_6 f_{12}^4}{f_2^7} + 4q^4 \frac{f_4^2 f_6^2 f_{12}^2 f_{16}^4 f_{48}^2}{f_2^6 f_8 f_{24}} \quad (\text{mod } 8).$$

$$(3.40)$$

In view of (2.3), we obtain

$$\sum_{n=0}^{\infty} A_{3,5}(4n+1)q^n \equiv 5 \frac{f_3^2 f_4^5 f_{12}^5}{f_1^6 f_8^2 f_{24}^2} + 4q^2 \frac{f_2^2 f_3^2 f_6^2 f_8^4 f_{24}^2}{f_1^6 f_4 f_{12}}$$

$$\equiv 5 \frac{f_3^2 f_4^5 f_{12}^5}{f_1^6 f_8^2 f_{24}^2} + 4q^2 \frac{f_6 f_8^4 f_{24}^2}{f_2 f_4} \pmod{8}. \tag{3.41}$$

Using (3.13), we see that

$$5\frac{f_3^2 f_4^5 f_{12}^5}{f_1^6 f_8^2 f_{24}^2} \equiv 5\frac{f_4^5 f_{12}^5}{f_8^2 f_{24}^2} \left(\frac{f_3}{f_1^3}\right)^2 \equiv 5\frac{f_4^5 f_{12}^5}{f_8^2 f_{24}^2} \left(\frac{f_4^6 f_6^3}{f_2^9 f_{12}^2} + 3q \frac{f_4^2 f_6 f_{12}^2}{f_2^7}\right)^2$$

$$\equiv 5\frac{f_4^5 f_{12}^5}{f_8^2 f_{24}^2} \left(\frac{f_4^{12} f_6^6}{f_2^{18} f_{12}^4} + 6q \frac{f_4^8 f_6^4}{f_2^{16}} + 9q^2 \frac{f_4^4 f_6^2 f_{12}^4}{f_2^{14}}\right)$$

$$\equiv 5\frac{f_4^{17} f_6^6 f_{12}}{f_1^{18} f_8^2 f_{24}^2} + 6q \frac{f_4^{13} f_6^4 f_{12}^5}{f_2^{16} f_8^2 f_{24}^2} + 5q^2 \frac{f_4^9 f_6^2 f_{12}^9}{f_2^{14} f_8^2 f_{24}^2} \pmod{8}. \tag{3.42}$$

Combining (3.41) and (3.42), extracting the terms involving q^{2n+1} from both sides of (3.41), dividing by q and replacing q^2 by q, we find

$$\sum_{n=0}^{\infty} A_{3,5}(8n+5)q^n \equiv 6 \frac{f_2^{13} f_3^4 f_6^5}{f_1^{16} f_4^2 f_{12}^2} \equiv 6 f_2 f_6^3 \pmod{8}, \tag{3.43}$$

which implies (1.25). This completes the proof of Theorem 1.7.

Proof of Theorem 1.8 and Corollary 1.4. By (3.39), using (2.16) and (3.21), we get

$$\sum_{n=0}^{\infty} A_{3,5}(2n)q^n \equiv f(-q^2)\psi(q^6) \pmod{4},\tag{3.44}$$

which is the case $\alpha = 0$ of (1.26).

Suppose that (1.26) holds for $\alpha \geq 0$. Employing Lemma 2.2 and Lemma 2.3 in (1.26), we consider the congruence

$$2 \cdot \frac{3k^2 + k}{2} + 6 \cdot \frac{m^2 + m}{2} \equiv \frac{20p^2 - 20}{24} \pmod{p},\tag{3.45}$$

where $-\frac{p-1}{2} \le k \le \frac{p-1}{2}$ and $0 \le m \le \frac{p-3}{2}$. The congruence (3.45) is equivalent to

$$(6k+1)^2 + 9(2m+1)^2 \equiv 0 \pmod{p}.$$
 (3.46)

For $\left(\frac{-9}{p}\right) = -1$, the congruence (3.46) holds if and only if $k = \frac{\pm p - 1}{6}$ and m =

Extracting the terms containing $q^{pn+\frac{5p^2-5}{6}}$ from both sides of (1.26), dividing by $a^{\frac{5p^2-5}{6}}$ and replacing q^p by q, we arrive at

$$\sum_{n=0}^{\infty} A_{3,5} \left(2 \cdot p^{2\alpha+1} n + \frac{5 \cdot p^{2\alpha+2} - 5}{3} \right) q^n$$

$$\equiv (-1)^{(\alpha+1)(\frac{\pm p - 1}{6})} f(-q^{2p}) \psi(q^{6p}) \pmod{4}. \tag{3.47}$$

This implies that

$$\sum_{n=0}^{\infty} A_{3,5} \left(2 \cdot p^{2\alpha+2} n + \frac{5 \cdot p^{2\alpha+2} - 5}{3} \right) q^n$$

$$\equiv (-1)^{(\alpha+1)(\frac{\pm p-1}{6})} f(-q^2) \psi(q^6) \pmod{4}, \tag{3.48}$$

which is the case $\alpha + 1$ of (1.26). The proof of Theorem 1.8 is completed by induction on α .

Combining (1.26), (2.15) and (2.16), we obtain

$$\sum_{n=0}^{\infty} A_{3,5} \left(4 \cdot p^{2\alpha} n + \frac{5 \cdot p^{2\alpha} - 5}{3} \right) q^n \equiv \sum_{n=-\infty}^{\infty} \sum_{k=0}^{\infty} (-1)^{\alpha(\frac{\pm p - 1}{6}) + n} q^{\frac{n(3n+1)}{2} + 3\frac{k(k+1)}{2}} \pmod{4},$$

which implies (1.27).

Applying (3.47) yields that for $j = 1, 2, \dots, p - 1$,

$$A_{3,5}\left(2 \cdot p^{2\alpha+1}(pn+j) + \frac{5 \cdot p^{2\alpha+2} - 5}{3}\right) \equiv 0 \pmod{4}.$$

which implies (1.28). This finishes the proof of Theorem 1.8 and Corollary 1.4.

Proof of Theorem 1.9 and Corollary 1.5. By (3.43), according to (2.16) and (3.21), we have

$$\sum_{n=0}^{\infty} A_{3,5}(8n+5)q^n \equiv 6f(-q^2)\psi(q^6) \pmod{8},\tag{3.49}$$

which is the case $\alpha = 0$ of (1.29).

Suppose that (1.29) holds for $\alpha > 0$. Employing Lemma 2.2 and Lemma 2.3 in (1.29), we consider the congruence

$$2 \cdot \frac{3k^2 + k}{2} + 6 \cdot \frac{m^2 + m}{2} \equiv \frac{20p^2 - 20}{24} \pmod{p},\tag{3.50}$$

where $-\frac{p-1}{2} \le k \le \frac{p-1}{2}$ and $0 \le m \le \frac{p-3}{2}$. The congruence (3.50) is equivalent to

$$(6k+1)^2 + 9(2m+1)^2 \equiv 0 \pmod{p}.$$
 (3.51)

For $\left(\frac{-9}{p}\right) = -1$, the congruence (3.51) holds if and only if $k = \frac{\pm p - 1}{6}$ and m =

Extracting the terms containing $q^{pn+\frac{5p^2-5}{6}}$ from both sides of (1.29), dividing by $a^{\frac{5p^2-5}{6}}$ and replacing q^p by q, we arrive at

$$\sum_{n=0}^{\infty} A_{3,5} \left(8 \cdot p^{2\alpha+1} n + \frac{20 \cdot p^{2\alpha+2} - 5}{3} \right) q^n$$

$$\equiv 6(-1)^{(\alpha+1)(\frac{\pm p-1}{6})} f(-q^{2p}) \psi(q^{6p}) \pmod{8}. \tag{3.52}$$

This implies that

$$\sum_{n=0}^{\infty} A_{3,5} \left(8 \cdot p^{2\alpha+2} n + \frac{20 \cdot p^{2\alpha+2} - 5}{3} \right) q^n$$

$$\equiv 6(-1)^{(\alpha+1)(\frac{\pm p - 1}{6})} f(-q^2) \psi(q^6) \pmod{8}, \tag{3.53}$$

which is the case $\alpha + 1$ of (1.29). The proof of Theorem 1.9 is completed by induction

Combining (1.29), (2.16) and (3.21), we have

$$\sum_{n=0}^{\infty} A_{3,5} \left(16 \cdot p^{2\alpha} n + \frac{20 \cdot p^{2\alpha} - 5}{3} \right) q^n \equiv 6 \sum_{n=-\infty}^{\infty} \sum_{k=0}^{\infty} (-1)^{\alpha(\frac{\pm p - 1}{6}) + n} q^{\frac{n(3n+1)}{2} + 3\frac{k(k+1)}{2}} \pmod{8}$$

which implies (1.30).

Applying (3.52) yields that for $1 \le j \le p - 1$,

$$A_{3,5}\left(8 \cdot p^{2\alpha+1}(pn+j) + \frac{20 \cdot p^{2\alpha+2} - 5}{3}\right) \equiv 0 \pmod{8},\tag{3.54}$$

which implies (1.31). This completes the proof of Theorem 1.9 and Corollary 1.5. \Box

Acknowledgements I would like to thank Professor Qing-Hu Hou for his careful guidance and the referees for valuable suggestions. This work was supported by the National Natural Science Foundation of China (Grant 11771330).

Declarations

Conflict of interest I have no relevant financial or non-financial interests to disclose.

References

- 1. Berndt, B.C.: Ramanujan's Notebooks. Part III. Springer-Verlag, New York (1991)
- Baruah, N.D., Nath, K.: Infinite families of arithmetic identities and congruences for bipartitions with 3-cores. J. Number Theory 149, 92–104 (2015). https://doi.org/10.1016/j.jnt.2014.10.010
- Baruah, N.D., Ojah, K.K.: Analogues of Ramanujan's partition identities and congruences arising from his theta functions and modular equations. Ramanujan J. 28, 385–407 (2012). https://doi.org/10.1007/ s11139-011-9296-z
- Cui, S.P., Gu, N.S.S.: Arithmetic properties of *l*-regular partitions. Adv. Appl. Math. 51(4), 507–523 (2013). https://doi.org/10.1016/j.aam.2013.06.002
- Chern, S.: Formulas for partition k-tuples with t-cores. J. Math. Anal. Appl. 437(2), 841–852 (2016). https://doi.org/10.1016/j.jmaa.2016.01.040
- Dasappa, R.: On a Ramanujan-type congruence for bipartitions with 5-cores. J. Integer Seq. 19(16.8), 1 (2016)
- Garvan, F., Kim, D., Stanton, D.: Cranks and t-cores. Invent. Math. 101(1), 1–17 (1990). https://doi. org/10.1007/BF01231493
- Garvan, F.G.: A simple proof of Watson's partition congruences for powers of 7. J. Aust. Math. Soc. (Series A) 36(06), 316–334 (1984). https://doi.org/10.1017/s1446788700025386
- 9. Hirschhorn, M.D., Garvan, F., Borwein, J.: Cubic analogs of the Jacobian cubic theta function $\theta(z, q)$. Can. J. Math. **45**(4), 673–694 (1993). https://doi.org/10.4153/CJM-1993-038-2
- Hirschhorn, M.D.: Ramanujan's tau function In: Analytic Number Theory, Modular Forms and q-Hypergeometric Series, pp. 311–328, Springer Proceedings in Mathematics and Statistics, 221, Springer, Cham, (2017)
- Lin, B.L.S.: Some results on bipartitions with 3-core. J. Number Theory 139, 44–52 (2014). https://doi.org/10.1016/j.jnt.2013.12.007
- Naika, M.S.M., Nayaka, S.S.: Congruences for partition quadruples with *t*-cores. Acta Math. Vietnam. 45(4), 795–806 (2020). https://doi.org/10.1007/s40306-019-00356-z
- 13. Saikia, N., Boruah, C.: Congruences for bipartition and partition triples with 4-core. Afr. Matematika **28**(1–2), 199–206 (2016). https://doi.org/10.1007/s13370-016-0437-9
- Saikia, N., Boruah, C.: Some congruences modulo 2 and 5 for bipartition with 5-core. Arab. J. Math. Sci. 23(2), 124–132 (2017). https://doi.org/10.1016/j.ajmsc.2016.05.003
- Saikia, N., Boruah, C.: New congruences for k-tuples t-core partitions. J. Anal. 26, 27–37 (2018). https://doi.org/10.1007/s41478-017-0065-2
- Wang, L.: Arithmetic identities and congruences for partition triples with 3-cores. Int. J. Number Theory 12(4), 995–1010 (2015). https://doi.org/10.1142/S1793042116500627
- Wang, L.: Explicit formulas for partition pairs and triples with 3-cores. J. Math. Anal. Appl. 434(2), 1053–1064 (2016). https://doi.org/10.1016/j.jmaa.2015.09.074

- Xia, E.X.W.: Arithmetic properties of bipartitions with 3-cores. Ramanujan J. 38(3), 529–548 (2014). https://doi.org/10.1007/s11139-014-9643-y
- Xia, E.X.W., Yao, O.X.M.: Analogues of Ramanujan's partition identities. Ramanujan J. 31(3), 373–396 (2013). https://doi.org/10.1007/s11139-012-9439-x
- Xia, E.X.W., Yao, O.X.M.: Some modular relations for the Göllnitz -Gordon functions by an even -odd method. J. Math. Anal. Appl. 387(1), 126–138 (2012). https://doi.org/10.1016/j.jmaa/2011.08.059
- Yao, O.X.M.: Infinite families of congruences modulo 3 and 9 for bipartitions with 3-cores. Bull. Aust. Math. Soc. 91(1), 47–52 (2015). https://doi.org/10.1017/S0004972714000586
- Zou, Q.: Arithmetic properties of bipartitions with *l*-core. J. Interdiscip. Math. 21, 1533–1546 (2018). https://doi.org/10.1080/09720502.2017.1400796

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

