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Abstract

Let A3 s(n) denote the number of 5-tuple partitions of n with 3-cores. We estab-
lish some congruences modulo 2, 4, 5, 8 and 10 for A3z 5(n) by employing g-series
identities. For example, we prove for any prime p > 5, > 1, 8> 0andn > 0,

6i A 22a+1 28+1 _ 5
Ass (22a+2p2ﬂ+2n n (6j + p) . p ) —0 (mod2).

where 1 < j <p—1.
Keywords Partition - Congruence - k-tuple - £-core - Ramanujan’s theta function

Mathematics Subject Classification Primary 11P83, Secondary 05A17

1 Introduction

A partition of a positive integer n is a non-increasing sequence of positive integers
called parts whose sum is n. For convenience, we use the following notation

(@ @)oo = [ [(1 —ag™, and fi = (g"; ¢")cc-
n=0

A partition A of a positive integer n is said to be ¢-core if it has no hook numbers
that are multiples of ¢. Let a; (n) denote the number of 7-core partitions of n. In [7,Eq.
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(2.1)], the generating function of a,(n) is given by
0 t
Y amg' = (1.1)
n=0 f]

A k-tuple partition (A1, A, ..., Ax) of n is a k-tuple of partitions (A, A2, ..., Ag)
such that the sum of all the parts equals n. A k-tuple partition (A1, A2, ..., ) of n
with 7-cores means that each A; is t-core fori = 1,2, --- , k. Let A; x(n) denote the
number of k-tuple partitions of n with 7-cores. The generating function of A; x(n) is

ZA, k(n)g" = f;—lk (12)

n=0

Many authors have studied arithmetic properties of A3 2(n) and obtained some
Ramanujan-type congruences. Lin [11] established some infinite families of congru-
ences modulo 4, 5, 7 and 8 for A3 2(n). Based on Lin’s study, Xia [18] added proofs

of several infinite families of congruences modulo 4, 8 and MT_I (k > 2) for Az 2(n).
For more results about A3 2(n), see [2, 5, 17, 18, 21].

Wang [16] proved some infinite families of identities and congruences for A3 3(n)
by using some identities of g-series. In [17], Wang established some explicit formulas
for A3 »(n) and A3 3(n). After that, Chern [5] extended the work of Wang [17] and stud-
ied some arithmetic identities of A, x(n) for (¢, k) = (3, 4), (3, 6), (4,2),(5, 1),(5,2)
and (7, 1) by applying the theory of modular form.

Saikia and Boruah [13] proved some infinite families of congruences modulo
2, 3 for A42(n) and A4 3(n). Dasappa [6] discovered a nice congruence modulo
5¢ (@ = 1) for As(n). Saikia and Boruah [14] also studied arithmetic prop-
erties of As2(n) and proved some congruences modulo 2 and 5. In sequel, they
[15] established some Ramanujan-type congruences for A;r(n) when (f,k) =
(3,4),(3,9),(4,8),(5,6), (8,4), (9,3) and (9, 6) by employing g-series identities.

Zou [22] proved some congruences modulo 2 for A;»(n); t is a prime such that
7 <t < 23. In 2020, Naika and Nayaka [12] established some Ramanujan-type
congruences modulo 5, 7 and 8 for A; 4(n),t =3,5,7, 25.

In this paper, we mainly study arithmetic properties of A3 s(n). Its generating
function is given by

Z A35(m)q" fl (13)

We establish some results about congruences modulo 2, 4, 5, 8 and 10 for A3 5(n).
To be specific, by using some dissection formulae, we obtain some infinite families
of congruences modulo 2 for A3 5(n) as follows.

Theorem 1.1 For any integer n > 0, we have
A35@8n+5)=0 (mod 2). (1.4)
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and for o > 1,

7. 220l+1 -5

Ass (220""311 + f) =0 (mod 2), (1.5)
13. 2%+ —5

Ass (22‘”4;1 + f> =0 (mod 2). (1.6)

Theorem 1.2 For any prime p > 5, > 1, 8 >0, andn > 0,

22a+1p2ﬂ -5

oo
ZA3,5 (22a+2p2ﬁn + 3

n=0

)q” = f(—¢% (mod 2). (1.7)

We deduce the following infinite families of congruences with two parameters «,
modulo 2 for A3z 5(n).

Corollary 1.1 For any prime p > 5, « > 1, B > 0, if n cannot be represented as
2k(3k + 1) for some integer k, then

2201+1p2ﬂ -5

A3,5 (22a+2p2ﬂn + 3

) =0 (mod 2). (1.8)

and for any integer n > 0,

67 ,22(14—1 Zﬂ-‘rl_s
A3’5(22°‘+2p2‘3+2n+(]+p) P =0 (mod2), je{l,2p—1}.

3
(1.9)
201 28
Ass (72 2a+2 28, (@2k+7) 23 P 5) =0 (mod2), ke{0,2,3,4,5,6}.
(1.10)
and
78k +13) - 2241 p2f 5
Azs (132 . 22°‘+2p25n + ( +19) 3 P > =0 (mod 2),
ke{0,1,3,4,5,6,7,8,9,10, 11, 12}. (1.11)
We find the following congruences modulo 5 and 10 for A3 5(n) hold.
Theorem 1.3 Forn > 0, we have
Azs5(@n+3)=0 (mod 10), (1.12)
A3s(Gn+k)=0 (mod5), ke{l,2, 3,4} (1.13)
A3520n +15) =0 (mod5), (1.14)
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and for o > 0, we get

o 5225
A35(5-2°n+ ———— ) = A35(5n) (mod 5), (1.15)

52 3 22a+1 -5
Az (5 222y, 4 f> =0 (mod 5). (1.16)

We also establish the following congruences modulo 4, 8 for A3 5(n).

Theorem 1.4 For o > 2 and n > 0, we have

5.2 _5

A3’5 (220{"1‘1” + 3

) =0 (mod 4). (1.17)

Let p > 3 be a prime and a be an integer. The Legendre symbol is defined by

1, if a is a quadratic residue modulop anda # 0 (mod p),

a
(—) =10, ifa=0 (mod p),
—1, if a is a quadratic non-residue modulop.

Theorem 1.5 For any prime p > 5 such that (‘76> =—1l,a>0andn > 0,

> , 14. p2* —5 )
> Ass(16-p*n+ —5—— )" =2 Y@ (mod 4. (L18)
n=0

Corollary 1.2 For any prime p > 5 such that (_76> = —1, @ > 0, if n cannot be

represented as the sum of a pentagonal number and twice a triangular number; then

14.p>* —5

A3’5 <16 . pzai’l + 3

) =0 (mod 4). (1.19)

and for any integer n > 0,

(48j + 14p) - p>etl —5
+ 3

Ass (16 - ptiy > =0 (mod4), (1.20)

wherel < j <p—1.

Theorem 1.6 For any prime p > 5 such that (7718) =—1lL,a>0,andn >0,

- 38 p —5
> Ass (16 ¥+ +> " =2f(—)¥(q® (mod4). (1.21)
n=0
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Corollary 1.3 For any prime p > 5 such that (_718) = —1, a >0, if n cannot be
represented as the sum of a pentagonal number and six times a triangular number,
then ,
38 p™“ =5
Ass <16 p%n+ +) =0 (mod 4). (1.22)

and for any integer n > 0,

48 +38p) - p2etl _ 5
Ass <l6~p2“+2n G p)3 P ) =0 (mod 4), (1.23)
wherel < j <p-—1.
Theorem 1.7 Forn > 0, we have
A35(4n+2)=0 (mod 4), (1.24)
A35(16n+13) =0 (mod 8). (1.25)

Theorem 1.8 For any prime p > 5 such that (‘79> =—1lL,a>0andn > 0,

S 2a 5.p2a_5 n a(ip*l) 2 6
YA (2t ) d" = 7T f(=g)¥ () (mod 4).
n=0
(1.26)
Corollary 1.4 For any prime p > 5 such that (%) = —1, « > 0, if n cannot be

represented as the sum of a pentagonal number and three times a triangular number,
then

5.p% -5
Ass <4 p%n 4 pT> =0 (mod 4). (1.27)
and for any integer n > 0,

- 2at1
242, | (6j +5P)'3P atl —5

Azs (2 - p > =0 (mod 4), (1.28)

where 1l < j <p—1.
Theorem 1.9 For any prime p > 5 such that (‘79> =—1lL, a>0andn >0,

- vy 20-p2 5N\ e, s
D Ass (8 P+ =5 )" = 6D f(—gP(g®)  (mod 8).
n=0

(1.29)
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Corollary 1.5 For any prime p > 5 such that (_79> = —1, @ > 0, if n cannot be
represented as the sum of a pentagonal number and three times a triangular number,
then ,
20- p® =5
Ass (16 p%n 4+ +) =0 (mod 8). (1.30)

and for any integer n > 0,

. 200+1
2a+2n+ (24] +20p?3p o+ _5

Az s (8 -p ) =0 (mod 8), (1.31)

wherel < j<p—1

This paper is organized as follows. In Sect. 2, we shall prove some theorems about
congruences for A3 5(n) modulo 2, 5 and 10. In Sect. 3, we give the proofs of remaining
theorems about congruences modulo 4, 8 for A3z 5(n).

2 Proofs of Theorems 1.1-1.3 and Corollary 1.1

Proof of Theorem 1.1. In order to prove Theorem 1.1, we first prove the following
lemma.

Lemma 2.1 Fora > 1 andn > 0, we have

0 20+1 6
22+l 5
> Az (22“n + —) q" = f—32 (mod 2). 2.1)
n=0 3 fl

Proof Hirschhorn, Garvan and Borwein [9] proved that

5L

= q (2.2)
i e Ja
By the binomial theorem, for any positive integer k and any prime p,
k pk—l k
i =1 (mod p*). 2.3)
Substituting (2.2) into (1.3) and employing (2.3), we obtain that
. w S S_f(fife I
2A3,5(’1)CI === \57te—+
o i h 5\ e fa
3 8 6 £3
_ Sl | TeTh (mod 2). (2.4)

A2 1 314
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Extracting the terms involving ¢2"*! from both sides of (2.4) , dividing by ¢ and
replacing ¢ by ¢, then employing (2.3), we get

- W IS
Azs52n+1 = == d 2). 2.5
n§=0 3,5(2n + 1)g 2 2 (mod 2) (2.5)
Hence,
E 354n+1Dg" == (mod 2), (2.6)
n=0 fl

which is the case @ = 1 of (2.1).
Suppose that (2.1) holds for « > 1. Utilizing (2.2), we have

2
0 20+1 6 32 3
2 -5
ZA3,5 <22ai’l+—>qn5f—35 fgf6 +6]&
n=0 3 f1 15 fiz fa
2f12

(mod 2).  (2.7)

Hence,

2at+l _ 6,4
n=0 fl f6 f2 fz
(2.8)
Extracting the terms involving ¢2**! from both sides of (2.8), dividing by ¢ and
replacing ¢ by ¢, we get

22043 _ 5 f6
Z Az (22‘”2 + >q = (mod 2), (2.9)
3 fi
which is the case o + 1 of (2.1). The proof of Lemma 2.1 is completed by induction
on «.
Now, we turn to prove Theorem 1.1. It follows from (2.3) that

S WIS _ 18
D Ass@n+ g =23 =C (mod 2), (2.10)

which implies (1.4).
Extracting the terms involving ¢ from both sides of (2.8) and replacing ¢ by ¢,
we get

200+2 22a+1 5 n
ZA35 22+ =) q" = fa (mod 2). (2.11)
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1528 X.-Q. Wen

which implies that

20+1 _ 5
Ass (22°‘+2(2n +1)+ T) =0 (mod 2), (2.12)
20+1 _ 5
A3 (22°'+2(4n +2)+ T) =0 (mod 2). (2.13)
We thus obtain (1.5) and (1.6). This completes the proof of Theorem 1.1. O

Proof of Theorem 1.2 and Corollary 1.1.
We first recall that Ramanujan’s general theta function f(a, b) is defined by

o0
faby=Y a5 jab| < 1. (2.14)

n=—0oo

Two important cases of f(a, b) are the theta functions ¥ (¢g) and f(—g) [1,p.36.
Entry 22], which are given by

V@) = flq.q%) = Z B (2.15)

ee]

fea) = fq. - =Y ~1'q"3 = 1. (2.16)

n=—0oo

Cui and Gu [4] proved the following p-dissection identities for ¥ (¢) and f(—q).

Lemma 2.2 [4,Theorem 2.1] For any odd prime p,

2
K2tk P2@kthp  p2-@ktDp pi-1 2
v@)=Y a7 fl@ = .q¢ 2 )+q 5 ¥@"), 2.17)
Furthermore, for 0 < k < "T_3,
K> +k  p?
2 = (mod p).

Lemma 2.3 [4,Theorem 2.2] For any prime p > 5,

p—1

2 2 2 2
3k“+k 3p°+(6k+1)p 3p~—(6k+1)p
fo= > =DqTr f—q T ¢ 7 )
k:_Lfl’k#ipfl
+(— 1) = 61 E f( q”) (2.18)
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1529
where
+p—1 PT—I, ifp=1 (mod 6),
6 |21 ifp=-1 (mod6).
p—1 p—1 +p—1
Furthermore, for —=- <k < &~ and k # =,
3k2+k |, p?—
d p).
7 # 7 (mod p)
It follows from (2.11) and (2.16) that
22a+1 5
ZA35(22“+2 +— )q"zf(—q“) (mod2),  (2.19)

which is the case g = 0 of (1.7).

Now, suppose that (1.7) holds for § > 0. Invoking Lemma 2.3, we get that for any
prime p > 5,

00 2 da+1,28
p-—1 227 pP -5\,
> " Az <22°‘+2p2’3(pn+ s 3 >61’
n=0

© 20+1 ,28+2 _
2 p 5
— § A3)5 <220{+2p2ﬁ+1n >qn _ f(_q
n=0

3 (mod 2),
(2.20)
which implies that
00 ) 22a+1p2ﬂ+2 _
D Ass (2 2 pPtin f) q" = f(—¢% (mod2), (221)
n=0

which is the case § + 1 of (1.7). The proof of Theorem 1.2 is completed by induction
on 8.

Combining (1.7) and (2.16), we have

0 204126 _
2 5
E A3s (22a+21’2ﬂ” 5 )

: = Z( kgD (mod 2),
n=0

k=—
(2.22)
which implies (1.8).
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Applying (2.20) yields that for j = 1,2,...,p — 1,
220(+1 28+2 _ 5

3

Ass (22a+2p2’3“ (pn+j)+ —7L

) =0 (mod 2),
which implies (1.9).

Following Hirschhorn [10], for a positive integer k and a power series Y oo, a(n)g",
we introduce an operator Hy, which acts on series of (positive and negative) powers
of a single variable and picks out those terms in which the power is congruent to 0

modulo k. That is
o0 o0
Hy (Z a(n)q”) = Z a(kn)g*". (2.23)

n=0 n=0
Garvan [8] proved the following results. Let

f(=q) f(—=q"*
=T _  and T=—1~" 2.24
ey 477 (g™ 249
We have
Hy(&) = —1, Hy(E%) =1, Hy(E%) = -7,
Hy(% = —4T —7, H7(&) = 10T +49, Hy(£%) = 49. (2.25)

Applying (2.3) and (2.24) in Theorem 1.2, for any prime p > 5, > 1 and 8 > 0,
we get

22a+1p2/3 -5

o0

)q” =f(~)*=¢%F(—¢®™)**  (mod 2).
n=0

(2.26)
Then, we have

& 2042 2 22‘”11’2’3—5 Tn+1 8 494 4
ZAs,s(Z PP+ 1)+ 3 )q”* =q" (¢ Hy (5
n=0
=¢%f(—¢*)* (mod 2).
(2.27)
Furthermore,
o0

7. 22(x+1p2ﬂ -5

Ass (7 (22002 p P+ 3

)q” =qf(—¢")* (mod 2). (2.28)
Therefore, for k € {0, 2,3, 4,5, 6}, we get

7.02a+1 26 5
—P) =0 (mod2),  (2.29)

Ass (7 220228 (T 4 k) +
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which implies (1.10).
Hirschhorn [11] stated the following results. Denote

f(—q) f(—q'3)?
T R L T @30
‘We have
Hi3(0) =1, Hiz(¢h) = -28 — 1,
Hi3(% =13, HpiEch =282 —13. (2.31)

Applying (2.3) and (2.30) in Theorem 1.2, for any prime p > 5, > 1 and 8 > 0,
we get

- 2a42 2 20t p26 5 4 _ 28 1694 ,.4
Y Ass 2“+pﬂn+f " =f=9)"=qf(=¢ >)7¢" (mod 2).
n=0

(2.32)
Then,
E 2042 2 224 p2P 5\ a0 g 16914 4
> Ass (2 “*p ﬁ(13n+2>+f)q M2 =% f(=q" ") His (¢

n=0
=¢®f(=¢'®)* (mod 2).
(2.33)

Furthermore, we get

13- 22a+1p2ﬂ _
3

o0
> Ass (13 22 2By 4
n=0

5) ¢"=q*f(—=q"H* (mod 2).

(2.34)
Therefore, for k € {0, 1,3,4,5,6,7,8,9, 10, 11, 12},

13- 220l+1p2ﬂ _
3

5
Ass (13 220228 (130 + k) + ) =0 (mod2), (2.35)

which implies (1.11). This completes the proof of Theorem 1.2 and Corollary 1.1.

Proof of Theorem 1.3. Using (2.2) in (1.3), we obtain

ZAzs(n)q L (L) - (ke +qf—132 5
fi h 3 fi2 fa
_ 1 R GRS shs

+5¢ + 59 +4q
210f152 f2 f12 f22f4 f45

(mod 10). (2.36)
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1532 X.-Q. Wen

Extracting the terms involving ¢?"*! from both sides of (2.36), dividing by ¢ and
replacing ¢ by ¢, then employing (2.3), we get

S8 18
§ Assn + 1) +q =5 (mod 10), (2.37)
L A @ =5 s 1118+ T

which implies (1.12).
Utilizing (2.3) in (1.3), we have

S . flS f3
X_:As,s(n)q = fi]S = f—lss (mod 5). (2.38)

This yields that for k € {1, 2, 3,4}, A3 5(5n + k) =0 (mod 5), which is (1.13).
Combining (2.2) and (2.38), we have that

00 3 3,2 3
> Ass(ng" = 5 f‘;i 122 (mod 5). (2.39)
=0 i fhe fa

Extracting the terms involving ¢?"*! from both sides of (2.39), dividing by ¢ and
replacing ¢ by ¢, we get

Z A35(10n +5)¢" = 2% (mod 5). (2.40)
= f2
Then, we have
A35(20n +15) =0 (mod 5), (2.41)
which is (1.14). And we obtain
Z A35(20n 4 5)¢" = = (mod 5). (2.42)
= fi
In view of (2.39) and (2.42), we have
A35(20n +5) = A35(51)  (mod 5). (2.43)

Utilizing (2.43) and by mathematical induction on «, we get (1.15). Combining
(2.41) and (1.15), we thus arrive at (1.16). This completes the proof of Theorem 1.3.
O

3 Proofs of Theorems 1.4-1.9 and Corollaries 1.2-1.5

In this section, we prove the remaining theorems and corollaries about congruences
modulo 4, 8 for A3 5(n).
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Proof of Theorem 1.4. In order to prove Theorem 1.4, we first prove the following
lemma.

Lemma 3.1 For o > 2 and n > 0, we have

& 20+1 3
220+l 5
> Ass (22"% + T) q" —% (mod 4). (3.1)

n=0

Proof Baruah and Ojah [3] established that

LR +q 1313

= (3.2)
hfs fAfafi fz fEfif
Using (3.2) in (1.3), we obtain
f315 f 1
A
Z 3.5(n)q" = 5T h
/e ( Rl i )
fz f2f4f6 f24 f2f6f8 Ji2
ferr Fi 18 134
= + (mod 4). (3.3)
A TR
Xia and Yao [19] proved the following identity
5 fifefd JafE f3 foa
== +2 : (3.4)
it fafa 1 £ fiz

Extracting the terms involving ¢2**! from both sides of (3.3), dividing by ¢ and
replacing ¢ by ¢, then employing (3.4), we get

3
= . B B (ff)
A 2n +1 = = J3
,; WO+ D=y n =T\ 2

B <fff6f122 f4f62fsfz4>3
=" 5 +29—3
f4f6 fz.f8f24 f2f12
FOr2r8 AR
= +2
0555 U ffa

(mod 4). (3.5)
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Extracting the terms involving ¢ from both sides of (3.5), replacing ¢ by ¢ and
using (3.4), we obtain

f210f3 f6 f2f5 f3
Az s(dn + 1
;, D= s = s

— f26f68 f4f6f12 +2qf4f62f8f24
1 \f5 fa fos 5 fi2

_ Hfaf 5 13180 fs foa

B f8f12f24+ 7 2

(mod 4). 3.6)

Xia and Yao [20] proved the following 2-dissection formula.

f2f32f142 f4 f6f24

3.7
2fefs fzfg ics G

fifs=

Extracting the terms involving ¢ from both sides of (3.6), replacing ¢ by ¢ and
using (3.7), we get

U W SRS hf
Ass@Bn+1)g" = L0203 J2e
,; s+ ba fafefiz  fafi2 URs

_ AR '<fzf32ff‘2 - fff6f224)

= fare \r2rerd U hrEfh
_ LR _ fife

(mod 4). (3.8)
T T

Extracting the terms involving ¢%"*! from both sides of (3.8), dividing by ¢ and
replacing ¢ by ¢, then using (2.3), we get

n fz3f34f122 fg
E A 16n + 9 q =——5 z =——"- mod 4 s 3.9
gt 3,5( ) f‘42f‘63 f2 ( ) ( )

which is the case @« = 2 of (3.1).
Suppose that (3.1) is true for ¢ > 2. According to (3.1) and employing (2.2), we
have

L2 s 5B R
An e (o2, ) no 3 _Jide T2 d 4).
Z 35( 3 1 N i qf4 (mod
(3.10)
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Extracting the terms involving ¢?"*! from both sides of (3.10), dividing by ¢ and
replacing ¢2 by g, we get

22a+3 _ 3 3
ZA3 5 (22“+2 3 )q" = —J;_6 (mod 4), (3.11)
2

which is the case « + 1 of (3.1). The proof of Lemma 3.1 is completed by induction
on «.
Now, we turn to prove Theorem 1.4. According to (3.1), we have

22ot+1 _
Az s (22“(2n +1) + T) =0 (mod 4), (3.12)
which is (1.17). This completes the proof of Theorem 1.4. O

Proof of Theorem 1.5 and Corollary 1.2. Hirschhorn, Garvan and Borwein [9] proved

e bk L1 fifeft
3 4 J6 4J6J12
—= = +3 .
RorEn T

(3.13)

Extracting the terms involving ¢?"*! from both sides of (3.5), dividing by ¢ and
replacing ¢ by ¢, then using (3.13), we get

00 X 7. 6 . 2. N3
w_ R RS (£ fifefi
A 4 3 =2-=2"= =72 3
nX:E) 35(n+ 34 fafiz f} fafi2 f29f122jL 1 1
17 £14 9 £10 5 18 15
52f420f67 +2q f18f +2q2f4 f616f12 +2q3 f4 f614fn (mod 4).
571 5 f12 5 5
(3.14)

Extracting the terms involving ¢ from both sides of (3.14), replacing ¢2 by ¢, we
get

o0 17 14 9 10

D AssBn+3)g" =225 +2qf2f316f6 (mod 4).  (3.15)

n=0 fl f6 fl

By (2.3), we see that
f d2 3.16
10
@%ﬁzﬁm (mod 2). (3.17)

1
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Combining (3.15), (3.16) and (3.17), we deduce that

o0
Y A3s@Bn+3)q" =2£10 +2qf2f)  (mod 4), (3.18)
n=0
which yields
[e¢)
Y A3s(16n+3)g" =2f1f; (mod 4), (3.19)
n=>0
o
> Ass(i6n+11)g" =21 f (mod 4). (3.20)
n=0

Using (2.3) in (2.15), we obtain

V(@) = fi (mod 4). (3.21)

Furthermore, in view of (2.16) and (3.21), we get

D Ass(6n+3)g" =2f(=)¥(g”) (mod 4), (3.22)
n=0
ZA3’5(16” + 11)g" = 2f(—q)1p(q6) (mod 4). (3.23)
n=0

By (3.22), we find (1.18) holds for « = 0. Assume that (1.18) holds for ¢ > 0.
Employing Lemmas 2.2 and 2.3 in (1.18), we consider the congruence

3k + k m>+m Ip*—17
> +2- > =7 (mod p), (3.24)

Where—prlgkprflandO§m§pr3.

The congruence (3.24) is equivalent to
6k + 1) +62m +1)> =0 (mod p). (3.25)

For (_76) = —1, the congruence (3.25) holds if and only if k = i”6_1 and m = "’T_l

7p2-7
Extracting the terms containing g?"* "7~ from both sides of (1.18), dividing by
7p2-7
q %7 and replacing g” by ¢, we arrive at

14'p20!+2 -5

00
2A3,5 <l6~p2a+li’l+ 3

n=0

) q" =2f(—¢")¥(@*") (mod 4).
(3.26)
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This implies that

14_p20(+2_5

00
Z Az s <16 . p2°‘+2n + 3

n=0

)q” =2f(—q)¥(¢>) (mod 4), (3.27)

which is the case o + 1 of (1.18). The proof of Theorem 1.5 is completed by induction
onq.
Combining (1.18), (2.15) and (2.16), we obtain

0 3 14p20‘—5 > ° n(3n+1) k(i1
ZA3,5(16-p"‘n+—>q”52 Z Zqiz +k(k+1) (mod 4),

n=0 3 n=—00 k=0
(3.28)
which implies (1.19).
Applying (3.26) yields thatfor j = 1,2,..., p — 1,
14 - 20+2 _ 5
Azs <16 P pn+ ) + P 3 )q” =0 (mod 4), (3.29)

which implies (1.20). This completes the proof of Theorem 1.5 and Corollary 1.2. O

Proof of Theorem 1.6 and Corollary 1.3. 1t follows from (3.23) that (1.21) holds foro« =
0. Suppose that (1.21) holds for @ > 0. Employing Lemma 2.2 and Lemma 2.3 in
(1.21), we consider the congruence

3k + k m>+m  19p% —19
6- = d p), 3.30
>+ > 7 (mod p) (3.30)
where—”T_l <k< ”T_landOEmf ”T_?’
The congruence (3.30) is equivalent to
6k +1)* +182m + 1)> =0 (mod p). (3.31)
For (_7”;) = —1, the congruence (3.31) holds if and only if k = i”6_l and
m= P771.

19p2-19
Extracting the terms containing ¢?"* 7 from both sides of (1.21), dividing by
19p2-19
q 77— and replacing g? by g, we arrive at

00 i 38 . p2(x+2 _ 6
> Ass (16 -p* T+ f> q" =2f(=¢")¥(g"") (mod 4).
n=0

(3.32)
This implies that

o0 i 38 . p2a+2 -5 p
3 Ass (16 P f) ¢" =2f(~q)¥(q®) (mod 4). (333)
n=0
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which is the case o 4- 1 of (1.21). The proof of Theorem 1.6 is completed by induction

on «.
Combining (1.21), (2.15) and (2.16), we have

> ) 38 . p2a -5 XX G (k1)
o n _ ——+ +
E Az (16-p n+—3 )q =2 E E q 2 (mod 4),

n=0 n=—00 k=0
(3.34)
which implies (1.22).
Applying (3.32) yields thatfor 1 < j < p — 1,
38 . 20042 _ 5
A&S(16.p2aH(pn—%j)+————27;————> =0 (mod4), (3.35)

which implies (1.23). This completes the proof of Theorem 1.6 and Corollary 1.3. O

Proof of Theorem 1.7 Xia and Yao [19] proved the following 2-dissection formulae.

f_13_ fi 3 f3 1

= — , 3.36
A e ! fafs (330
1 13 fiRh | afEIh et
= +2 +4 . (3.37)
FRR T sy e T T S fe
In view of (3.36), we have
> N S S - f3 1
A =22 1 =20 12 _3Jgislls
ng(:) 3,5(n)q flg 7 f24 i q f4f62
)
= -3 d 8). 3.38
frn g MP -39
Utilizing (2.3), we get
- . _ BB 3
A3 52 === = d4), 3.39
,;0 35(2n)q e fofi  (mod 4) (3.39)

which implies (1.24).
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Extracting the terms involving ¢?"*! from both sides of (3.38), dividing by ¢ and
replacing ¢ by ¢, then using (3.37), we get

B _ B s B _fd ]
A3s52n +1 =5 =5 =5-—"2>
;) O = g = = A T R
f6< By o, fith +4q4ffféff‘6ffg>
f2 f2f6f16f48 fzf(, f25f65f8f24
f6f8f24 f4f6f12 4f4¥2f62f122ff16f4128
=5 +2 + 4 d 8).
T A B B Ty e
(3.40)
In view of (2.3), we obtain
- W _ SIFSD ST I
Azs(n 4 1)g" = 534012 4 427273768724
,; o D= T e
f%f4f12 2f6f8f24
= +4q d 8). 3.41
1 ffs Y G40
Using (3.13), we see that
SBE By (6B fff2+3qfff6ffz>2
G R\ I \ 2 I £
f4f12 128 f4f6 2f4f6f12
+ 6¢q + 9¢q
fg f24 (legfﬁ f f
f417f6f12 f413f6f12 2f4f6f12
=5—"2"—+46 +5 d 8). 3.42
T e T iy, MY O

2n+1

Combining (3.41) and (3.42), extracting the terms involving ¢ from both sides

of (3.41), dividing by ¢ and replacing ¢ by ¢, we find

. 21 3
D A35Bn+5)g" = 6228 =6ff) (mod8), (3.43)
n=0 i)

which implies (1.25). This completes the proof of Theorem 1.7. O

Proof of Theorem 1.8 and Corollary 1.4. By (3.39), using (2.16) and (3.21), we get

> As3502n)q" = f(—gP)¥(@®)  (mod 4), (3.44)

n=0

which is the case @« = 0 of (1.26).
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Suppose that (1.26) holds for « > 0. Employing Lemma 2.2 and Lemma 2.3 in
(1.26), we consider the congruence

3k + k m>+m  20p> —20
246 = (mod p), (3.45)

Where—pr1 <k< %andOfmg pr3.
The congruence (3.45) is equivalent to

6k +1)2+92m +1)> =0 (mod p). (3.46)

For (_79> = —1, the congruence (3.46) holds if and only if k = il’gl and m =
p—1
2 R
S5pe=5
Extracting the terms containing g”"* "5~ from both sides of (1.26), dividing by
5p2—5

q ¢ and replacing g? by g, we arrive at

0 2042
5- -5
ZA?),S <2 . p20t+ln + p_) qn

3
n=0
+p—1

= (=)@ £(—¢*P)y(@®7)  (mod 4). (3.47)

This implies that

% 2a+2
5- -5
E A3s (2 A R — 3 )CI"
n=0

= (—=)@DEED £ (g% (mod 4), (3.48)

which is the case o 4- 1 of (1.26). The proof of Theorem 1.8 is completed by induction

on «.
Combining (1.26), (2.15) and (2.16), we obtain

iA PR i) P i i(—n“(*"%)“ R (mod 4)
3,5 P 3 qg = q s

n=0 n=—00 k=0

which implies (1.27).
Applying (3.47) yields that for j = 1,2,--- , p — 1,

2042 _ 5
3

L 3p
Ass (2-p2“+1(pn+1> +

> =0 (mod 4).
which implies (1.28). This finishes the proof of Theorem 1.8 and Corollary 1.4. O
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Proof of Theorem 1.9 and Corollary 1.5. By (3.43), according to (2.16) and (3.21), we
have

o
D AssBn+5)" =6f(—g)¥ (g% (mod 8), (3.49)
n=0
which is the case @ = 0 of (1.29).
Suppose that (1.29) holds for « > 0. Employing Lemma 2.2 and Lemma 2.3 in
(1.29), we consider the congruence

3k +k m>+m  20p%—20
T +6-— o (mod p), (3.50)

Where—prlgkprflandO§m§pr3.

The congruence (3.50) is equivalent to

6k +1)2+92m +1)> =0 (mod p). (3.51)
For (_79> = —1, the congruence (3.51) holds if and only if k = 2=l and m =
p—1
2
Extracting the terms containing g?” n 2= from both sides of (1.29), dividing by
2_
q e and replacing ¢? by g, we arrive at
o0 20042
20 - -5
Y Ass (8 petly T2 ) q"
3
n=0
~¢*"Y () (mod 8). (3.52)
This implies that
0 2042
20 - -5
ZA?),S (8 . p2()l+2n + p_) qn
3
n=0
~¢*)¥(q®)  (mod 8), (3.53)

which is the case @ 4 1 of (1.29). The proof of Theorem 1.9 is completed by induction

on «.
Combining (1.29), (2.16) and (3.21), we have

2a oo o0

3 Ass (16~p2an+20%) =6 Y Y (-1

n=0 n=—00 k=0

n(3n+l) k(k+1)
T 3T

(mod 8),

which implies (1.30).
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Applying (3.52) yields thatfor 1 < j < p — 1,

20+2 _ 5
3

20-p

Ass <8 P2 N pn + j) + ) =0 (mod 8), (3.54)

which implies (1.31). This completes the proof of Theorem 1.9 and Corollary 1.5. O
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