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Abstract
In this paper, we consider generalizations of the Stirling number of the first and the
second kind by using a specialization of a new family of symmetric functions. We
give combinatorial interpretations for these symmetric functions bymeans ofweighted
lattice path and tilings.We also present some new convolutions involving the complete
and elementary symmetric functions. Additionally, we introduce different families of
set partitions to give combinatorial interpretations for the modular s-Stirling numbers.
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1 Introduction

Symmetric functions are ubiquitous in mathematics and mathematical physics. For
example, they appear in elementary algebra, in the Viète’s formulas that relate the
coefficients of a polynomial to combinations of its roots. They are important objects
to study in algebraic combinatorics. For example, symmetric functions are related to
the representation theories of symmetric groups and general linear groups over the
complex numbers or finite fields, and the enumeration of plane partitions [5].

Given a set of variables x1, x2, . . . , xn , the k-th elementary and complete symmetric
polynomials are defined, respectively, by

ek(x1, x2, . . . , xn) =
∑

1≤i1<i2<···<ik≤n

xi1xi2 · · · xik , 1 ≤ k ≤ n,

hk(x1, x2, . . . , xn) =
∑

1≤i1≤i2≤···≤ik≤n

xi1xi2 · · · xik , k ≥ 1,

with initial conditions e0(x1, x2, . . . , xn) = h0(x1, x2, . . . , xn) = 1. Note that
ek(x1, x2, . . . , xn) = 0 if k > n. The generating functions for the ek and hk are
given by the expressions

n∑

k=0

ek(x1, x2, . . . , xn)z
k =

n∏

i=1

(1 + xi z),

∑

k≥0

hk(x1, x2, . . . , xn)z
k =

n∏

i=1

1

1 − xi z
.

A variety of combinatorial sequences can be obtained as evaluations of the symmetric
polynomials at specific points (cf. [8, 16]). Particularly, the Stirling numbers of the
first kind and the Stirling numbers of the second kind are given by

ek(1, 2, . . . , n) =
[

n + 1
n + 1 − k

]
and hk(1, 2, . . . , n) =

{
n + k
n

}
.

A set partition of a set [n] := {1, 2, . . . , n} is a collection of non-empty disjoint
subsets, called blocks, whose union is [n]. The number of set partitions of [n] into k

non-empty blocks is counted by theStirling numbers of the second kind
{ n
k

}
. Similarly,

the Stirling numbers of the first kind
[ n
k

]
count the number of permutations of [n] into

k cycles. The literature contains several generalizations of Stirling numbers of both
kinds; see for example [4, 6, 15, 17–19].

In this work, we introduce an extension of the Stirling numbers of both kinds, called
s-modular Stirling numbers, by introducing a new class of symmetric functions, and
considering these new sequences as specializations of them. We give a combinato-
rial interpretation of these symmetric functions by using weighted lattice path and
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NewModular Symmetric Function and its Applications... 1095

tilings. Similar symmetric functions were studied by Doty andWalker under the name
of modular complete symmetric polynomials [7]. Most recently, Ahmia and Merca
[1] introduced a variation of these symmetric functions. Independently, Grinberg [10]
and Fu and Mei [9] introduced the same concept under the name of Petrie symmetric
functions and truncated symmetric functions, respectively. Finally, we use set parti-
tions to give a combinatorial interpretation to the s-modular Stirling numbers. Among
other things, we give an interpretation (probably new) of the Stirling numbers of first
kind in terms of set partitions. We also give a relationship with the Stirling numbers
with higher level. This last sequence was recently studied in the context of special
polynomials [12].

2 Definitions and Properties

Let s ≥ 1 be a positive integer. We define a modular symmetric function by

M (s)
k (n) := M (s)

k (x1, . . . , xn) =
∑

a1+···+an=k
a1,...,an≡(0,1) mod (s+1)

xa11 · · · xann , (1)

with M (1)
k (n) = hk(n) and M (s)

k (0) = δk,0, where δk,0 is the Kronecker delta.
For example, for s = 2 and n = 1 we have

M (2)
0 (1) = 1, M (2)

1 (1) = x1, M (2)
2 (1) = 0, M (2)

3 (1) = x31 M (2)
4 (1) = x41 , M (2)

5 (1) = 0.

For s = 2 = n, we have

M (2)
0 (2) = 1, M (2)

1 (2) = x1 + x2, M (2)
2 (2) = x1x2, M (2)

3 (2) = x31 + x32 .

From the definition of M (s)
k (n), we have the following theorem.

Theorem 2.1 Let s and n be positive integers. Then,

∑

k≥0

M (s)
k (n)tk =

n∏

i=1

1 + xi t

1 − (xi t)s+1 . (2)

The modular symmetric function satisfies the following recurrence relations.

Theorem 2.2 Let s and n be positive integers. Then,

M (s)
k (n) =

∑

0≤ j≤k
j≡(0,1) mod (s+1)

x j
n M

(s)
k− j (n − 1) and (3)

M (s)
k (n) = xs+1

n M (s)
k−s−1(n) + xnM

(s)
k−1(n − 1) + M (s)

k (n − 1), (4)

for k ≥ s + 1.
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1096 B. Abdelghafour et al.

Proof From (1) and Theorem 2.1, we have

∑

k≥0

M (s)
k (n)tk =

n∏

i=1

1 + xi t

1 − (xi t)s+1 =
n∏

i=1

⎛

⎝(1 + xi t)
∑

j≥0

(xi t)
(s+1) j

⎞

⎠

=
n∏

i=1

⎛

⎝
∑

j≥0

(xi t)
(s+1) j +

∑

j≥0

(xi t)
(s+1) j+1

⎞

⎠

=
n∏

i=1

⎛

⎝
∑

�≡(0,1) mod (s+1)

(xi t)
�

⎞

⎠

=
∑

j≡(0,1) mod (s+1)

(xnt)
j
n−1∏

i=1

⎛

⎝
∑

�≡(0,1) mod (s+1)

(xi t)
�

⎞

⎠

=
∑

j≡(0,1) mod (s+1)

(xnt)
j

∞∑

�=0

M (s)
� (n − 1)t�

=
∑

k≥0

tk
∑

j+�=k
j≡(0,1) mod (s+1)

x j
n M

(s)
� (n − 1)

=
∑

k≥0

tk
∑

0≤ j≤k
j≡(0,1) mod (s+1)

x j
n M

(s)
k− j (n − 1).

By comparing the k-th coefficient, we obtain (3). The relation (4) follows in a similar
manner.

Notice that from (3), we have the equality hk(n) = ∑k
j=0 x

j
n hk− j (n − 1).

3 Combinatorial Interpretation

The goal of this section is to present a combinatorial interpretation for the modular
symmetric functions by means of weighted lattice paths in the plane Z× Z. A lattice
path � in the lattice plane Z×Z, with steps in a given set S ⊂ Z

2, is a concatenation
of directed steps of S, that is � = s1s2 · · · s�, where si ∈ S, for each 1 ≤ i ≤ �. Let
Pn,k denote the set of lattice paths from the point (0, 0) to the point (k, n − 1), with
step set S = {H = (1, 0), V = (0, 1)}, such that the horizontal steps are labeled with
the weight xi , where i − 1 is the level of the step. Let P(s)

n,k denote the weighted lattice
path in Pn,k such that the number of horizontal steps in each level is congruent to 0
or 1 modulo s + 1. Given a weighted path � in P(s)

n,k , we denote by ω(�) the weight

associated to the path �. For example, in Fig. 1 we show a lattice path in P(2)
6,12 of

weight x62 x4x5x
4
6 .

From (1), we obtain the following combinatorial interpretation.
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Fig. 1 Weighted lattice path in P(2)
6,12

Fig. 2 The four paths associated to M(2)
3 (x1, x2, x3)

Theorem 3.1 Let k, n and s be positive integers and let x1, x2, . . . , xn be independent
variables. Then,

M (s)
k (x1, x2, . . . , xn) =

∑

�∈P(s)
n,k

ω(�).

Figure 2 shows the weighted lattice path interpretation for M (2)
3 (x1, x2, x3) =

x31 + x32 + x33 + x1x2x3.

3.1 Tiling Interpretation

In this section, we use weighted tilings to give an additional combinatorial interpre-
tation of the modular symmetric function. We define a weighted tiling as a tiling of
a board of length n (n-board) by gray and black squares, such that each black square
received the weight xm+1, where m is equal to the number of gray squares to the left
of that black square in the tiling. Let T (s)

n,k denote the set of weighted tilings of an
(n + k − 1)-board using exactly k black squares and n − 1 gray squares, such that the
number of successive black squares is congruent to 0 or 1 modulo s + 1. For a tiling
T , we denote by ω(T ) the weight of T .

For example, in Fig. 3 we show a weighted tiling in T (2)
6,12 of weight x

6
2 x4x5x

4
6 .

There is a bijection between the sets P(s)
n,k and T (s)

n,k . Indeed, each vertical step V
is replaced by a gray square and each horizontal step is replaced by a black square.
Since the bijection between lattice paths and tiling is weight-preserving, we obtain the
following result.
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1098 B. Abdelghafour et al.

Fig. 3 Weighted tiling in T (2)
6,12

Fig. 4 The four tilings

associated to M(2)
3 (x1, x2, x3)

Theorem 3.2 Let k, n and s be positive integers and let x1, x2, . . . , xn be independent
variables. Then,

M (s)
k (x1, x2, . . . , xn) =

∑

T∈T (s)
n,k

ω(T ).

Figure 4 shows the tiling interpretation forM (2)
3 (x1, x2, x3) = x31+x32+x33+x1x2x3.

InTheorem3.3,wegive a combinatorial expression for the sequenceM (s)
k (1, 1, . . . , 1︸ ︷︷ ︸

n times

).

Theorem 3.3 For n, k ≥ 0, s ≥ 1, we have

M (s)
k (1, 1, . . . , 1︸ ︷︷ ︸

n times

) =

⌊
k

s+1

⌋

∑

j=0

(
n

k − j(s + 1)

)(
j + n − 1

n − 1

)
.

Proof. From the combinatorial interpretation M (s)
k (

n times︷ ︸︸ ︷
1, 1, . . . , 1) counts the number of

weighted tilings of a (n + k − 1)-board using exactly k black squares and n − 1 gray
squares, such that the number of successive black squares is congruent to 0 or 1modulo
s + 1. On the other hand, let j be the number of successive black squares multiples
of s + 1. Notice that 0 ≤ j ≤ �k/(s + 1)	. Then, there are j + n − 1 gray and black
blocks tiles. Such a tiling with j + n − 1 tiles, exactly j of which are black blocks of
size congruent to 0 module s+1 is

( j+n−1
j

)
. The remaining k− j(s+1) black squares

can be inserted before to each gray square or to the end of the tiling. Since there are
n − 1 gray squares we have

( n
k− j(s+1)

)
ways to insert the black squares. Hence, there

are
( n
k− j(s+1)

)( j+n−1
j

)
tilings altogether. Summing over all j gives the total number of

weighted tiling in T (s)
n,k , which implies the identity.
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Notice that we can also give an algebraic proof for the above result. Indeed, from
the generating function given in Theorem 2.1 we have

∑

k≥0

M (s)
k (1, 1, . . . , 1)tk = (1 + t)n

(
1 − t s+1

)n =
n∑

j=0

(
n

j

)
t j
∑

�≥0

(
� + n − 1

n − 1

)
t�(s+1)

=
n∑

j=0

∑

�≥0

(
n

j

)(
� + n − 1

n − 1

)
t j+�(s+1)

=
∑

k≥0

tk
∑

j+�(s+1)=k

(
n

j

)(
� + n − 1

n − 1

)

=
∑

k≥0

tk

⌊
k

s+1

⌋

∑

�=0

(
n

k − �(s + 1)

)(
� + n − 1

n − 1

)
.

By comparing the k-th coefficient, we obtain the desired result.

4 Modular s-Stirling Numbers

The Stirling numbers of the second kind
{n
k

}
can be determined by the recurrence

relation
{ n
k

} = { n − 1
k − 1

} + k
{ n − 1

k

}
, with the initial conditions

{ 0
0
} = 1 and

{ n
0
} = { 0

n

} = 0 for n ≥ 1. It is well known that the
{n
k

}
are determined by the

identities xn = ∑n
k=0

{n
k

}
xk, n ≥ 0, where xn = x(x−1) · · · (x− (n−1)) for n ≥ 1

and x0 = 1 or equivalently by the generating function

∑

n≥k

{
n
k

}
xn = xk

(1 − x)(1 − 2x) · · · (1 − kx)
, k ≥ 0. (5)

Using (5), it is not difficult to show that the Stirling numbers of the second kind are
the specialization of the complete symmetric function given by

{
n + k
n

}
= hk(1, 2, . . . , n) =

∑

a1+···+an=k

1a1 · · · nan . (6)

Equation (6) can be interpreted by considering the following algorithm:
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1100 B. Abdelghafour et al.

Algorithm 1 Interpretation of (6).
(1) Start with the partition of [1] given by {1}.
(2) Take every integer from 2 to 1+a1 and put it in the block of 1, so you end up having {1, 2, . . . , 1+a1}.
(3) Then you place 2+a1 in a new block and for every integer in between 3+a1 and 3+a1+a2 you have

2 options, either you place this number in the first block or in the second one. You place 3 + a1 + a2
in a new block and so now you will have 3 options.

(4) You keep doing this until you have placed n + k elements.

For example, for n = 3 and k = 5 the term 122132 corresponds to a partition that
looks like {1, 2, 3, ∗}, {4, ∗}, {6, ∗}, where 5 can go in either of the first 2 blocks and
7, 8 can go in any block (there are 3 of them). Giving a total of 21 · 32 options.

Notice then that the ai integers have a direct relationship with the minimal elements
in each of the blocks of a partition. To see this, consider the following construction:
let �(n, k) denote the set of partitions of [n] having k blocks. Let π ∈ �(n, k) be
represented as π = B1/B2/ · · · /Bk , where Bi denotes the i-th block, with min(B1) <

min(B2) < · · · < min(Bk). Call mi = min(Bi ) and define the vector of consecutive
differences by

d(π) := (d1, . . . , dk) = (m2 − m1 − 1,m3 − m2 − 1, . . . ,mk − mk−1 − 1, n − mk).

In the example above, notice that di corresponds to ai because these are exactly the
number of elements that we have to place in i blocks and so there are a total of idi

ways to do this. Notice, further, that sincem1 = 1,we have that d1+· · ·+dk = n−k.
If we impose the modularity conditions on the di ’s, we get the modular symmetric
function defined in Eq. (1).

Notice that (6) can be written as
{ n
k

} = hn−k(1, 2, . . . , k). From this last equation

and the combinatorialmotivationofd(π),we introduce anewkindofStirlingnumbers.
For all integers n ≥ 0 and all k with 0 ≤ k ≤ n, the modular s-Stirling numbers of

the second kind, denoted as
{ n
k

}(s), are defined by the expression

{
n
k

}(s)

= M (s)
n−k(1, 2, . . . , k). (7)

It is clear that for s = 1 we recover the Stirling numbers of the second kind, that is,
{ n
k

}(1) = {n
k

}
. From Theorem 2.2, we have the following recurrence relation:

{
n
k

}(s)

=
{
n − 1
k − 1

}(s)

+ k

{
n − 2
k − 1

}(s)

+ ks+1
{
n − s − 1

k

}(s)

, (8)
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with the initial conditions
{ n
0
}(s) = δ0,n and

{ 0
k

}(s) = δk,0. Moreover, we have the

following generating function:

∑

n≥k

{
n
k

}(s)

xn−k =
k∏

r=1

1 + r xs

1 − (r x)s+1 .

In Theorem 4.1, we give a combinatorial interpretation for the modular s-Stirling
numbers.

Theorem 4.1 The number of set partitions π in �(n, k), such that the entries in the
vector d(π) satisfies di ≡ 0, 1 (mod s+1) for each 1 ≤ i ≤ k is given by themodular

s-Stirling numbers
{ n
k

}(s)
.

Proof By imposing the modularity conditions on the vector of consecutive differences
given above and applying the Algorithm described on Page 7, the theorem follows.

For example,
{ 5
2
}(2) = 9 corresponding to the set partitions

1234/5, 1345/2, 134/25, 135/24, 13/245,

145/23, 14/235, 15/234, 1/2345.

If you restrict the difference vector to have elements of the form di ≡ 0 (mod s + 1),
then the number of such partitions is given by h� n−k

s+1 	(1
s+1, . . . , ks+1).

On the other hand, the (unsigned) Stirling numbers of the first kind satisfy the

recurrence relation
[n
k

] = (n − 1)
[ n − 1

k

] + [n − 1
k − 1

]
, with the initial conditions

[0
0
] = 1 and

[n
0
] = [ 0

n

] = 0 for n ≥ 1. This sequence can also be defined as the

connection constants in the polynomial identity

x(x + 1) · · · (x + (n − 1)) =
n∑

k=0

[
n
k

]
xk . (9)

Theorem 4.2 Let n and k be nonnegative integers and s > 0. If r is the remainder of
k when divided by s + 1, then the following equation holds

{
n + k
n

}(s)

=
min{� n−r

s+1 	,� k
s+1 	}∑

i=0

h� k
s+1 	−i (1

s+1, . . . , ns+1)

[
n + 1

n + 1 − r − i(s + 1)

]
.

Proof From Eq. (1) consider the subset of the variables {ai }i∈[n] such that a j ≡ 1
(mod s + 1). Call J ⊆ [n] the set of their subindices in such a way that j ∈ J if
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1102 B. Abdelghafour et al.

and only if a j ≡ 1 (mod s + 1). Notice that for each j ∈ J , one must have that
a j = b j (s + 1) + 1 for some b j ∈ N. Therefore, we have

{
n + k
n

}(s)

= M (s)
k (1, . . . , n) =

∑

J⊆[n]
|J |≡r (mod s+1)

∑

a1+···+an=k
a j≡1 (mod s+1)

for j∈J

1a1 · · · nan

=
∑

J⊆[n]
|J |≡r (mod s+1)

∏

j∈J

j
∑

(b1+···+bn+� |J |
s+1 	)+ r

s+1= k
s+1

1(s+1)b1 · · · n(s+1)bn

=
∑

J⊆[n]
|J |≡r (mod s+1)

∏

j∈J

j
∑

b1+···+bn=� k
s+1 	−� |J |

s+1 	
1(s+1)b1 · · · n(s+1)bn

=
� n−r
s+1 	∑

i=0

⎛

⎜⎜⎝
∑

|J |=i(s+1)+r
J⊆[n]

∏

j∈J

j

⎞

⎟⎟⎠ h� k
s+1 	−i (1

s+1, . . . , ns+1).

From (9), the equality follows.

For example, for n = 4, k = 8, and s = 3 we have
{ 4 + 8

4
}(s) = 107331. On the

other hand,

1∑

i=0

h2−i (1
4, 24, 34, 44)

[
5

5 − 4i

]

= (1424 + 1434 + 2434 + 1444 + 2444 + 3444 + 18 + 28 + 38 + 48) · 1
+ (14 + 24 + 34 + 44) · 24 = 107331.

From Theorem 4.2 and by the little Fermat’s theorem, i.e., a p ≡ a (mod p) with
a ∈ Z, we conclude the following interesting congruence.

Corollary 4.3 Let n and k be nonnegative integers and p a prime number. If r is the
remainder of k when divided by p, then the following congruence holds

{
n + k
n

}(p−1)

≡
min{� n−r

p 	,� k
p 	}∑

i=0

{
n + � k

p 	 − i
n

}[
n + 1

n + 1 − (r + i · p)
]

(mod p).

4.1 The �-Modular Symmetric Function

Given 0 ≤ � < s + 1, we can define the �-modular symmetric function by

M (s,�)
k (x1, . . . , xn) :=

∑

j1+···+ jn=k
j1,..., jn≡0,� (mod s+1)

x j1
1 · · · x jn

n .
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Using the definition above, we can extend Theorem 4.2 using the Stirling numbers of
the first kind with higher level, defined in [13, 14]. Some applications of the Stirling
numbers of higher level in special polynomials can be found in [11, 12].

Let Sn denote the set of permutations of the set [n]. We will assume that permu-
tations are expressed in standard cycle form, i.e., minimal elements first within each
cycle, with cycles arranged left-to-right in ascending order of minimal elements. If
n, k ≥ 0, then letS(n,k) denote the set of permutations ofSn having exactly k cycles.

It is clear that Sn = ∪n
k=0S(n,k) and |S(n,k)| = [n

k

]
. Given a permutation σ in Sn ,

let min(σ ) denote the set of the minimal elements in each cycle of σ . For example, if
σ = (1 4 5)(2 3)(6)(7 9)(8), then we have that min(σ ) = {1, 2, 6, 7, 8}.

Given a positive integer s, let

[[
n
k

]]

s
denote the number of ordered s-tuples

(σ1, σ2, . . . , σs) ∈ S(n,k) × S(n,k) × · · · × S(n,k) = Ss
(n,k), such that min(σ1) =

min(σ2) = · · · = min(σs).

The sequence

[[
n
k

]]

s
satisfies the following recurrence relation

[[
n
k

]]

s
=
[[
n − 1
k − 1

]]

s
+ (n − 1)s

[[
n − 1
k

]]

s
, (10)

with the initial conditions

[[
0
0

]]

s
= 1 and

[[
n
0

]]

s
=
[[
0
n

]]

s
= 0 hold for n ≥ 1.

Given integers n ≥ 0 and s ≥ 1, let 	n,s(x) denote the polynomials

	n,s(x) := x(x + 1s)(x + 2s) · · · (x + (n − 1)s), with 	0,s(x) = 1.

The Stirling numbers of the first kind with higher level are the connection constants
between the polynomials (	n,s(x))n≥0 and the canonical basis (xn)n≥0. Indeed, if
n ≥ 0, then

	n,s(x) = x(x + 1s)(x + 2s) · · · (x + (n − 1)s) =
n∑

k=0

[[
n
k

]]

s
xk . (11)

From a similar argument as in Theorem 4.2, in combination with (11), we can obtain
the following theorem.

Theorem 4.4 Let n and k be nonnegative integers and s + 1 > � ≥ 0, such that
gcd(�, s + 1) = 1. If r is the remainder of k�−1 when divided by s + 1, then the
following equation holds

M (s,�)
k (1, . . . , n) =

min{� n−r
s+1 	,� k

s+1 	−� r�
s+1 	}∑

i=0

h� k
s+1 	−� r�

s+1 	−i�(1
s+1, . . . , ns+1)

[[
n + 1

n + 1 − r − i(s + 1)

]]

�

.
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5 The s-Elementary Symmetric Function

The s-elementary symmetric polynomial is defined by the expression

E (s)
k (n) =

∑

a1+···+an=k
ai≤s

xa11 · · · xann . (12)

An equivalent definition of this symmetric polynomial already exists in a paper by
Bazeniar et al. [3]. For further properties of this symmetric function, see [1].

Theorem 5.1 If s ≡ 1 (mod 2), then for every positive integers n and k the following
identity holds

k∑

i=0

(−1)i E (s)
i (n) · M (s)

k−i (n) = 0.

Proof The inverse of the generating function in Theorem 2.1 is given by

n∏

i=1

1 − (xi t)s+1

1 + xi t
=

n∏

i=1

1 − (−xi t)s+1

1 − (−xi t)
=

n∏

i=1

(
1 − xi t + (−xi t)

2 + · · · + (−xi t)
s
)

.

In each product, we can create any number in between 1 and s. Hence

n·s∑

k=0

E (s)
k (n)(−t)k =

n∏

i=1

1 − (xi t)s+1

1 + xi t
,

and the desired identity follows.

We can express the modular symmetric function M (s)
k as convolutions involving

the complete and elementary symmetric functions.

Theorem 5.2 Let k, n, and s be positive integers and let x1, x2, . . . , xn be independent
variables. Then,

M (s)
k (x1, x2, . . . , xn) =

�k/s+1	∑

j=0

h j (x
s+1
1 , xs+1

2 , . . . , xs+1
n )ek−(s+1) j (x1, x2, . . . , xn).

Proof According to (2), we have

∞∑

k=0

M (s)
k (x1, x2, . . . , xn)t

k

=
(

n∏

i=1

1

1 − (xi t)s+1

)(
n∏

i=1

(1 + xi t)

)
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=
⎛

⎝
∞∑

j=0

h j (x
s+1
1 , xs+1

2 , . . . , xs+1
n )(t)(s+1) j

⎞

⎠

⎛

⎝
∞∑

j=0

e j (x1, x2, . . . , xn)t
j

⎞

⎠

=
∞∑

k=0

⎛

⎝
�k/s+1	∑

j=0

h j (x
s+1
1 , xs+1

2 , . . . , xs+1
n )ek−(s+1) j (x1, x2, . . . , xn)

⎞

⎠ tk .

As required.

Inspired by Theorem 5.2, we provide the following generalization.

Theorem 5.3 Let k, n and s be three positive integers and let x1, x2, . . . , xn be inde-
pendent variables. Then,

hk(x
s
1, x

s
2, . . . , x

s
n) =

k(s+1)∑

j=0

(−1) j h j (x1, x2, . . . , xn)M
(s)
k(s+1)− j (x1, x2, . . . , xn)

and

ek(x1, x2, . . . , xn) =
�k/s+1	∑

j=0

(−1) j e j (x1, x2, . . . , xn)M
(s)
k− j(s+1)(x1, x2, . . . , xn).

If k is not congruent to 0 modulo s + 1, then

k∑

j=0

(−1) j h j (x1, x2, . . . , xn)M
(s)
k− j (x1, x2, . . . , xn) = 0.

Proof The relation given in Theorem 2.1 can be rewritten as

n∏

i=1

1

1 + xi t

∞∑

k=0

M (s)
k (x1, x2, . . . , xn)t

k =
n∏

i=1

1

1 − (xi t)s+1

or

n∏

i=1

(1 − (xi t)
s+1)

∞∑

k=0

M (s)
k (x1, x2, . . . , xn)t

k =
n∏

i=1

(
1 + (xi t)

)
.

Thus, we deduce that

∞∑

k=0

hk(x
s+1
1 , xs+1

2 , . . . , xs+1
n )tk(s+1)

=
( ∞∑

k=0

(−1)khk(x1, x2, . . . , xn)t
k

)( ∞∑

k=0

M (s)
k (x1, x2, . . . , xn)t

k

)
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and

∞∑

k=0

ek(x1, x2, . . . , xn)t
k

=
( ∞∑

k=0

(−1)kek(x
s+1
1 , xs+1

2 , . . . , xs+1
n )tk(s+1)

)( ∞∑

k=0

M (s)
k (x1, x2, . . . , xn)t

k

)
.

The proof follows easily by comparing the coefficients of tks on both sides of these
equations.

The following result allows us to express a convolution of the modular symmet-
ric function M (s)

k as convolutions involving the complete and elementary symmetric
functions.

Theorem 5.4 Let k, n and s be three positive integers and let x1, x2, . . . , xn be inde-
pendent variables. Then,

k∑

j=0

e j (x1, x2, . . . , xn)hk− j (x1, x2, . . . , xn) =
k∑

j=0

M (s)
j (x1, x2, . . . , xn)E

(s)
k− j (x1, x2, . . . , xn).

We can now define the modular s-Stirling numbers of the first kind by the following
equality

[
n + 1
k + 1

](s)

= (n!)s E (s)
k

(
1,

1

2
, . . . ,

1

n

)
.

These numbers were introduced by Bazeniar et al. [2]. They are interpreted
[n
k

](s) as
the number of s-tuple permutations of [n] having together k cycles. Inspired by the
combinatorial interpretation given in Theorem 4.1 for the modular s-Stirling numbers
of the second kind, we give in the following theorem another combinatorial interpre-

tation for
[n
k

](s).

Theorem 5.5 Let n and k be nonnegative integers and s > 0. The s-modular Stirling

numbers of the first kind
[n + 1
k + 1

](s)
count the number of set partitions π ∈ �(n(s +

1) − k, n) such that d(π) = (d1, . . . , dn) has the property that di ≤ s for every
1 ≤ i ≤ n.

Proof From (12), we have the equality

(n!)s E (s)
k

(
1,

1

2
, . . . ,

1

n

)
= E (s)

n·s−k(1, . . . , n).

Using the same argument as in Theorem 4.1, we obtain the desired result.
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From Theorem 5.5 (taking s = 1), we obtain a probably new combinatorial
interpretation for the Stirling numbers of the first kind in terms of set partitions.

Indeed,
[ n + 1
k + 1

]
enumerates the set partitions in �(2n − k, n), such that the vector

d(π) = (d1, . . . , dn) has the property that di ≤ 1 for every 1 ≤ i ≤ n. For example,
[3 + 1
1 + 1

] = 11, the partitions being

1/23/45, 1/235/4, 12/3/45, 13/2/45, 12/34/5, 12/35/4,

135/2/4, 15/23/4, 124/3/5, 125/3/4, 13/25/4.

The modular s-Stirling numbers of the first kind satisfy the following recurrence
relation

[
n
k

](s)

=
s∑

�=0

[
n − 1

k − (s − �)

](s)

· (n − 1)�, (13)

where
[ 0
1 − s

](s) = 1,
[ n
k

](s) = 0 if k < 1 − s. See also, Bazeniar et al. [2]. From

this relation, we can give the following combinatorial interpretation.

Theorem 5.6 Let n and k be nonnegative integers and s > 0. Consider the set of s-
tuples of permutations (σ1, σ2, . . . , σs) such that min(σi ) ⊆ min(σi−1) for all i > 1

and
∑s

j=1 |min(σ j )| = k + s − 1. Then the number of such elements equals
[ n
k

](s)
.

Proof By the recursion given in (13), one has that

[
n
k

](s)

=
s∑

�=0

[
n − 1

k − (s − �)

](s)

(n − 1)� =
s∑

�=0

[
n − 1
k − �

](s)

(n − 1)s−�.

This recurrence corresponds to choosing if the last element of each permutation, i.e.,
n is going to be fixed or not. Call � the number of permutations where n is going to
be a fixed point. By the condition we imposed in the tuple, these have to be the first
� elements of the s-tuple. For the remaining s − � elements of the tuple, we have to
choose an element from the remaining n − 1 to have n as a preimage in each one of
the permutations. We can do this in (n − 1)s−� ways. This shows the claim because
the initial condition is in 1 − s, meaning we need k − (1 − s) = k + s − 1 cycles to
fill.

For example, take n = 3 and k = 4, the following correspond to the 15 tuples

counted by
[ 3
4
](3) having in total 3 + 4 − 1 = 6 cycles.

((1)(2)(3), (1)(2, 3), (1, 2, 3)), ((1)(2)(3), (1)(2, 3), (1, 3, 2)),

((1)(2)(3), (1, 2)(3), (1, 2, 3)), ((1)(2)(3), (1, 2)(3), (1, 3, 2)),
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((1)(2)(3), (1, 3)(2), (1, 2, 3)), ((1)(2)(3), (1, 3)(2), (1, 3, 2)),

((1)(2, 3), (1)(2, 3), (1)(2, 3)), ((1)(2, 3), (1)(2, 3), (1, 3)(2)),

((1)(2, 3), (1, 3)(2), (1)(2, 3)), ((1)(2, 3), (1, 3)(2), (1, 3)(2)),

((1, 2)(3), (1, 2)(3), (1, 2)(3)), ((1, 3)(2), (1)(2, 3), (1)(2, 3)),

((1, 3)(2), (1)(2, 3), (1, 3)(2)), ((1, 3)(2), (1, 3)(2), (1)(2, 3)),

((1, 3)(2), (1, 3)(2), (1, 3)(2)).

6 Concluding Remarks

In this paper, we have discussed several combinatorial properties for a new family of
symmetric functions. As a consequence, we introduce new combinatorial sequences
related to the counting of some restricted set partitions. We also establish interesting
congruences satisfied by these sequences.
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