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Abstract

Mathematical programs with vanishing constraints are the optimization problems that
do not satisfy most of the constraint qualifications due to nonconvex feasible region.
Hence, some weaker first-order conditions like M-stationary come into existence. In
this paper, we establish necessary and sufficient M-stationary conditions for multiob-
jective mathematical problems with vanishing constraints. We formulate Wolfe and
Mond—Weir type dual models for the treated problem and propose weak, strong and
strict converse duality results for Wolfe and Mond—Wier dual models. Further, we
provide some examples in the support of our theory.

Keywords Vanishing constraints - Multiobjective optimization problems -
Optimality conditions - Duality - Constraint qualifications

Mathematics Subject Classification 90C29 - 90C30 - 90C46

Communicated by Rosihan M. Ali.

Mohd Hassan, J. K. Maurya and S. K. Mishra have contributed equally to this work.

B4 J. K. Maurya
jitendramouryal50@gmail.com

Mohd Hassan
hassanbezee2608 @ gmail.com

S. K. Mishra
bhu.skmishra@ gmail.com
Department of Mathematics, Institute of Science, Banaras Hindu University, Varanasi,

Uttar Pradesh 221005, India

2 Department of Mathematics, Kashi Naresh Government Postgraduate College, Gyanpur, Bhadohi,
Uttar Pradesh 221304, India

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s40840-022-01252-w&domain=pdf
http://orcid.org/0000-0001-8853-8777

1316 M. Hassan et al.

1 Introduction

The multiobjective optimization problems play a crucial role in a real-life scenarios.
In daily-life, we deal with various objectives simultaneously, which is considered
as multiobjective optimization problem. The solution of multiobjective optimization
problems is not a single point likewise single objective optimization problem but it
consists of a set of points which is called efficient solution points or Pareto optimal
points.

The multiobjective mathematical program with vanishing constraints (MMPVC) is
one of the significant nonlinear optimization problem and it is one of the active area
of research in recent years. Achtziger and Kanzow [1] constructed the mathematical
program with vanishing constraints (MPVC) as:

Consider the functions f;, g;, i, 94, % : R" — R as continuously differentiable
on R" and

min f(3) = (F1G). - .. ()

subjecttog;(3) £0, Vi=1,...,q,

hi) =0, Vi=1,...,r,

HG) =0, Vi=1,....m,
Y()H(G) =0, Vi=1,....,m. (1)

The mathematical programs with vanishing constraints (MPVC) have a large num-
ber of applications in mixed integer optimal control problems [2], pathfinding problems
with logic communication constraints in robot motion planning [3], scheduling prob-
lems [4], and many more areas of research. The MPVC is similar to one of the other
well-known nonlinear optimization problem, termed as mathematical programs with
equlibrium constraints (MPEC). For more details on MPEC, we refer [5-8].

The constraint ¥;(3).74; (3) present in the MPVC, constructs the feasible region
nonconvex and disconnected. Due to this reason most of the conventional constraint
qualifications as linearly independent constraint qualification (LICQ), Mangasarian-
Fromovitz constraint qualification (MFCQ) do not satisfied. The Karush-Kuhn-Tucker
optimality conditions which are used to solve most of the nonlinear optimization
problems is not significant in this case.

Achtziger and Kanzow [1] established several constraint qualifications and nec-
essary optimality conditions for MPVC. Recently, Huang and Ho [9] studied the
optimality and duality for multiobjective fractional programming problems in complex
spaces. Mishra et al. [10] discussed the optimality and duality conditions for nons-
mooth multiobjective optimization involving generalized type-I functions. Hoheisel
and Kanzow [11] proposed first-order sufficient optimality and second-order neces-
sary as well as sufficient optimality conditions using generalized convexity. Hoheisel
and Kanzow [12] discussed stationary conditions under weaker assumptions of con-
straint qualification. Further, Hoheisel and Kanzow [13] investigated necessary and
sufficient optimality conditions through Abadie and Guignard type constraint qual-
ifications for mathematical programs with vanishing constraint (MPVC). For more
details on MPVC, we refer to [14—19] and the references therein.
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Recently, M-stationary conditions for MPVC using Fritz John approach under
weak constraint qualification has been established and further discussion on local
error bound results have been done in [20]. Zhang et al. [21] generalized the existing
constraint qualifications and established proper Pareto optimality conditions for mul-
tiobjective mathematical programs with equilibrium constraints (MMPEC). Further,
Zhang et al. [22] introduced strong Pareto S-stationary conditions and established nec-
essary and sufficient optimality conditions for multiobjective mathematical programs
with equilibrium constraints.

Motivated by the above discussions, we introduce strong efficient M-stationary
conditions and generalized Guignard constraint qualification for MMPVC (MMPVC-
GGCQ), and establish necessary optimality conditions for the MMPVC. Further, we
prove converse implication holds under generalized convexity assumptions. We for-
mulate Wolfe type and Mond—Weir type dual models for the MMPVC and establish
weak, strong and converse duality results for both dual models and illustrate our results
via suitable examples. The organization of the paper is as follows: in Sect. 2, we recall
some basic definitions and results needed in the sequel of the paper. In Sect. 3, we
derive necessary and sufficient optimality conditions for the MMPVC. In Sect. 4, we
provide a brief explanation on Wolfe and Mond—Weir type dual models as well as
the interrelation between primal and dual solution through weak, strong and converse
duality results. In Sect. 5, we provide concluding remarks and some future directions.

2 Preliminaries

We collect some notations, definitions and essential results. The notation (-, -) denotes
the inner product. We denote %(3*, §), as the open ball centered at 3* with radius
8 > 0. For a given 3*, N (3*) is the family of the neighborhoods of 3*. If vectors
v, 3 € R", then we recall the inequalities:

ySie=vyissu i=1...n,
y<3<=y<3 and y #3, y £ jisnegationof y <3,
y<j3<=yi<3i,i=1,...,n, y £ jisnegation of y < 3.

The following index sets will be used in the sequel:

I :={1,2,..., p},
IgG") :=1{i € {1,2,...,4}8:G") = 0},
Iy ={1,2,...,r},
1.GY) =i €{1,2,...,m}| (") > 0},
IoGG) == {i € {1,2,...,m}| 7 (3") = 0O} (2

We divide the index set I into the following subsets:
LioG") = {i| 4 G") > 0, 4:G") =0},
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1318 M. Hassan et al.

L (") = {i| 4G > 0, 4 (G") <0} 3)
Similarly, we divide the index set Iy in the following subsets:

Io+(") = {ilA(G") =0, 4(G") > 0},
Ioo(") = {il# (") =0, 4 (G") = 0},
l-G") = {il#(G") =0, 4" <0} “)

Definition 2.1 On the basis of solutions of multiobjective optimization problems [23],
we extend the following definitions:

1. A point 3* from the feasible region, is called a weak efficient solution of the
MMPVC (1), if there is no other feasible point 3, such that

f(3) < £G).

2. A point 3* from the feasible region, is called an efficient solution of the MMPVC
(1), if there is no other feasible point 3, such that

fG) < G-
3. A point 3* from the feasible region, is called locally efficient solution of the

MMPVC (1), if there exists a neighborhood % of 3* and there is no other feasible
point 3 € %, such that

fG) < §G*).

Definition 2.2 We recall the following definitions on generalized convexity from [24].

1. A differentiable function § : R” — R, is called convex at point 3* € R", if
fG) =56 2 (Vf(G".3-3%), Y3 eR"

2. A differentiable function § : R" — R, is called strictly convex at point 3* € R”,
if

fG) — fG") > (ViG").3 —3"). Vs € R" and 3 # 3"
3. A differentiable function f : R" — R, is called pseudoconvex at point 3* € R", if
(ViG™.3—3") 20=1G) 2 fG"). VseR"

4. A differentiable function §{ : R” — R, is called strictly pseudoconvex at point
3* e R, if

(ViG"),3—3") 2 0= 1) > 6™, V3 €R"and 3 # 3.
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5. A differentiable function § : R” — R, is called quasiconvex at point 3* € R”, if
f(3) < §G*) = (ViG3%).3—3") =0, V3 e R".

Some preliminaries about cones are taken from [25], which are as follows:

1. Aset & C R", be such that
MELNVNLZ20, Vi€ P,

then & is called cone.
2. The negative polar cone of cone &, defined by

P°={deR":d"3<0,V;e 2},

is closed and convex cone.
3. The dual cone of &2, is defined as

P ={deR":d"3>0V;e P).
4. The tangent cone of a set & at a point 3* € ¢/ &2, defined by

k *

T (3 2) = {d € R" : 3(3*} € 2.1 | 0 such that 3* — 3*and 2 - d),

173

is closed cone.
5. The Fréchet normal cone at point 3* € ¢/ 42, is defined as

Ji;(g*; Py =TG" : P2)°.
6. The limiting normal cone at 3* € ¢/, is defined by
NG 2) = {lim whE 2 - wh e N (% D).
—00

7. A multifunction .% : R" = R™ is said to be locally upper Lipschitzian at a point
3* with modulus «, if for some neighbourhood .4 of 3* and all 3 € .4/,

FG) C FGE) +«lz—3"B,

where B = {3 e R" : I3/l < 1}.

Proposition 2.3 [26,Proposition 1] Let F be a polyhedral multifunction from 7 :
R" = R™. Then there exist k € Ry such that F is locally upper Lipschitzian with
modulus k at each point 3* € R".
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1320 M. Hassan et al.

Theorem 2.4 [27,Corollary 4.2] Let # : R" = R", €, ¥ CR"and3 € €N I.
Assume that the map

M) =€C:5+y€ T},
is calm at (0, 3) € Gph(A), then one has
NG ECND)S NG, C) + NG, D),

where Gph(.#) represents the graph of A .

We also use the following Lagrangian function:

oG 0% 0" 0 0y = DTG + T eG) + ™) Th(G3)
— )T G+ D) 9G),

and

VoG, ', 1% 1" 0 1%y = Vi + VeGn® + VhGn"
— VA G +VGGen?.

Lemma 2.5 [12] Let the set 2 = {(«,B) € R" x R™|o; =2 0, ;8 S 0Vi =
1, ..., m} be given. Then, the following statement hold:

1. A ((0,0); 2) = {(a, b)la =0, b <0},
2. /((0,0); 2) = {(a,b)la; 20, ajb; =0Vi=1,...,m}.

3 Optimality Conditions for the MMPVC (1)

Consider the following scalar optimization problem, which is formulated by motivation
of Hybrid method [28,Section 4.2] used for solution of multiobjective programming.
We name it scalarized multiobjective mathematical programs with vanishing con-
straints (SMMPVC):

p
minZAifi(g), subject to f; (3) < f;(3"), i € I, A; > 0,

i=1
3€S=03eR":9(3) =0, h(3) =0, H(G) 20, ()G =0},
where 3 is an arbitrary feasible point of MMPVC (1).

Subsequent result interlinks the solutions of SMMPVC and MMPVC (1).

Theorem 3.1 [28,Theorem 4.7] A point 3* € S, is an optimal solution of the SMMPVC
problem if and only if 3* is an efficient solution of MMPVC (1).
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In [29], several constraint qualifications introduced and shows that generalized
Guignard constraint qualification is the weakest constraint qualification of them.
Therefore, inspired by [12, 29] and formulation of SMMPVC, we define lineariz-
ing cone and MMPVC-GGCQ. Now, we define set &2, which plays crucial role in the
development of the important results of this paper.

P=(eR" () =G (G elp, g3) =0, h(3) =0, H(G) 20, %()74 () =0},
where 3* is an arbitrary feasible point of MMPVC (1).

Definition 3.2 Linearizing cone of & at point 3* is denoted and defined as

L(P:3") =d eR"Vf;GHd S 0Viel,
VgiGH'd S0Vie Iy,
VhiGH'd =0Vi e Iy,
VAG) d =0V ieloyG).
VAGHTd Z0Vi € Ion(Y) U Io— G5,
VG GHTd S0Vie oG,
(VAGH (VG HTd) S0V i € TG}

Definition 3.3 MMPVC Guignard constraint qualification (MMPVC-GGCQ) holds
at a feasible point 3* € & of MMPVC (1) if

T(2;5) € L(Z; 5"

Now, we extend the concept of stationary conditions of [12] from scalar to multi-
objective case. To do so we define the sets #] and #5, as follows:

W= {d,a,B) eR" xR" x R"|Vf; 3" d S0Viel,
VaiGH'd S0Vi e IGY),
VhiG)'d =0Vi eIy,
VAGH'd=0Vi €l (Y.
VAGHd Z0Vi e lo-G").
VG GHTd S0Vie oG,
VAG) d—a; SO0VielnG),
VGG Td — B S0Vie oG ©)

and
Wy ={d,a,B) e R" xR" xR"|B; 20, ;8 S0OVi=1,...,m}.
Now, we present an important lemma which will be used in main result.

@ Springer



1322 M. Hassan et al.

Lemma 3.4 Let the multifunction ® : R"2" = R™2™ pe given by
O(x) ={y € Z1lx +y € #2}. (6)

Then, ® is polyhedral multifunction.
Proof Proof is direct consequence of [25,Example 9.57]. O
Theorem 3.5 Let 3* be a locally efficient solution of the MMPVC (1) such that

MMPVC-GGCQ holds at 5*. Then, there exist multipliers n = (n*, n%, n", n? ) e
Rf; X R? x R" x R™ x R™ such that

VoG, 0’ 0?0, 0 . n?) =0,

' >0, 96" <0, 9920, g6 99 =0,

0?7 =0(i e 1LGY), n/f 20(i € Io—G*), 17’ free (i € Io+ (),

0y =0(i € lo-G*) U Li—G") U lor "), 07 20 (i € LoGH) U loo(¥)).
nf " =0 (i € looG").

Proof Since 3* is a local efficient solution of MMPVC (1), therefore from Theorem
3.1, 3* is a local optimal solution of SMMPVC problem. Then, from basic optimality
conditions, we have

T
(ijvmﬂ) dZ0VdeT(2:5%, A >o0.
iEIf
From MMPVC-GGCQ
P
ST MViGY € T(2: 59 € L2 5,
i=1
then
p T
(ZAZTVfi(g*)) dZ0VdeL(P 5, M >0
i=1
Equivalently, d* = 0 being a minimizer of

14 T
mdin(ZAlTVf,- (3*)) d 20, subjecttod € Z(2;3%), A > 0. (7
i=1
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Now, d* = 0 being a minimizer of (7) is equivalent to (d*, «*, *) = (0,0, 0) is
minimizer of

p T
;nir;(ZAfoi(;,*)) d 2 0, subjectto (d,a, B) € W = W1 N\ W5. ®)
PN

Making use of [25,Proposition 6.5 and Theorem 6.12] in (8), we get

(= D AVi(6").0,0) € T((0.0,0), #)° = A ((0.0.0), #) € A ((0,0,0), #).
iE[f

©)

Now, applying the results of Lemma 3.4, Proposition 2.3 and Theorem 2.4 in (9),
we get

— 3 MV(".0,0) € A ((0.0,0), #4) + A ((0,0,00. 45 | . (10)
iEIf

Hence, there exist (t, 9, nh, ng, n%ﬂ) € Rfr x R? x R" x R™ x R™, such that

— . L(2F
& MV Vi %) Vi)
0 GZT:' 0 + Z 77,~g 0
0 iel; 0 iely(3*) 0
b Vb (G P VI (3%)
+Y 0 - > n? 0
iely 0 i€lor (3*)UIo— (3%) 0
ALy AZCY
+ Y 0 o |- > | o
ielioGG*) 0 ielpo(G*) —e'
L (VEGED
+ > | - |+ 4.0,0:5). AD)
i€lo(3*) 0

with conditions
18 206 € I4G*), 077 200G € lo-G"), 17 203 € LioGY)),

where ¢/ € R”, in which i th component is 1 and rest all are zero. Since,

A((0,0,0); #2) = A (0; R") x A((0,0); {(er, B)IB; 2 0, Bt SOVi=1,....m})
={0}" x {(a,b)la; 2 0, ajb; =0Vi =1,...,m}.
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Then, from (11) we have
n’ 20, n/n/" =0Vi € Ino(5"). (12)
Now, substituting nl.f =Ai+1>00€l, nl.g =03 ¢ I3G%), nff =0(@e
1+(3")), n? =00 € lo+G") U H—(G*) U LL_(3%)), we get the required result. O
From Theorem 3.5, we propose following definition.

Definition 3.6 A feasible point 3* is said to be strong efficient M-stationary point of
the MMPVC (1) if there exist multipliers n = (nf, %, 1", ng, 7]‘%&) S Rfi x RY x
R" x R™ x R™ which holds the following conditions

VoG, o' 09 0" 0 07y =0, ' >0, n® 20, gG* 0% =0,

07’ =0(i el "), 07’ 20 (i elo-"), 0/ free (i € lo+G*),

n? =0 (i€ lo-(") U Li—G") U lor"), 0 20 (i € LoGH) U loo(%)).
n? " =0 € looG").

Example 3.1 Consider the problem

min f(3) = (f1(3), f2(3))
subject to JZ(3) = 0, G(3)7°(3) = 0,

where §1(3) = 31, 23) =33, () =351 +35 — L.
4(3) = —3132, and 3 € R?,

at point 3* = (1, 0). Then,

L(P:5%) =1d eR* :Vf13HTd 20,
VH2(%"d £ 0,
VA G d 20,
(VG ) (VYGEH d) =0},

L(P;3") =1d eR?*:d) =0, didy =0},

j(gz’ﬁ*)* = {d €R2:d2=0, dldz:()}
And
T(Z;5*) =3 R 131 20, 313 = 0},
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T(2,5) ={3e€R*:3 20, 3 =0).
Now,
T(ZP;3")" € L(P; 35",

implies MMPVC-GGCQ hold at point 3*. Therefore, for n{ = 77‘%” , ng = 0, the
expression

MVHGY + VR GH — 0 VG + 0/ VYY)

)l m o [8} —n [3] +0[—Ol] B [3]

shows that 3* = (0, 1) is a strong efficient M-stationary point.

Next example shows that non efficient point may also satisfied MMPVC-GGCQ,
but fails to become a strong efficient M-stationary point.

Example 3.2 Consider the problem

min §(3) = (F1(3), f2(3))
subject to #(3) 2 0, 9(3).74(3) = 0,

where 1 (3) = 3130, 2) =33, #G) = 3132 — 1,
GG)=—G1+3—2), 3R,

at a feasible point 3* = (1, 1). Then,

L(P;3") =1d e R*:V§16Td £0, Vi) Td 20,
VA GHd 20, (VG d)(VY;GHd) <0},
={(d1,dr) eR*:dy +dr =0, dy £ 0},

and
T(2:5%) ={G1.32) € R? : 31 + 32 2 0}.
Since,
L(P:3") ST (235,

that is MMPVC-GGCQ hold at point 3*. Therefore, for n{ > 0, n; > 0, ng >
0, n%ng = 0, the expression

VHGY + VR GH — 0 VG + 0/ VYY)
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1326 M. Hassan et al.

e 1 B

shows that 3* = (1, 1) is not a strong efficient M-stationary point. Note that point
(1, 1), is dominated by (2, %). Hence, (1, 1) is not an efficient point, but it is weak
efficient point.

Consider the following index set:

JTGY =1l e Iy n) > 0},

TGN =i € Iyl n) <0},

Ioh ") = {i € IooGMIn7” > 0, n? =0},
IopG") = {i € IoGMI 07" <0, n? =0},
I8 GY) = i € InGH) n7* =0, 57 > 0},
I9,G*) = {i € Io- ") 77 > 0},

Io, %) = {i € Io+ ") 07" <0},

I3 (") = {i € Io—G")| 0" > 0O},

110G = li € LoGHI 0 > 0},

In the following theorem under the certain generalized convexity assumptions a
strong M-stationary point of MMPVC (1) will be efficient solutions.

Theorem 3.7 Let 3* € S be a strong efficient M-stationary point for the MMPVC

(1) Suppose that §; (i € I5) or (nf)Tf (r]f > 0) are pseudoconvex at 3*, g; (i €

IG*). bi(i € Iy) are affine and —; (i € I5H(*) U I (%) U I %), A €

10_00(5*) Uly,G"), % (€ 188'(5*) U IIO(;,*)) are quasiconvex at 3*, then

(@) 3* is a local weakly efficient solution for MMPVC, if 1,(3*) U IS'_ G* =0,

(b) 3" is a global weakly efficient solution for MMPVC, if I, (3*)U 15, (G*)U IJ%r GHU
15 G = 9.

Proof (b) Since 3* € S is a strong efficient M-stationary point MMPVC with the

multipliers (nf, ne, nb, n%, ng) IS Ri x R? x R" x R™ x R™, such that

P q r
<Z nIVEGHT + Y nfVaiGHT + > ) vhiHT
i=1 i=1 i=1

=Y nVAaGHT + Y v, (3*)T> =0.

i=1 i=l1

We prove this result by contradiction. Suppose that 3* is not globally weak efficient
solution of MMPVC (1). Then, there exists a feasible point 3 such that f(3) < f(3*).
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Since each f; or (nf)Tf (' > 0) are pseudoconvex at 3*, then we have
P
> nlviGHTG -3 <o. (13)
i=1
Now, for any i € I4(3"), we have
8i(3) = 8:G") =0,

then from quasiconvexity of g; (i € I3(3")), we get

VaiGH'G—35% 0. (14)
Similarly, we get
VhiGH' G- S0VieJ (15)
and,
VhiGH G -3 20 VieJt. (16)

Again since 3 be any feasible point for problem(MMPEC) similarly, we have
—VAE)T G -3 S0Vi € Ign(M) U I, M U I-GY). a7

V(M (-3 S0Vi e Igy (") U I GY). (18)

Now, we verify statement (), in this case when 101(3*) U Iy(G*) U IJ%F(;,*) U
IO+(3*) = 0. Multlplymg (14)-(18) by ’7: >0 elgiGY), n? >0@GelJh), r}lh

0G eJ ). 0 >0G e IhGHUI L GHUIT ). nf > 06 € I UL GY)
respectively and adding to (13) , we have

p r
0= <Z n ViGHT + Z nfVa GO+ 0! vhiHT
i=1 i=1

=Y VAT +Zn@vg<z, )53 > 0,

which is a contradiction. This completes the proof.
To establish statement (a), we only need to prove the following two conditions for
any feasible 3 sufficiently close to 3*,
7' VAGHT G5 S0Vie Iy, (Y, (19)

and

0/ VGGG -5 S0Vie % GH. (20)
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1328 M. Hassan et al.

To do this, we observe that (14) to (18) have already satisfied as in case (), so we
obtain the required result for all feasible point 3 sufficiently close to 3*.

First, leti € Iy, (3%), by the continuity it follows that%; (3) > 0 and thus 7%/ (3) = 0
for any 3 € S sufficiently close to 3*. Using the quasiconvexity of J7 (i € Iy, (3%)),
this implies V7 (3*)T (3 — 3*) < 0, and since we have n;%ﬁ <0G € LG, we
got (19).

Second, leti € IJ% (3™), from continuity it follows that 5% (3) > 0and thus %; (3) <
0 for any 3 € S sufficiently close to 3*. Using the quasiconvexity of ¥; (i € I_% G™),
this implies V¥, (3*)T (3 — 3*) < 0, which gives (20), since we have n? >0(@ €
105G O

4 Duality

In this section, we propose Wolfe type and Mond—Weir type dual model to the MMPVC
(1) and establish weak, strong and strict converse duality results using convexity,
quasiconvexity, pseudoconvexity and strict pseudoconvexity assumptions. The Wolfe
type dual model to the MMPVC (1) is defined by WDMMPVC as follows:

max fw)+09) 7 gwe + T hwe — )T A We + ) Gwe  (21)

subject to Swp ={, n’, n%, ", 07 0%y Vo, nf, 08 0" 07 0% =0,
N >0,hTe=1, 1820, n/ =0 e L),
07’ free (i € Ior(w), 077 20 € l—(w),
Ny =0 € Io—(w) U Li—(w) U Loy (w)),
nf 20 G € Lo U Ioow), 07177 =0 € Ioo(w),
7’ =0 € L (W) UL (w) U I_o(w) U I__(w)),
n? =0 € Ly (WUl UI__(w),
n? 206 el o), e=(l,...,1) e RP},

where

Igw):={ie{l,2,...,p}: gi(w) =0}, Iy(w) :={i €{1,2,...,r}: bhi(w) =0},
ILh(wy:={e{l,2,....,m}: ) >0}, p(w):={i e{l,2,...,m}: ) =0}
Lo :={i: AW >0, G =0}, LL_(w:={i: HWw >0, % <0},
lop(w) :={i: Ai(w) =0, G >0}, loo(w) :={i : H(w) =0, G(u) =0},
- :={i: AW =0, %G <0}, Liy(w:={i: AW >0, %) >0},
Iy :={i: AW <0, G >0}, Iow):={i: Hw <0, g =0}
I__(w:={i: 7w <0, 4w <0},
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and

Ighw) = {i € Tpw) = 0" >0, 5/ =0}, Ig W) :={i € Ioow) : 7" =0, n/ >0},
7 =0, I, ) =i € lor(w) s > 0},
I ) = {i € Ior(w) : 0/ <0}, 19 () :={i € Lyo(w): n* =0, nf >0},

I ) = {i € Io—(w) : /" > 0). (22)

o) = {i € Iow) : ¥ <0, n

Now, we collect all u from Sy p, which will be used later in this paper

" 0, n?) e Swp).

projSyp = {u:(u, n% n
Definition 4.1 Let u € projSy, ;5. Then,
1) (u, ﬁf, 0o, ﬁh, ﬁjf, ﬁg) € Swp is said to be a locally efficient solution of

WDMMPVC, if there exists V € A/ (1), such that there is no u € projSy,, NV
satisfying

2@ 7% 7% 77, 0% < L’ 00007, 97
@) (u, ﬁ‘(, 79, ﬁb, f;f, ﬁg) € Swp is said to be a locally weak efficient solution of
WDMMPVC, if there exists V € N (1), such that there is no u € proj S‘L,;, pNV
satisfying

- — — - ez 74 @
2@ 7,78, 7% 77,07 < L@t 0% 0 0 n?).

Theorem 4.2 (Weak duality) Let 3 be a feasible point of the MMPVC (1) and
(u, r]f, ne, nh, r]%, ng) be feasible point of WDMMPVC (21). Suppose that

@ §w + @9 gwe + 0N hae — )" A we + (1) G (we, are convex at
ue projSuWD us, or
() fi, g, —n;’fe%”i, ¢ are convex and b; are affine atw € projSy,, U S.

Then,
fG) % F) + 19T a@we + "M hwe — )T A we + ()G (we.
Proof Assume that
f3) < fw + 19" gwe + ") hwe — ()T A We + 7) G (we. (23)
Since 3 € S, then

fG) + T aGre + DT hG)e — )T A Gre + )G (3)e
<fw) + 0T gwe + ") hwe — )T A we + ) G Ww)e.
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Therefore, from convexity hypothesis
p q r m m
Y alViw+Y nfVai+Y 0! Vhiw=Y 5/ VA w+Y 0! Vi) <o,
i=1 i=1 i=1 i=1 i=1

which contradicts the feasibility of u. Hence, we obtain the expected result.

p
Another way, multiplying (23) by 5’ > 0 with conditions ) 77; = 1, we have
i=1

aHT5G) — @H i) — @9 gw)
—MT o + )T W) — )9 W) < 0. (24)

Using convexity assumptions of the given functions, we have

fi(3) — fiw) = (Vfiw,3—u), Vi=1,...,p, (25)
8i() — gi(w) = (Vi (w), 3 —u), Vi€ Ig(u), (26)
hi(3) — hi(w) = (Vh; (), 3 —u) ¥ i, 27)
— A (3) + AW Z (=VA W), 5 —u), i € L) U I, w) UL (), (28)
H(3) — A (W) Z (VA (W), 53— w) Vi € Ipg(w) U I, (u), (29)
GG — G = (VG W, 3 —u) Vi € Iy (W) U I ). (30)

Multiplying (25)-(30) by 171,f > 0, 771-9 >0, 77? free, nljf > 0, —nff > 0, n?f > 0,
respectively, setting remaining multipliers are O and adding, we get

TG — @HT 5w + @ TgG) — M g + MM THG) — ™) hw)

14
—" A G+ T W+ 0 GG) - )G W) = <Z 0] Vi (w)
i=1

q r m m
+3 08V + Y Ve = Y 0 Vs + 3 0 V@, 5 - u>_

i=1 i=1 i=1 i=I
Since, 3 € S, therefore
@)7a() 20, M hG) =0, )93 20— A ()0
and using conditions of (21), we get
@H75G) — aH 7w — a9 aw — @M b + )T A w - ") TGw) = 0,

which contradicts (24). Hence, we get the required result. O
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Theorem 4.3 (Strong duality) Let 3* be a locally efficient solution of MMPVC (1)
and satisfies the MMPVC-GGCQ at 3*. If assumptlons of weak duality Theorem 4.2
satisfied. Then, there exist (ij', 79, b, ﬁ%/, n’) € ]Rp x R? x R” x R™ x R™

such that (3%, r]f, ne, nh, n%, (4) is an efficient solution of the WDMMPVC (21) and
respective values are equal.

Proof As 3* is a locally efficient solution of the MMPVC (1) and the MMPVC-
GGCQ is satisfied at 3*, then from Theorem 3.5, there exist (ﬁf, 79, ﬁb, ﬁg, ﬁ%ﬂ) €
]Rfr x R? x R” x R™ x R™ such that strong efficient M-stationary conditions are
satisfied. That is,

ViGHT + VaGHa® + VoGHR" — v + v GhHn?
7' >0, 96" 0, ﬁ9>0, gGH 7% =0,
‘W—O(z ely), i/ 20(iely), 7/ free (i e10+)
—0(l € lop— UIlL_Ulpy), 7]‘1 =0 (i €loUly), 771 771 =0(i € Ily).
Therefore, (3*, 7%, 79, 79, 77, 77C) is feasible point of the WDMMPVC (21).
Then, from feasibility and weak duality Theorem 4.2, we have
G =16 + @9 gG"e + @) T0GNe + @7 A GHe — 779 e
£ 1w + 0T gwe + M hwe — 7T A we + 7)Y (we,
for any feasible solution (u, n', 7%, n%, n7, %) € R" x R? xR? x R" x R™ x R™

of the WDMMPVC (21). Hence (%, 7', 79, 7", ﬁ(j, 777 is an efficient solution of
the WDMMPVC (21) and values of both objective are same. O

Example 4.1 Consider the following MMPVC problem:

min f(3) = (f1(3), 2(3)), where f1G1.32) =37, §2(3) = 33,
subject to J#(3) =32 = 0,

G A G) = —G1 +3252 0.

Feasible set S = {3 € R? : 30 = 0, —(31 + 32)32 < 0}. The WDMMPEC is as
follows:

max §(u) — n”? #We + n? G e,
subject to U1Vf1 (uw) + n;sz(u) - n”V%”(u) + n’Vfﬁ (u)

_ f 2w il 0] _ |0 g =1 _|0] 5 foof_
_”1[0}’”72[2112} n [J+n [_1 =lol " >0, n+n=1,

remaining multipliers follows the Wolfe type dual conditions, e = (1, 1) € R
Consider the following cases

Case .1} =0, up =0 = #(u) =0, ¥) =0, then for n”¥ =0,7n7 =0,
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7 Vi @) + nl Vi) — 7 VA ) + 17 VG ) = (0,0),
= u; =0, up = 0 is feasible solution.

Case2.u; =0, up > 0= ) >0, ) <0, then ¥ =0,1? =0,
and 1] Vi) + nh Vi) — n7 V. () + 17 V% (w) # (0,0),

= u; =0, uy > 0 is not feasible solution.

Case3.u; =0, uy <0 = ) <0, ) >0, thenn”” =0,1? =0,
NI VH @) + 1) Vi) — 07 VA W) + 17 V() # (0,0),

= u; =0, up < 0is not feasible solution.

Case4.u; >0, uy =0 = #(u) =0, ) <0, then ¥ >0, n? =0,
Vi) + 0 Vi) — ' VA W) + 17 VG ) # (0,0),

= u; > 0, up = 0 is not feasible solution.

Case 5. 11 > 0, up > 0= #(u) >0, ¥(u) <0, then n”¥ =0,77 =0,
Vi W) + ) Vi) — 07 Vo ) + 07 V) # (0,0),

= u; > 0, up > 0is not feasible solution.

Case6.u; >0, up <0= 7)) <0, () > or =or <0, then '7% =0,ng >0,

VL) + 0 Vi) — 7 VA W) +n? VW) # (0,0),
= u; > 0, up < 0is not feasible solution.

Case 7.1; <0, up =0 = #w) =0, Yu) > 0, then n”* free ,n? =0,
7l Vi) + 0 Vi) — 07 Vo ) + 17 V% ) # (0,0),

= uy; < 0, up = 0 is not feasible solution.

Case 8. u; <0, up >0= 1) >0, Y(u) >or=or <0, thenn'%ﬂ =0, ng >0,

Vi@ + ) Vi) — 57 Vo @) + 17 Vi w) # (0,0),
= u; < 0, uy > 0 is not feasible solution.
Case 9.u; <0, up <0 = #(u) <0, Yu) > 0, then ¥ =0,n7 =0,

7l Vi) + ) Vi) — 7 VA W) + 07 VG ) # (0, 0),
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= u; < 0, up < Ois not feasible solution. Hence, u = (0, 0) is only feasible point
of Wolfe type dual of MMPVC (1). Since f(3) = 0, then

fG) £ fw) + nfawe — n?Gwe — n”* H (we.

Hence the weak duality Theorem 4.2 is verified. Strong duality Theorem 4.3 can
be verified at point 3* = (0, 0) easily.

Theorem 4.4 (Strict converse duality) Let 3* be a feasible point of the MMPVC (1) and
G.qf, 79,79, ﬁg, ﬁ‘%ﬂ) be afeasible point of the WDMMPVC (21). If the assumptions
of strong duality Theorem 4.3 hold and at least one §; be strictly convex and remaining
convex at 3, then 3* = 3.

Proof On contrary, assume that 3* # 3. From strong duality Theorem 4.3 there exist
n=@" 7% 7% 77, 77) e RE x R x R” x R™ x R™, such that 3%, 7, 79, 7",
77,777 is an efficient solution of the WDMMPVC (21) and

G =G) + @) g@e + @83 — G T A Ge + G G Ge.  (B1)

P
Multiplying (31) by 71f > 0 () r_]if = 1), we have
i=1

@H"56" = @H'56) - @ eG) - @06 + (7)) AG) - (1) 9 G) = 0.
(32)
Using the strict convexity and convexity assumptions, we have

fkG") — f@ > (Vic(3), 3" —3), fiG") —fiG) =2 (VFi(3).5" —3). i € I;\ {k},

(33)
8i() —gi(w) = (Vgi(w, 3 —u), i € Ijw), (34)
bi(3) — bi(w) = (Vhi(w). 3 —u), Vi, (35)
—HG) + A W) Z (VAW 3 —w), i€ PGHUILGHUIEGH.  (36)
HG) — Hw) Z (VAW 3 —w) Vi€ I 6% U I, G, 37)
G(3) —Giw) = (VG 3 —w Vi e Ijg GHUIYGH. (38)

Multiplying (33)-(38) by 1] > 0, n? =0, 5! free, 0¥ > 0, —n7 > 0, n? > 0,
setting remaining multipliers O, respectively and adding, we get

@HT56" — @HTG) + @HTaG*) — @HT e + @HTHGH) — @D THG)

p
—@H G+ @O AG + GGG - GGG > <Z i ViG)

i=1

q m r
+Y Ve = Y 0 VAG + Y0 VGGt - z;>.
i=1 i=1 i=1
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Since 3* is feasible point, therefore (79)7 g(3*) < 0, G)ThG*) =0, — G #
G <0, G)T9 ;") <0 and using duality conditions, we get

@756 — @HTIG) — @HTeG) — @HTHG) + G T #G) — GT9G) > 0,
which contradicts (32). Hence 3* = 3. O

We now propose Mond—Weir type dual model to the MMPVC (1) and establish
weak duality, strong duality and strict converse duality results using quasiconvexity,
pseudoconvexity and strict pseudoconvexity assumptions. The Mond—Weir type dual
model to the MMPVC (1) with respect to feasible point 3*, denoted by MWDMMPVC,
as follows:

max f(u),

b

subject to (u, n', n%, n .07y € Suwp = {0, 0% 0 07 07

P q r m m
S alviiw + Y nfVaiw + Y 0! Vhiw — Y 0 VoW + Y 0l Vi) =0,
i=1 i=1 i=1 i=1 i=1

(39)

and

' >0, 0 =0(i e @), 0/ Z0(iel-(w), 17 free (i € loy(w),

! =0(iel-WUIL_wUlyw), n/ 20 (i€ Lo Ulpow),

n® 20, nf 0" =0 € loow). /" =0 €4 UI4wUIow Ul _(w),
! =06 elyUI Ul _w), nf 20 el o).

Other indexing are same as of WDMMPVC (21). Consider the following projection
set

b A

projSiywp = tu: (u, 0, n%, 7 .17) € Suwbp).

Definition 4.5 Let (ii, ', 79, 79, 77, 71%) € Suwnp

(i) issaid to be alocally efficient solution of MWDMMPVC, if there exists V € N (i1),
such that there is no u € proj Sy, NV satisfying

fw) = f(u)

(1) is said to be a locally weak efficient solution of MWDMMPVC, if there exists
V € N(3%), such that there is no u € projSj,,, NV satisfying

fu) < f(uw).
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Theorem 4.6 (Weak duality) Let 3 be a feasible point of the MMPVC (1) and
(u, nf, n9, nh, n%), ng) be a feasible point of the MWDMMPVC (39). Suppose that
the given functions g(u)Tng, —%TU%, ngg, are quasiconvex and b; (i € Iy),
are dffine at u. If any of the following holds:

(a) nif =1 and f; (Vi € Is) are pseudoconvex at u;

P
(b) nif 21 (Vi € Iy) and Z ﬂlffi(-) is pseudoconvex at u.
i=1

Then,
f(3) £ f(w). (40)

Proof Assume that

F(3) < f(w),
Then,

fi3) S fi(w), Vi e I5, except at least one k, such that

fk(3) < f(w).
Multiplying by nf 2 1 and adding, we get
1h 5@ < 0H . (41)

Using the quasiconvexity assumptions, we get

q q q
> e = Y nfei(w) = < Ve, 5 — u> <0, (42)

i=1

=

Y alhi) = Y nlhi(w) = <Zn?vm(u>,3 —u> —0,iely, (43
Y 0 S -0 A = <—Zn?fwﬁ(u>,z—u> <0, 44
S0?9G) S 0% w) = <Zn?vsz~<u>,a —u> <0, 45)

Adding (42)—(45), we get

q r m m
<Z nfVaiw + Y 0! Vhiw) — > 0/ VAW + Y 0 VG, 5 - u> <o.

i=1 i=1 i=1 i=1

(46)
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From ( 39) and (46), we have

P
<anwi(u>, 5—u> > 0. @7)
i=1

Using assumptions (a) or (b) in (47), we get

UDROEN DI
which contradicts (41). Hence, we get the required result. O

Theorem 4.7 (Strong duality) Suppose 3* is a locally efficient solution of the MMPVC
(1) and satisfies the MMPVC-GGCQ at 3/*. If assumptions of weak duality Theorem
4.6 holds. Then, there exist (ij', 7%, 79, f)%, ﬁg) € ]Rf_ x R? x R" x R™ x R™ such

that 3*, 77,79, 79, 77, 77) is an efficient solution of the MWDMMPVC (39) and
respective values are equal.

Proof As 3* is a locally efficient solution of the MMPVC (1) and the MMPVC-GCQ
satisfied at 3*, then from Theorem 3.5, there exist (71, 79, 79, 77, 770) € R? xRY x
R” x R™ x R™ such that 3* is a strong efficient M-stationary point. That is,

p q r m
SAVAEGE D aVe Y+ > Al VhiGh) = Y 7 VG
i=1 i=1 i=1 i=1

m
+) i/ V(%) =0,
i=1

nf >0, 07 =0 el ), 07 Z0(iely-), n/ free (i € lorw),
n? =0 (ielo- (UL WU lpw), n’ 20 (i€ Lo U o),
(1) 8w =0, n® 20, n/n/" =0 (i € Iop(w)).

Therefore, 3*, 77, 7%, 79, 77, 777 is feasible of the MWDMMPVC (39). Then,
from feasibility and weak duality Theorem 4.6, we have

fG*) £ f(w,
for any feasible solution (u, ', n9, nY, ng, n%)) e R" x Ri x R? x R" x R™ x R™
of the MWDMMPVC (39). Hence (*, 7', 79, 79, 7%, 777) is an efficient solution of
the MWDMMPVC (39) and the values of both objective are equal. O

Next example verify the Mond—Weir type dual model and duality results for
MMPVC.
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Example 4.2 Consider the following MMPVC problem:

min f(3) = (f1(3), f2(3)), where fi(3) = 37 + 32, 2(G) = 37
subjectto H(3) =32 2 0. 4(3)" A () = —3132 = 0.

Feasible region S = {3 € R? : 3, > 0, —3132 < 0}. Now, we formulate MWD-
MMPVC dual model according as above discussion.

max f(u) = u} +u, ud),

subject to 9} Vi1 (W) + nlViaw) — n? VA W) + n? VL (1)
_ 2w f | 2w 2 |0 g |-1 0] 5
—nl[l}Jrnz[O}—n [I]Jrn [0 =0,n1>0,n§>0.

' >0, 0/ =0(iel ), n 20(ielw), n free (i€ low),

0 =0(iely-wWUIL_wUIymw), n7 20 (i e Lo U lpw),

n® 20, nfn” =06 elow), n =06 eliy@UI @)Ul owUIl (W),
! =0 eliUI L Ul_W), n/ 20 el ow))

Consider the following cases

Case . up =0, up =0 = A (u) = 0, (u) = 0, then for 7 =}, 47 =0,
7l V) 4+ 0 Vi) — 07 Vo () + 07 V) = (0,0),

= u; =0, up = 0 is feasible solution.

Case 2.1 =0, up > 0= #(u) >0, ) =0, then n”* =0, ¢ >0,
and 0]V (w) + n) Vi) — 07 V.2 (w) + 07 Vi () # (0,0),

= u; =0, up > 0is not feasible solution.

Case3. 141 =0, uy <0 = ) <0, ) =0, thenn”” =0,17 >0,
0l VW) 4+ ) Vi) — 07 Vo2 () + 07 VG ) £ (0,0),

= u; =0, up < 0is not feasible solution.

Case4.u; >0, up =0 = () =0, 4(u) <0, then nﬁf >0, Tlg — 0,
0l V) 4+ b Vi) — 07 Vo () + 07 V() £ (0,0),

= u; > 0, up = 0 is not feasible solution.

Case5.u; >0, u» > 0= ) >0, 9u) <0, then 777 =0,77 =0,
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Vi + b Vi @) — 07 VA W) + 07 VG (w) # (0,0),
= u; > 0, up > 0 is not feasible solution.

Case 6.u; >0, up < 0= ' (u) <0, () <0, then n7¥ =0,n7 =0,
7 Vi) + 0l Vi) — 7 VA W) + 07 VG ) £ (0,0),

= u; > 0, up < 0is not feasible solution.

Case 7.u; <0, up =0 = () =0, () > 0, then 7 free ,n? =0,
7 Vi) + nl Vi) — 7 VA W) + 07 VG ) £ (0,0),

= u; < 0, up = 0is not feasible solution.

Case 8. u; <0, up > 0= W) >0, Yw) > 0, then n”? =0,n7 =0,
N VH W) + b Vi) — 17 Vo ) + 17 VG ) £ (0,0),

= u; < 0, up > 0is not feasible solution.

Case 9.1 <0, up <0 = () <0, ) > 0, then n”? =0,1? =0,
N} Vi) + 0 Vi @) — 07 Vot ) +n? VG ) # (0,0),

= u; < 0, up < 0 is not feasible solution. Hence, u = (0, 0) is only feasible
solution for above dual model and

f(3) £ f(w).

Hence the weak duality Theorem 4.6 is verified and it is very simple to verify Strong
duality Theorem 4.7 at point 3* = (0, 0) easily.

Theorem 4.8 (Strict converse duality) Let 3* be a feasible point of the MMPVC (1)
and (@, 7', 79,79, 77, 77) be a feasible point of the MWDMMPVC (39), such that

P 14
Yoalfih £ Y k.
i=1 i=1

ifg™n9, yTnh, =0, 4707 are quasiconvex at ii and any one of the
following holds:

(a) nl].c > 0 and §; (Yi € I;) are pseudoconvex except at least one

fi strictly pseudoconvex at 1,

@ Springer



On M-Stationary Conditions and Duality for Multiobjective... 1339

)4
(b) 772.( >0 (Vi € I) and Z niffi(-) strictly pseudoconvex at 1.

i=1

Then,
3 =1 (48)

Proof Let 3* # u. Then, from assumptions we have
a g <! g a g
onei() =Y on gi(u)=><2n,- Vgi(u),a—u><0, (49)
i=1 i=1 i=1
Yl =Y n)hiw) = <Zn?Vbi(u),3 —u> =0,iely,  (50)
S0 HG) S -0l A = < — S VA ), 5~ u> <0, (51)
Sl ;) < Zn?%(u):»<2n§fw,~<u>,a—u> <o, (52)

Adding (49)—(52), we get

q r m m
<Z nfVa; W)+ Y ) Vhiw = Y 0 VAW + Y 0 VG5~ u> <o.
i=1 i=1 i=1 i=1
(53)
Since u is feasible point of the MWDMMPVC (39), then

p
<Z 0l Vi (@), 5 — ﬁ> > 0. (54)

i=1

Using assumptions (a) or (b) at u, and from (54), we get
aH'5G6" > ohH @),

which contradict the hypothesis. Hence, 3* = 1. O

5 Conclusion

In this article, we have established necessary optimality conditions for multiobjective
mathematical programs with vanishing constraints under smooth assumptions using
generalized Guignard constraint qualification and established sufficient optimality
conditions using quasiconvexity and pseudoconvexity hypothesis. Moreover, we have
formulated Wolfe type and Mond—Weir type dual models and established usual duality
results under generalized convexity for multiobjective mathematical programs with
vanishing constraints. We illustrated our results with help of some suitable examples. In
future, the results of this paper can be extended for nonsmooth cases. we can generalize
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these results for an important mathematical program known as mathematical program
with switching constraints (MPSC) motivated by recent work of Liang and Ye [30].
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