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Abstract
A new compound Lomax model is proposed and analyzed. The novel distribution is
derived based on compounding the zero truncated Poisson distribution and the expo-
nentiated exponential Lomax distribution. The new density can be “monotonically left
skewed,” “monotonically right skewed” and “symmetric” with various useful shapes.
The new hazard rate can be “upside down bathtub-increasing,” “bathtub (U-shape),”
“monotonically decreasing,” “increasing-constant” and “monotonically increasing.”
Relevant statistical properties are derived. We briefly describe different estimation
methods, namely the maximum likelihood, Cramér-von-Mises, ordinary least squares,
weighted least square, Anderson–Darling, right tail Anderson–Darling and left tail
Anderson–Darling. Monte Carlo simulation experiments are performed for compar-
ing the performances of the proposed methods of estimation for both small and large
samples. For facilitating the mathematical modeling of the bivariate real data sets, we
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derive some new corresponding bivariate distributions. Graphical simulation study is
performed for assessing the finite sample behavior of the estimators using the maxi-
mum likelihoodmethod.Twoapplications are provided for illustrating the applicability
of the new model.

Keywords Poisson distribution · Compounding method ·
Farlie–Gumbel–Morgenstern · Clayton copula · Modeling · Lomax distribution ·
Ali-Mikhail-Haq copula · Kernel density estimation

Mathematics Subject Classification 62N01 · 62N02 · 62E10

1 Introduction

Lomax [33] presented a new distribution for modeling business failure data, and this
model is called the Lomax distribution also named as Pareto type-II (PII) distribu-
tion. A special attention is paid to the Lomax distribution and its generalizations
in applied statistics and related fields such as instance models, biological studies,
wealth inequality, income, engineering, medicine, engineering, and reliability. The
Lomax model is applied in modeling income and wealth data (see Harris [25] and
Asgharzadeh and Valiollahi [10]), progressively type-II censored competing risks data
[18], firm size data (see Corbellini et al. [16]), engineering, reliability and economic
data sets (see Elgohari and Yousof [19]), failure times data (see Chesneau and Yousof
[15]), among others. Furthermore, many other Lomax extensions can be cited such
as exponentiated Lomax [24], gamma Lomax [17], transmuted Topp–Leone Lomax
[43], Kumaraswamy Lomax [32], Burr-Hatke Lomax [41], beta Lomax [32], odd log-
logistic Lomax [19], Poisson Burr X generalized Lomax model [28], proportional
reversed hazard rate Lomax [19], special generalized mixture Lomax [15], the Burr
X exponentiated Lomax distribution and the Marshall–Olkin Lehmann Lomax distri-
bution [2]. However, other related Lomax models with different applications under
censored and uncensored data can be found inAboraya and Butt [3], Goual andYousof
[21], Ibrahim et al. [27], Ibrahim [26] and Mansour et al. [36].

A random variable (RV) is said to have the Lomax distribution if its cumulative
distribution function (CDF) is given by

Fθ (z) � 1 − (1 + z)−θ |z≥0,

where θ > 0 refers to the shape parameter. The above CDF is a special case from the
Burr type XII (BXII) model. So, many useful details about the Lomax model along
with its relationship with other related models can be found in Burr [11–13], Lomax
[33], Burr and Cislak [14], Harris [25], Rodriguez [34], Tadikamalla [35] and Yadav
et al. [44]. In this paper, we propose and study a new compound version Lomax (L)
distribution using zero truncated Poisson (ZTP) distribution. Suppose that a system has
N (a discrete random variable) subsystems functioning independently at a given time
where N has ZTP distribution with parameter a and the failure time of ith component
Yi |i � 1, 2, . . . (say), independent of N . It is the conditional probability distribution
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of a Poisson-distributed random variable (RV), given that the value of the RV is not
zero. The probability mass function (PMF) of N is given by

Pa(N � n) � an exp(−a)

�(1 + n)
[
1 − exp(−a)

] |a∈R+ .

Note that for ZTP RV, the expected value E(N |a) and variance V(N |a) are, respec-
tively, given by

E(N |a) � a/
[
1 − exp(−a)

]

and

V(N |a) � a(1 + a)

1 − exp(−a)
− a2

[
1 − exp(−a)

]2 .

Suppose that for each sub-device, the failure time (i.e., ith sub-device) has the expo-
nentiated exponential Lomax (EEL) and having the following CDF

Gb,θ (z) � (
1 − exp

{−[
(1 + z)θ − 1

]})b|z∈R+ , (1)

where b > 0 is the shape parameter. For b � 1, the exponentiated exponential Lomax
model reduces to exponential Lomaxmodel. For θ � 1, the exponentiated exponential
Lomax model reduces to exponentiated exponential model. For b � θ � 1, the
exponentiated exponential Lomaxmodel reduces to exponential model. Let Yi denotes
the failure time of the ith subsystem and let Z � min{Y1,Y2, . . . ,YN }. Then, the
conditional CDF of Z given N is

F(z|N ) � 1 − Pr(Z > z|N ) � 1 −
[
1 − (

1 − exp
{−[

(1 + z)θ − 1
]})b]N

.

Therefore, the unconditional CDF ofX, as described inAryal andYousof [5], Korkmaz
et al. [31], Alizadeh et al. [6], can be expressed as

Fa,b,θ (z)� 1

1 − exp(−a)

(
1 − exp

{
−a

(
1− exp

{−[
(1 + z)θ − 1

]})b})
|a∈R−{0},z∈R+ .

(2)

The CDF in (2) is called the Poisson exponentiated exponential Lomax (PEEL)model.
The corresponding probability density function (PDF) can be derived as

fa,b,θ (z) � abθ(1 + z)θ−1 exp
{−[

(1 + z)θ − 1
]}

[
1 − exp(−a)

](
1 − exp

{−[
(1 + z)θ − 1

]})1−b

× exp
{
−a

(
1 − exp

{−[
(1 + z)θ − 1

]})b}

︸ ︷︷ ︸
Aa,b,(z)

|a∈R−{0},z∈R+ . (3)

123



S88 M. Aboraya et al.

ARV Z having PDF (3) will be denoted by Z ~ PEEL (a, b, θ). The PDF in (3) is said
to be “concave PDF” if for any Z1 ∼ PEEL (a1, b1, θ1) and Z2 ∼ PEEL (a2, b2, θ2)
the PDF satisfies

f (εz1 + εz2) ≥ ε fV1
(z1) + ε fV2

(z2)|0≤ε≤1 and ε�1−ε.

If the function f (εz1 + εz2) is twice differentiable, then if f //(εz1 + εz2) < 0,∀Z ∈
R
+, then f (εz1 + εz2) is “strictly convex.” If f //(εz1 + εz2) ≤ 0,∀Z ∈ R

+, then
f (εz1 + εz2) is “convex.”
The PDF in (3) is said to be “convex PDF” if for any Z1 ∼

PEEL (a1, b1, θ1) and Z2 ∼ PEEL (a2, b2, θ2), the PDF satisfies

f (εz1 + εz2) ≤ ε fV1
(z1) + ε fV2

(z2)|0≤ε≤1 and ε�1−ε.

If the function f (εz1 + εz2) is twice differentiable, then if f //(εz1 + εz2) > 0,∀Z ∈
R
+, then f (εz1 + εz2) is “strictly convex PDF.” If f //(εz1 + εz2) ≥ 0,∀Z ∈ R

+,
then f (εz1 + εz2) is “convex.” If f (εz1 + εz2) is “convex PDF” and ψ is a constant,
then the function ψ f (εz1 + εz2) is “convex.” If f (εz1 + εz2) is “convex PDF,” then
[ψ f (εz1 + εz2)] is convex for everyψ > 0. If f (εz1 + εz2) and g(εz1 + εz2) are “con-
vex PDF,” then [ f (εz1 + εz2) + g(εz1 + εz2)] is also “convex PDF.” If f (εz1 + εz2)
and g(εz1 + εz2) are “convex PDF,” then [ f (εz1 + εz2) and g(εz1 + εz2)] is also
“convex PDF.” If the function − f (εz1 + εz2) is “convex PDF,” then the function
f (εz1 + εz2) is “convexPDF.” If f (εz1 + εz2) is “concave PDF,” then 1/ f (εz1 + εz2)
is “convex PDF” if f (z) > 0. If f (εz1 + εz2) is “concave PDF,” 1/ f (εz1 + εz2) is
“convex PDF” if f (z) < 0. If f (εz1 + εz2) is “concave PDF,” 1/ f (εz1 + εz2) is
“convex PDF.”

Staying in (3), for a � 1, the Poisson exponentiated exponential Lomax reduces to
quasi-Poisson exponentiated exponential Lomax (QPEEL)model. For b � 1, the Pois-
son exponentiated exponential Lomax model reduces to Poisson exponential Lomax
model. For θ � 1, the Poisson exponentiated exponential Lomax model reduces to
Poisson exponentiated exponential model. For b � θ � 1, the Poisson exponentiated
exponential Lomax model reduces to Poisson exponential model. For a � b � 1,
the Poisson exponentiated exponential Lomax model reduces to quasi-Poisson expo-
nential Lomax model. For a � θ � 1, the Poisson exponentiated exponential Lomax
model reduces to quasi-Poisson exponentiated exponentialmodel. For a � b � θ � 1,
the Poisson exponentiated exponential Lomax model reduces to quasi-Poisson expo-
nential model.

The hazard rate function (HRF) can be derived from fa,b,θ (z)/
[
1 − Fa,b,θ (z)

]
.

Figure 1 (left plot) gives some plots of the PEEL PDF. Figure 1 (right plot) gives some
plots of the PEEL HRF for some selected values of the parameters. Based on Fig. 1
(left plot), it is noted that the PDF of the PEEL can be “monotonically left skewed,”
“monotonically right skewed” and “symmetric” with various useful shapes. Based on
Fig. 1 (right plot), it is noted that the HRF of the PEEL can be “upside down bathtub-
increasing,” “bathtub (U-shape),” “monotonically decreasing,” “increasing-constant”
and “monotonically increasing.” The PEEL model could be useful in modeling the
“asymmetric monotonically increasing HRF” real data sets as illustrated in Sect. 6
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Fig. 1 Plots of the PEEL PDF (left) and plots of the PEEL HRF (right)

(Figs. 3, 4 (bottom left plots)); the real datasets which have no outliers as shown in
Sect. 6 (Figs. 3, 4 (bottom right plots)) and the real data sets which its Kernel density
is bimodal and semi-symmetric as given in Sect. 6 (Figs. 3, 4 (top left plots)).

First, for facilitating the mathematical modeling of the bivariate RVs, we derive
some new bivariate PEEL (BPEEL) type distributions using “Farlie–Gumbel-
Morgenstern copula” (FGMCp) Morgenstern [37], Farlie [20], Gumbel [22], Gumbel
[23], Johnson [29] and Johnson [30], modified FGMCp which contains four internal
types, “ Clayton copula (CCp)” (see Nelsen [39] for details), “Renyi’s entropy copula
(RECp)” (Pougaza and Djafari [40] and “Ali-Mikhail-Haq copula (AMHCp)” [4]. The
multivariate PEEL (MPEEL) type can be easily derived based on the Clayton copula.
However, future works may be allocated to study these new models. Additionally,
we briefly describe different estimation methods, namely the maximum likelihood,
Cramér-von-Mises, ordinary least square, weighted least square, Anderson–Darling,
right tail Anderson–Darling and left tail Anderson–Darling. Monte Carlo simulation
experiments are performed for comparing the performances of the proposed meth-
ods of estimation for both small and large samples. The above-mentioned estimation
methods are compared also using two real data sets.

Second, we briefly considered and then described different estimation methods,
namely the maximum likelihood estimation (MLE) method, Cramér-von-Mises esti-
mation (CVM)method, ordinary least square estimation (OLS)method,weighted least
square estimation (WLSE) method, Anderson–Darling estimation (ADE) method,
right tail Anderson–Darling estimation (RTADE) method, left tail Anderson–Darling
estimation (LTADE) method. These methods are used in estimation process of the
unknown parameters.

Generally, in statistical modeling of the failure times of the aircraft windshield
data, the PEEL model is compared with many common Lomax extensions such as
the special generalized mixture Lomax, the odd log-logistic Lomax, the Burr-Hatke
Lomax, the transmuted Topp–Leone Lomax, the Gamma Lomax, the Kumaraswamy
Lomax, theMcDonald Lomax, the exponentiated Lomax and the proportional reversed
hazard rate Lomax under theAkaike information criteria, consistent-information crite-
ria, Bayesian information criteria and Hannan–Quinn information criteria. The PEEL
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model provided better fits in modeling failure times of the aircraft windshield data. In
statistical modeling of the service times of the aircraft windshield, the PEEL model
is compared with many common Lomax extensions such as the special generalized
mixture Lomax, the odd log-logistic Lomax, the Burr-Hatke Lomax, the transmuted
Topp–Leone Lomax, the Gamma Lomax, the Kumaraswamy Lomax, the McDonald
Lomax, the exponentiated Lomax and the proportional reversed hazard rate Lomax
under the Akaike information criteria, consistent-information criteria, Bayesian infor-
mation criteria and Hannan–Quinn information criteria. The PEEL model provided
better fits in modeling service times of the aircraft windshield data.

In this paper, after studying the main statistical properties and presenting some
bivariate type extensions, we briefly considered and then described different esti-
mations. Monte Carlo simulation experiments are performed for comparing the
performances of the proposed methods of estimation for both small and large samples.

2 Properties

2.1 Expanding the New Density

We present a simple useful expansion for the new PDF given on (3) in terms of the
exponentiated Lx (exp-L) model. Using the obtained expansion, we derive the main
mathematical properties of the new PDF of the PEE model. Note thatThen, the PDF
in (4) can be expressed as

Aa,b,(z) �
+∞∑

h�0

1

h!
(−a)h

(
1 − exp

{−[
(1 + z)θ − 1

]})bh
.

fa,b,θ (z) � bθ

1 − exp(−a)

+∞∑

h�0

(−1)ha1+h(1 + z)θ−1

l! exp
{−[

(1 + z)θ − 1
]}

(
1 − exp

{−[
(1 + z)θ − 1

]})b(h+1)−1

︸ ︷︷ ︸
Bb(h+1),(z)

. (4)

Considering the power series

(
1 − c1

c2

)c3+1

�
+∞∑

l�0

(−1)l�(2 + c3)

l!�(2 + c3 − l)

(
c1
c2

)l

,

∣
∣∣∣
c1
c2

∣
∣∣∣〈1 and c3〉0, (5)

and applying (5) to the quantity Bb(h+1),(z) in (4), we get

Bb(h+1),(z) �
+∞∑

l�0

(−1)l�(b(h + 1))

l! h!�(b(h + 1) − l)
exp

{−l
[
(1 + z)θ − 1

]}
.
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Inserting the expansion of the quantity Bb(h+1),(z) into (4), then, the PDF of the PEEL
can be expressed as

fa,b,θ (z) � bθ

1 − exp(−a)
(1 + z)θ−1

+∞∑

h,l�0

a1+h
(−1)h+l�(b(h + 1))

l! h!�(b(h + 1) − i)
C(l+1)(z). (6)

Expanding the quantity C(l+1)(z), we can write

C(l+1)(z) � exp
[−(l + 1)

[
(1 + z)θ − 1

]] �
+∞∑

τ�0

(−1)τ (l + 1)τ
[
1 − (1 + z)−θ

]τ

τ ! (1 + z)−θτ
.

(7)

Inserting the result of (7) into (6), the PEEL density can be reduced to

fa,b,θ (z) � bθ(1 + z)−θ−1

1 − exp(−a)

+∞∑

h,l,τ�0

a1+h
(−1)h+τ+l�(b(h + 1))(l + 1)τ

h! l! τ !�(b(h + 1) − l)
[
1 − (1 + z)−θ

]τ

(1 + z)τ+2
. (8)

Expanding (1 + z)−τ−2 via generalized binomial expansion, we get

(1 + z)−τ−2 �
+∞∑

d�0

�(τ + d + 2)

k!�(τ + 2)

[
1 − (1 + z)−θ

]d
. (9)

Inserting (9) in (8), the PDF of the PEEL can be summarized as

fa,b,θ (z) �
+∞∑

τ ,d�0

ετ ,dhτ+d+1(z; θ)|(τ+d+1)>0, (10)

where

hτ+d+1(z; θ) � θ(τ + d + 1)(1 + z)−θ−1[1 − (1 + z)−θ
]τ+d

(11)

is the PDF of the exp-L model with power τ + d + 1 and ετ ,d is a constant where

ετ ,d � b
[
1 − exp(−a)

]
τ ! d!

+∞∑

h,l�0

a1+h
(−1)h+τ+l (l + 1)τ�(b(h + 1))�(τ + d + 2)

h! l! (τ + d + 1)�(b(h + 1) − l)�(τ + 2)
.

Similarly, the CDF of the PEEL model can also be expressed as

Fa,b,θ (z) �
+∞∑

τ ,d�0

ετ ,d Hτ+d+1(z; θ)|(τ+d+1)>0, (12)
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where Hτ+d+1(z; θ) � [
1 − (1 + z)−θ

]τ+d+1
is the CDF of the exp-L family with

power τ + d + 1.

2.2 Moments

The calculations of this subsection involve several special functions, including the

complete beta function B(l1, l2) � 1∫
0
ul1−1(1 − u)l2−1du, the incomplete beta function

Bl3(l1, l2) � l3∫
0
ul1−1(1 − u)l2−1du, the complete gamma function

�(1 + l1) � +∞∫
0

yl1 exp(−y)dy � l1!�
l1−1∏

l2�0

(l1 − l2),

the lower incomplete gamma function

γ (l1, l2) � l2∫
0
yl1−1 exp(−y)dy �

+∞∑
l3�0

(−1)l3 l
l1+l3
2

�(1+l3)(l1+l3)
, and the upper incomplete

gamma function. Noting that

�(l1) � �(l1, l2) + γ (l1, l2).

Let Z be a RV having the PEEL (a, b, θ) model. Then, the pth moment of the RV Z
is

μ
′
p,Z�E

(
Z p) �

+∞∑

τ ,d�0

p∑

l�0

ετ,d(τ + d + 1)(−1)l
(
p
l

)
B

(
τ+d + 1, 1+

l − p

θ

)
|θ>p.

2.3 Moment Generating Function (MGF)

Clearly, the MGF can be derived from Eq. (10) as

MZ (t) �
+∞∑

τ ,d,p�0

p∑

l�0

t p

p!
ετ,d(τ + d + 1)(−1)l

(
p
l

)
B

(
τ + d + 1, 1 +

l − p

θ

)
|θ>p.

2.4 Incomplete Moments

The pth incomplete moments, say Ip,Z (t), of the RV Z can be obtained from (10) as

Ip,Z (t) �
n∑

τ ,d�0

ετ ,dI
−∞,t
p,τ+d+1(t),
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where I−∞,t
p,τ+d+1(t) � t∫

−∞
z phτ+d+1(z)dz. Then, the pth incomplete moments can be

written as

Ip,Z (t) �
+∞∑

τ ,d�0

p∑

l�0

ετ,d(τ + d + 1)(−1)l
(
p
l

)
Bt

(
τ + d + 1, 1 +

l − p

θ

)
|θ>p,

the 1st incomplete moments can be written as

I1,Z (t) �
+∞∑

τ ,d�0

p∑

l�0

ετ,d(τ + d + 1)(−1)l
(
1
l

)
Bt

(
τ + d + 1, 1 +

l − 1

θ

)
|θ〉1.

The mean deviations (MDs) about the μ
′
1,Z are E

(∣∣∣Z − μ
′
1,Z

∣∣∣
)

� m1

(
μ

′
1,Z

)
and

the MDs about the median (D) are E(|Z − D|) � m2,Z (D) of the RV Z are given

by m1,Z

(
μ

′
1,Z

)
� 2μ

′
1,ZF

(
μ

′
1,Z

)
− 2I1,Z

(
μ

′
1,Z

)
and m2,Z (D) � μ

′
1,Z − 2I1,Z (D),

respectively, whereμ
′
1,Z � E(Z) is the arithmetic mean of the RV Z , D � Q

( 1
2

)

is the median of the RV Z , and I1,Z (t) is the first incomplete moment is given by
I1,Z (t). These results for I1,Z (t) can be directly applied for calculating the Bonferroni
(Bon(�)) and Lorenz (Lor(�)) curves defined, for a certain given probability, say�,

by Bon(�) � I1,Z (Q(�))/
(
�μ

′
1,Z

)
and Lor(�) � I1,Z (Q(�))/μ

′
1,Z, respectively.

2.5 Residual Life (RL) and Reversed Residual Life (RRL)

The jth moment of the RL of the RV Z can be obtained from w j,Z (t) � E[(Z −
t) j ]|Z>t and j∈N or from

w j,Z (t) � 1

1 − Fa,b,θ (t)

∞∫
t
(z − t) j fa,b,θ (z)dz,

which can also be written as

w j,Z (t) � 1

1 − Fa,b,θ (t)

+∞∑

τ ,d�0

j∑

i�0

ετ ,d

(
j
i

)
(−t) j−i It,+∞

j,τ+d+1(t).

Then,

w j,Z (t) � 1

1 − Fa,b,θ (t)

+∞∑

τ ,d�0

j∑

l�0

ετ,d,l(w, j)(τ + d + 1)(−1)l
(
j
l

)

Bt

(
τ + d + 1, 1 +

l − j

θ

)
|t>0, j∈N,θ> j ,
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where ετ,d,l(w, j) � ετ,d

j∑

i�0

(
j
i

)
(−t) j−i .. For j � 1, we obtain the mean of the

residual life (MRL) which can be derived from w1,Z (t) � E[(Z − t)]|Z>t and j∈N as

w1,Z (t) � 1

1 − Fa,b,θ (t)

+∞∑

τ ,d�0

1∑

l�0

ετ,d,l(w, 1)(τ + d + 1)(−1)l
(
1
l

)

Bt

(
τ + d + 1, 1 +

l − 1

θ

)
|t>0, j�1,θ> j ,

where ετ,d,l(w, 1) � ετ,d

1∑

i�0

(
1
i

)
(−t)1−i . On the other hand, the jth moment of the

RRL isW j,Z (t) � E
[
(t − Z ) j

]|Z≤t,t>0 and j∈N or

W j,Z (t) � 1

Fa,b,θ (t)

t∫
0
(t − z) j fa,b,θ (z)dz

which can also be expressed as

W j,Z (t) � 1

Fa,b,θ (t)

+∞∑

τ ,d�0

j∑

i�0

ετ ,d(−1)i
(
j
i

)
t j−i I−∞,t

j,τ+d+1(t).

Then,

W j,Z (t) � 1

FV (t)

+∞∑

τ ,d�0

j∑

l�0

ετ,d,l(W, j)(τ + d + 1)(−1)l
(
j
l

)

Bt

(
τ + d + 1, 1 +

l − j

θ

)
|t>0, j∈N,θ> j ,

where ετ,d,l(W, j) � ετ,d

j∑

i�0
(−1)i

(
j
i

)
t j−i . For j � 1,we obtain themeanwaiting

time (MWT) which also called the mean inactivity time (MIT) which can be derived
fromW1,Z (t) � E[(t − Z)]|Z≤t,t>0 and j�1.

W1,Z (t) � 1

Fa,b,θ (t)

+∞∑

τ ,d�0

1∑

l�0

ετ,d,l(W, 1)(τ + d + 1)(−1)l
(
1
l

)

Bt

(
τ + d + 1, 1 +

l − 1

θ

)
|t>0, j�1,θ> j .

where ετ,d,l(W, 1) � ετ,d

1∑

i�0
( − 1)i

(
1
i

)
t1−i .
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Table 1 E(Z), V(Z), (S(Z) and kurtosis K(Z) for PEEL model

a b θ E(Z) V(Z) S(Z) K(Z)

− 100 2 1.5 2.601701 0.193388 0.9002231 4.464820

− 50 2.351422 0.2077254 0.8717255 4.384698

− 1 0.9491521 0.3009324 0.9197308 4.154397

1 0.6729602 0.2194432 1.399503 5.792954

2 4.3 ×10−5 0.4796717 1.719458 3.809564

− 10 0.5 0.5 11.034 106.9979 3.123071 22.3719

1 15.69851 148.2546 2.732932 17.9947

2 21.36689 196.5524 2.455676 15.21701

5 30.39189 270.7479 2.198878 12.88319

10 38.36502 334.5564 2.05793 11.69736

50 60.63687 508.2308 1.832747 9.941673

100 71.83602 594.1021 1.763346 9.435574

500 101.5548 819.4315 1.640098 8.578909

1000 115.9517 927.694 1.598616 8.302977

1.5 2 0.0001 0.001450 3.868685 1730.064 3,332,135

0.01 14.31791 37,937.51 17.33530 336.2379

0.5 4.262846 34.93721 5.102594 54.6124

1 1.102535 0.8421916 2.093886 10.07193

1.25 0.7892647 0.36049 1.745916 7.679011

1.5 5.9 ×10−5 0.5690918 1.670289 3.525878

2.6 Numerical Analysis for SomeMeasures

Table 1 gives some numerical calculations for the mean (E(Z)), variance (V(Z)),
skewness (S(Z)) and kurtosis (K(Z)) for PEEL distribution. Based on results listed
in Table 1, it is noted that S(Z) ∈ (0.9, 1730.1) and K(Z) ranging from 3.525878 to
3,332,135.

3 Copula

3.1 BPEEL Type via CCp

Let us assume that X1 ∼ PEEL(a1, b1, θ1) and X2 ∼ PEEL(a2, b2, θ2). The CCp
depending on the continuous marginal functions U � 1 − U and V � 1 − V can be
considered as

(13)
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Let U � 1− Fa1,b1,θ1(z1)|a1,b1,θ1 , V � 1− Fa2,b2,θ2(z2)|a2,b2,θ2 . Then, the BPEEL
type distribution can be obtained from (5). A straightforward multivariate PEEL (m-
dimensional extension) viaCCp can be easily derived analogously. Them-dimensional
extension via CCp which is function operating in [0, 1]m , and in that case, zi is not a
value in [0, 1] necessarily.

3.2 BPEEL type via RECp

Following Pougaza and Djafari [40], the RECp can be derived as C(U ,V) � z2U +
z1V − z1z2, with the continuous marginal functions U � 1 − U � FV1

(z1) ∈ (0, 1)
and V � 1 − V � FV1

(z2) ∈ (0, 1), where the values z1 and z2 are in order to
guarantee that C(U ,V) is a copula. Then, the associated CDF of the BPEEL will be

F(z1, z2) � C
(
Fa1,b1,θ1(z1), Fa2,b2,θ2(z2)

)
,

where Fa1,b1,θ1(z1) and Fa2,b2,θ2(z2) are defined above. It is worth mentioning that in
[18], the authors emphasize that this copula does not show a closed form and numerical
approaches become necessary.

3.3 BPEEL type via FGMCp

Considering the FGMCp (see ([10–15]), the joint CDF can be written as

where the continuous marginal function U ∈ (0, 1), V ∈ (0, 1) and where
which is "grounded minimum condition" and

and which is "grounded maximum condition ." The grounded mini-
mum/maximum conditions are valid for any copula. Setting U � UV1

|V1>0 and
V � VV2

|V2>0, then, we have

The joint PDF can be derived from

or from

where the two function and are densities corresponding to the joint
CDFs and .
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3.4 BPEEL type via modified FGMCp

The modified formula of the modified FGMCp can be written as

with O(U)• � UO(U) and K(V)• � VK(V) where O(U) ∈ (0, 1) and K(V) ∈
(0, 1) are two continuous functions where O(U � 0) � O(U � 1) � K(V � 0) �
K(V � 1) � 0. The following four types can be derived and considered:

• Type I modified FGMCp

Consider O(U)• � UO(U) and K(V)• � VK(V) where O(U) ∈ (0, 1) and K(V) ∈
(0, 1) are two continuous functions where O(U � 0) � O(U � 1) � K(V � 0) �
K(V � 1) � 0 which satisfy the above conditions. Then, new bivariate version via
modified FGMCp type I can be directly obtained from

• Type II modified FGMCp

Consider and which satisfy the above conditions where
. Then, the corresponding

bivariate version (modified FGMCp Type II) can be derived from

• Type III modified FGMCp

Let Ã(U) � U[
log

(
1 + U)]|(U�1−U

) and Z̃(V) � V[
log

(
1 + V)]|(V�1−V

). Then,

the associated CDF of the BPEEL-FGM (modified FGMCp type III) is

• Type IV modified FGMCp

Using the quantile concept, the CDF of the BPEEL-FGM (modified FGMCp type IV)
model can be obtained using

C(U ,V) � UF−1(U) − F−1(U)F−1(V) + VF−1(V)

where F−1(U) � Q(U) and F−1(V) � Q(V).
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3.5 BPEEL type via AMHCp

Under the “stronger Lipschitz condition,” the joint CDF of the Archimedean AMHCp
can be written as

the corresponding joint PDF of the Archimedean AMHCp can be expressed as

Then, for any U � 1 − Fa1,b1,θ1(z1) � |[U�(1−U)∈(0,1)
] and V � 1 −

Fa2,b2,θ2(z2)|[V�(1−V)∈(0,1)
],we have

and

4 EstimationMethods

In this Section, we briefly describe and consider different classical estimationmethods,
namely the MLE method, CVMmethod, OLS method, WLSE method, ADE method,
RTADE method, left tail LTADE. All these methods are discussed in the statistical
literature with more details. In this work, we may ignore some of its derivation details
for avoiding repetition.

4.1 TheMLMethod

Let Z1, Z2, . . . , Zm be anyobserved randomsample (RS) from thePEELmodel. Then,

the log-likelihood function (la,b,θ ) is given by la,b,θ � log

[
m∏

i�1
fa,b,θ

(
zi,m

)]
and can

be maximized directly using many common software packages such as the R software
(using the “optim function”) or, in some cases, by solving the system of the nonlinear
equations of the likelihood derivatives fromdifferentiating la,b,θ with respect to a, b, θ .
The score vector components Ua,m � ∂

∂a la,b,θ ,Ub,m � ∂
∂b la,b,θ and Uθ,m � ∂

∂θ
la,b,θ

can be easily derived from the nonlinear system Ua,m � Ub,m � Uθ,m � 0 and then
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solving them simultaneously for getting the maximum likelihood estimates (MLE) of
a, b, θ . This system can only be solved numerically for the complicated models using
some common iterative algorithms such as the “Newton–Raphson” algorithm.

4.2 The CVMMethod

The CVM estimates (CVMEs) of the parameters a, b and θ are obtained via minimiz-
ing the following expression with respect to the parameters a, b and θ , respectively,
where

CVME(a,b,θ) � 1

12
m−1 +

m∑

i�1

[
Fa,b,θ

(
z[i,m]

) − c(i,m)

]2
,

and c(i,m) � [(2i − 1)/2m] and

CVME(a,b,θ) �
m∑

i�1

(
1

1 − exp(−a)

(
1 − exp

{
−a

(
1 − exp

{
−

[(
1 + z[i,m]

)θ − 1
]})b})

− c(i,m)

)2
.

The CVME of the parameters a, b and θ is obtained by solving the following
nonlinear equations

0 �
m∑

i�1

[
Q(a)

(
1 − exp

{
−a

(
1 − exp

{
−

[(
1 + z[i,m]

)θ − 1
]})b})

− c(i,m)

]

∇(a)

(
z[i,m]; a, b, θ

)
,

0 �
m∑

i�1

[
Q(a)

(
1 − exp

{
−a

(
1 − exp

{
−

[(
1 + z[i,m]

)θ − 1
]})b})

− c(i,m)

]

∇(b)
(
z[i,m]; a, b, θ

)
,

and

0 �
m∑

i�1

[
Q(a)

(
1 − exp

{
−a

(
1 − exp

{
−

[(
1 + z[i,m]

)θ − 1
]})b})

− c(i,m)

]

∇(θ)

(
z[i,m]; a, b, θ

)
,

where

Q(a) � 1

1 − exp(−a)
,∇(a)

(
z[i,m]; a, b, θ

) � ∂Fa,b,θ
(
z[i,m]

)
/∂a,

∇(b)
(
z[i,m]; a, b, θ

) � ∂Fa,b,θ
(
z[i,m]

)
/∂b,
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and

∇(θ)

(
z[i,m]; a, b, θ

) � ∂Fa,b,θ
(
z[i,m]

)
/∂θ.

4.3 The OLSMethod

Let Fa,b,θ
(
z[i,m]

)
denote the CDF of PEEL model and let z1 < z2 < · · · < zm be the

m ordered random sample. TheOLS estimates (OLSEs) are obtained uponminimizing

OLSE(a, b, θ) �
m∑

i�1

[
Fa,b,θ

(
z[i,m]

) − b(i,m)

]2
.

and equivalently

OLSE(a, b, θ) �
m∑

i�1

[
Q(a)

(
1 − exp

{
−a

(
1 − exp

{
−

[(
1 + z[i,m]

)θ − 1
]})b})

− b(i,m)

]2
,

where b(i,m) � i
m+1 . The OLSEs are obtained via solving the following nonlinear

equations

0 �
m∑

i�1

[
Q(a)

(
1 − exp

{
−a

(
1 − exp

{
−

[(
1+[i,m]

)θ − 1
]})b})

− b(i,m)

]

∇(a)

(
[i,m]; a, b, θ

)
,

0 �
m∑

i�1

[
Q(a)

(
1 − exp

{
−a

(
1 − exp

{
−

[(
1+[i,m]

)θ − 1
]})b})

− b(i,m)

]

∇(b)
(
[i,m]; a, b, θ

)
,

and

0 �
m∑

i�1

[
Q(a)

(
1 − exp

{
−a

(
1 − exp

{
−

[(
1 + z[i,m]

)θ − 1
]})b})

− b(i,m)

]

∇(θ)

(
z[i,m]; a, b, θ

)
,

where ∇(a)

(
z[i,m]; a, b, θ

)
, ∇(b)

(
z[i,m]; a, b, θ

)
and ∇(θ)

(
z[i,m]; a, b, θ

)
are defined

before.
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4.4 TheWLSMethod

TheWLS estimates (WLSEs) are obtained byminimizing the functionWLSE (a, b, θ)

with respect to a, b and θ where

WLSE(a, b, θ) �
m∑

i�1

ω(i,m)

[
Fa,b,θ

(
z[i,m]

) − b(i,m)

]2
,

and ω(i,m) � [
(1 + m)2(2 + m)

]
/[i(1 + m − i)]. The WLSEs are obtained by solving

0 �
m∑

i�1

[
Q(a)

(
1 − exp

{
−a

(
1 − exp

{
−

[(
1 + z[i,m]

)θ − 1
]})b})

− b(i,m)

]
ω(i,m)

∇(a)

(
z[i,m]; a, b, θ

)
,

0 �
m∑

i�1

ω(i,m)

[
Q(a)

(
1 − exp

{
−a

(
1 − exp

{
−

[(
1 + z[i,m]

)θ − 1
]})b})

− b(i,m)

]

∇(b)
(
z[i,m]; a, b, θ

)
,

and

0 �
m∑

i�1

ω(i,m)

[
Q(a)

(
1 − exp

{
−a

(
1 − exp

{
−

[(
1 + z[i,m]

)θ − 1
]})b})

− b(i,m)

]

∇(θ)

(
z[i,m]; a, b, θ

)
.

4.5 The ADMethod

The AD estimates (ADEs) of a, b and θ are obtained by minimizing the function

ADE(z[i,m],z[−i+1+m:m])(a, b, θ) � −m − m−1
m∑

i�1

(2i − 1)

{
log Fa,b,θ

(
z[i,m]

)

+ log
[
1 − Fa,b,θ

(
z[1+m−i :m]

)]

}

.

The parameter estimates of a, b and θ follow by solving the nonlinear equations

0 � ∂
[
ADE(z[i,m],z[1+m−i :m])(a, b, θ)

]
/∂a, 0 � ∂

[
ADE(z[i,m],z[1+m−i :m])(a, b, θ)

]
/∂b,

and

0 � ∂
[
ADE(z[i,m],z[1+m−i :m])(a, b, θ)

]
/∂θ.
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4.6 The RTADMethod

The RTAD estimates (RTADEs) of a, b and θ are obtained by minimizing

RTADE(z[i,m],z[1+m−i :m])(a, b, θ) � 1

2
m − 2

m∑

i�1

Fa,b,θ
(
z[i,m]

)

− 1

m

m∑

i�1

(2i − 1)
{
log

[
1 − F(a,b,θ)

(
z[1+m−i :m]

)]}
.

The estimates of a, b and θ are obtained by solving the nonlinear equations

0 � ∂
[
RTADE(z[i,m],z[1+m−i :m])(a, b, θ)

]
/∂a, 0 � ∂

[
RTADE(z[i,m],z[1+m−i :m])(a, b, θ)

]
/∂b,

and

0 � ∂
[
RTADE(z[i,m],z[1+m−i :m])(a, b, θ)

]
/∂θ.

4.7 The LTADMethod

The LTAD estimates (LTADEs) of a, b and θ are obtained by minimizing

LTADE(z[i,m])(θ) � −3

2
m + 2

m∑

i�1

Fa,b,θ
(
z[i,m]

) − 1

m

m∑

i�1

(2i − 1) log Fa,b,θ
(
z[i,m]

)
.

The parameter estimates of δ, θ and β are obtained by solving the nonlinear equa-
tions

0 � ∂
[
LTADE(z[i,m])(a, b, θ)

]
/∂a, 0 � ∂

[
LTADE(z[i,m])(a, b, θ)

]
/∂b,

and

0 � ∂
[
LTADE(z[i,m])(a, b, θ)

]
/∂θ.

5 Simulations for ComparingMethods

A numerical simulation is performed in to compare the classical estimation methods.
The simulation study is based on N � 1000 generated data sets from the PEEL version
where m � 50, 100, 150 and 300 and
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a b θ

I 0.8 0.8 0.8

II 0.5 1.2 0.9

III 2 0.9 1.5

The estimates are compared in terms of their bias and the root mean-standard
error (RMSE). The mean of the absolute difference between the theoretical and the
estimates (D-abs) and the maximum absolute difference between the true parameters
and estimates (D-max) are also reported. Tables 2, 3 and 4 give the simulation results.
From Tables 2, 3 and 4, we note that the RMSE

(
�

)
tends to zero when m increases

which means incidence of consistency property.

6 ComparingMethods

Twoapplications to real data sets are considered for comparing the estimationmethods.
The data set I represents the data on failure times of 84 aircraft windshields. The data
set II represents the data on service times of 63 aircraft windshields. The two real
data sets were reported by Murthy et al. [38]. The required computations are carried
out using the MATHCAD software. In order to compare the estimation methods, we
consider the Cramér-von Mises (CVM) and the Anderson–Darling (AD) statistics.
These two statistics are widely used to determine how closely a specific CDF fits the
empirical distribution of a given data set. The results are given in Tables 5 and 6. From
Table 5, we conclude that the ML method is the best method with CVM* � 0.06444
and AD* � 0.64651. From Table 6, we conclude that the RTAD method is the best
method with CVM* � 0.10075 and AD* � 0.61025. However, all other methods
performed well.

7 Applications

In this Section, we consider the same two real data sets of Murthy et al. [38] for
applications to show the flexibility and the importance of the family presented under
the L case. The fits of the PEEL are compared with many common Lomax extensions
shown such as:

I. Special generalized mixture Lomax (SGML).
II. Odd log-logistic Lomax (OLLL).
III. Reduced OLL Lomax (ROLLL).
IV. Reduced Burr-Hatke Lomax (RBHL).
V. Transmuted Topp–Leone Lomax (TTLL).
VI. Reduced TTL Lomax (RTTLL).
VII. Gamma Lomax (GL).
VIII. Kumaraswamy Lomax (KL).
IX. Beta Lomax (BL).
X. Exponentiated Lomax (Exp-L).
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â

b̂
θ̂

ab
s

m
ax

M
L

0.
01

04
8

0.
01

25
4

0.
01

81
0

0.
50

10
5

0.
10

76
6

0.
09

62
0

0.
00

30
3

0.
00

61
8

O
L
S

0.
01

56
2

0.
00

63
1

0.
01

25
8

0.
48

04
0

0.
11

32
6

0.
12

67
5

0.
00

31
0

0.
00

56
0

W
L
S

0.
02

46
3

0.
00

28
6

0.
00

99
8

0.
49

95
5

0.
10

44
1

0.
10

42
6

0.
00

41
4

0.
00

63
9

C
V
M

50
0.
01

83
3

0.
00

91
3

0.
01

71
3

0.
48

17
8

0.
11

37
6

0.
12

78
8

0.
00

38
5

0.
00

71
9

A
D

0.
01

67
3

0.
00

57
2

0.
01

00
4

0.
47

71
5

0.
10

72
8

0.
10

99
4

0.
00

26
0

0.
00

46
9

R
TA

D
0.
00

65
8

0.
01

28
5

0.
00

84
9

0.
48

86
0

0.
12

76
7

0.
10

27
1

0.
00

20
5

0.
00

37
3

LT
A
D

0.
03

13
5

0.
00

43
0

0.
02

33
6

0.
50

94
4

0.
10

36
0

0.
14

87
0

0.
00

83
2

0.
01

28
1

M
L

0.
00

69
9

0.
00

64
3

0.
00

94
2

0.
35

21
7

0.
07

48
1

0.
06

40
9

0.
00

16
6

0.
00

33
7

O
L
S

−
0.
00

53
9

0.
00

62
0

0.
00

32
9

0.
34

52
9

0.
08

08
6

0.
08

79
8

0.
00

16
0

0.
00

27
8

W
L
S

0.
00

31
8

0.
00

52
0

0.
00

47
4

0.
37

18
2

0.
07

54
4

0.
07

18
4

0.
00

08
4

0.
00

13
1

C
V
M

10
0

−
0.
00

40
5

0.
00

76
4

0.
00

55
6

0.
34

57
4

0.
08

11
2

0.
08

83
0

0.
00

15
3

0.
00

27
8

A
D

−
0.
00

41
8

0.
00

54
9

0.
00

24
8

0.
34

26
5

0.
07

59
9

0.
07

71
9

0.
00

14
8

0.
00

25
2

R
TA

D
−

0.
00

97
9

0.
01

04
2

0.
00

20
0

0.
35

59
2

0.
09

35
2

0.
07

24
0

0.
00

37
4

0.
00

57
7

LT
A
D

0.
00

30
6

0.
00

40
3

0.
00

79
4

0.
35

62
2

0.
07

15
4

0.
10

02
4

0.
00

14
8

0.
00

29
3

M
L

0.
00

45
5

0.
00

42
0

0.
00

54
5

0.
29

29
5

0.
06

11
8

0.
05

21
0

0.
00

09
4

0.
00

18
9

O
L
S

0.
01

00
0

0.
00

13
6

0.
00

55
0

0.
29

54
3

0.
06

88
6

0.
07

44
8

0.
00

20
6

0.
00

32
1

W
L
S

0.
00

79
8

0.
00

29
7

0.
00

39
0

0.
31

12
6

0.
06

41
5

0.
05

63
5

0.
00

09
2

0.
00

17
7

123



A Novel Lomax Extension with Statistical Properties… S105

Ta
bl
e
2
(c
on

tin
ue
d)

M
et
ho

ds
m

B
ia
s

R
M
SE

D

â
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â

b̂
θ̂

ab
s

m
ax

C
V
M

15
0

0.
01

08
7

0.
00

23
3

0.
00

70
2

0.
29

57
4

0.
06

89
6

0.
07

47
4

0.
00

22
8

0.
00

37
1

A
D

0.
00

83
3

0.
00

16
0

0.
00

33
6

0.
29

34
4

0.
06

54
8

0.
06

49
0

0.
00

11
8

0.
00

19
5

R
TA

D
0.
00

22
9

0.
00

43
0

0.
00

19
6

0.
29

51
5

0.
07

63
8

0.
05

93
4

0.
00

07
8

0.
00

14
5

LT
A
D

0.
01

61
4

0.
00

08
9

0.
00

97
7

0.
31

29
0

0.
06

28
8

0.
08

72
0

0.
00

40
5

0.
00

60
5

M
L

−
0.
00

99
4

0.
00

47
1

0.
00

15
3

0.
19

78
0

0.
04

06
4

0.
03

62
2

0.
00

19
5

0.
00

30
2

O
L
S

−
0.
00

52
4

0.
00

28
1

0.
00

01
0

0.
20

63
6

0.
04

82
9

0.
05

09
1

0.
00

13
6

0.
00

20
1

W
L
S

−
0.
00

74
9

0.
00

51
5

0.
00

09
9

0.
21

21
6

0.
04

37
6

0.
03

67
4

0.
00

20
7

0.
00

31
6

C
V
M

30
0

−
0.
00

48
0

0.
00

32
9

0.
00

08
7

0.
20

64
3

0.
04

83
4

0.
05

09
6

0.
00

12
5

0.
00

19
5

A
D

−
0.
00

50
3

0.
00

25
1

−
0.
00

04
0

0.
20

33
1

0.
04

53
1

0.
04

42
7

0.
00

14
0

0.
00

20
1

R
TA

D
−

0.
00

87
3

0.
00

46
6

−
0.
00

08
8

0.
20

49
5

0.
05

35
3

0.
04

03
8

0.
00

25
9

0.
00

37
1

LT
A
D

−
0.
00

28
6

0.
00

24
0

0.
00

17
4

0.
21

93
4

0.
04

40
6

0.
05

98
6

0.
00

05
8

0.
00

10
3

123



S106 M. Aboraya et al.

Ta
bl
e
3
Si
m
ul
at
io
n
re
su
lts

fo
r
pa
ra
m
et
er
s
a

�
0.
5,
b

�
1.
2,

θ
�

0.
9

M
et
ho

ds
m

B
ia
s

R
M
SE

D

â
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Table 5 Comparing estimation methods via data set I

Methods Estimates Test

â b̂ θ̂ CVM* AD*

ML − 5.08205 1.67105 1.02155 0.06444 0.64651

OLS − 1.56563 4.65208 1.01732 0.14321 1.25935

WLS − 2.98190 4.36262 1.12196 0.08258 0.81353

CVM − 1.38803 5.09197 1.02342 0.15802 1.36065

AD − 3.30028 2.95722 1.03998 0.07299 0.73146

RTAD − 1.80263 4.87785 1.04569 0.13107 1.17693

LTAD − 4.79485 1.73715 1.00316 0.06428 0.64755

Table 6 Comparing estimation methods via data set II

Methods Estimates Test

â b̂ θ̂ CVM* AD*

ML − 3.09739 1.19910 0.96054 0.10419 0.63280

OLS − 1.80595 1.93739 0.94874 0.13096 0.79668

WLS − 2.56783 1.44638 0.97391 0.10774 0.65389

CVM − 2.88213 1.40945 0.95963 0.10410 0.63162

AD − 2.96658 1.23337 0.94140 0.10654 0.64720

RTAD − 2.72634 1.79444 1.01035 0.10075 0.61025

LTAD − 3.41128 0.92058 0.87972 0.11408 0.69533

XI. Lomax (L) Lomax [33].
XII. Proportional reversed hazard rate Lomax (PRHRL).

These two data sets are considered by matching their properties and the shapes of the
PDF of the new model (see Fig. 1 (right plot)). By examining Fig. 1 (the right panel),
it is noted that the new PDF can be “symmetric” and also “asymmetric right skewed
function” with variable shapes. Additionally, by examining the initial density shapes
of the two real data sets, it is seen that the initial densities are “semi symmetric” PDFs.
Furthermore, the HRF of the new family can be “upside down bathtub-increasing,”
“bathtub (U-shape),”monotonically decreasing, “increasing-constant” and “monoton-
ically increasing” (see Fig. 1 (left plot)).Many other symmetric and asymmetric useful
data sets can be found in Yousof et al. [41], Aryal et al. [9], Altun et al. [7].

For model comparison, some competitive models using a certain real data set (sets),
we first need to explore the data. Exploring real data set can be used either numerically
or graphically or with both techniques. In this section, we will consider many graph-
ical techniques such as the skewness-kurtosis plot (or the Cullen and Frey plot) for
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Fig. 2 Cullen–Frey and scattergram plots for the two real data sets
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exploring initial fit to the theoretical distributions such as normal, uniform, exponen-
tial, logistic, beta, lognormal and Weibull distributions (see Fig. 2 top left (1st data)
and Fig. 2 top right (2nd data)). Bootstrapping is applied and plotted for more accu-
racy. Cullen and Frey plot just compares distributions in terms of squared skewness
and kurtosis. This is a good summary but still only a summary of the properties of a
distribution. The scattergram plots are also given in Fig. 2 middle left and bottom left
for the 1st data and Fig. 2 middle right and bottom right for the 2nd data.

The “normality” of the two real data sets is checked using the “Quantile–Quantile”
(Q-Q) plot (Figs. 3, 4 (top right plots)). The initial HRFs shape is explored by using
the “total time in test (TTT)” tool (Figs. 3, 4 (bottom left plots)). The “nonparametric
Kernel density estimation (NKDE)” tool is used for exploring the initial PDF shape
(Figs. 3, 4 (top left plots)). The outliers are checked by the “box plot” (Figs. 3, 4
(bottom right plots)). Based on Figs. 3 and 4 (top left plots), it is seen that the NKDE
is bimodal and semi-symmetric functions. Based on Figs. 3, 4 (top right plots), it is
seen that the “normality” nearly exists for the two data sets (bottom left plots). It is

Fig. 3 NKDE, Q-Q, TTT, box plot for the 1st data
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Fig. 4 NKDE, Q-Q, TTT, box plot for the 2nd data

shown that the HRF is " monotonically increasing HRF" for the two data sets. From
Figs. 3 and 4 (bottom right plots), it is observed that no extreme values were spotted.

The following goodness-of-fit (GOF) statistics are used for comparing competitive
models:

I. The “Akaike information” (AICr).
II. The “consistent-AIC” (CAICr).
III. The “Bayesian-IC” (BICr).
IV. The “Hannan-Quinn-IC” (HQICr).

Tables 7 and 9 give the MLEs and the corresponding SEs for the two data sets,
respectively. Tables 8 and 10 give the four GOF tests for the two data sets, respec-
tively. Figures 5 and 6 give fitted PDFs, the Probability– Probability (P-P) plots,
Kaplan–Meier Survival (KMS) plot and estimated HRF (E-HRF) plot for the two data
sets, respectively. Based on Tables 3 and 5, it is noted that the PEEL model gives the
lowest values for all GOF statistics with AICr � 267.836, CAICr � 268.136, BICr
� 275.1288 and HQICr � 270.768 for the 1st data, and AICr � 207.087, CAICr
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Table 7 MLEs and SEs for 1st data

Model Estimates

PEEL(a, b, θ ) − 5.09523 1.66609 1.02145

(1.41716) (0.56499) (0.0434)

KL(a, b,θ, α) 2.6150 100.276 5.27710 78.6774

(0.3822) (120.49) (9.8116) (186.01)

TTLL(a, b,θ, α) − 0.8075 2.47663 (15,608) (38,628)

(0.1396) (0.5418) (1602.4) (123.94)

BL(a, b,θ, α) 3.60360 33.6387 4.83070 118.837

(0.6187) (63.715) (9.2382) (428.93)

PRHRL(b,θ, α) 3.73 × 106 4.71 × 10−1 4.5 × 106

1.01 × 106 (0.00001) 37.1468

SGML(b,θ, α) − 1.04 × 10−1 9.83 × 106 1.18 × 107

(0.1223) (4843.3) (501.04)

RTTLL(b,β,θ ) − 0.84732 5.52057 1.15678

(0.1001) (1.1848) (0.0959)

OLLL(b,θ, α) 2.32636 7.17 × 105 2.3 × 106

(2.14 × 10−1) (1.19 × 104) (2.6 × 101)

exp-L(b,θ, α) 3.62610 20,074.5 26,257.7

(0.6236) (2041.8) (99.74)

GL(b,θ, α) 3.58760 52,001.4 37,029.7

(0.5133) (7955.0) (81.16)

ROLLL(b,θ ) 3.89056 0.57316

(0.3652) (0.0195)

RBHL(θ, α) 1,080,175 513,672

(983,309) (23,231)

L(θ, α) 51,425.4 131,790

(5933.5) (296.12)

� 207.494, BICr � 213.517 and HQICr � 209.616 for the 2nd data among all fit-
ted competitive models. So, it could be selected as the best model under these GOF
criteria.

8 Conclusions

In this work, a new compound Lomax model called the Poisson exponentiated expo-
nential Lomax distribution is proposed and analyzed. The Poisson exponentiated
exponential Lomax distribution is derived based on compounding the zero trun-
cated Poisson distribution and the exponentiated exponential Lomax distribution. The
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Table 8 GOF statistics for 1st data

Model AICr BICr CAICr HQICr

PEEL 267.836 275.1288 268.136 270.768

OLLL 274.847 282.139 275.147 277.779

TTLL 279.140 288.863 279.646 283.049

GL 282.808 290.136 283.105 285.756

BL 285.435 295.206 285.935 289.365

exp-L 288.799 296.127 289.096 291.747

ROLLL 289.690 294.552 289.839 291.645

SGML 292.175 299.467 292.475 295.106

RTTLL 313.962 321.254 314.262 316.893

PRHRL 331.754 339.046 332.054 334.686

L 333.977 338.862 334.123 335.942

RBHL 341.208 346.070 341.356 343.162

Table 9 MLEs and SEs for 2nd data

Model Estimates

PEEL(a, b, θ ) − 3.09722 1.19912 0.96049

(1.3123) (0.4719) (0.05663)

BL(a, b,θ, α) 1.9218 31.2594 4.9684 169.572

(0.318) (316.84) (50.528) (339.21)

KL(a, b,θ, α) 1.6691 60.5673 2.56490 65.0640

(0.257) (86.013) (4.7589) (177.59)

TTLL(a, b,θ, α) (− 0.607) 1.78578 2123.39 4822.79

(0.2137) (0.4152) (163.92) (200.01)

RTTLL(b,β,θ ) − 0.6715 2.74496 1.01238

(0.18746) (0.6696) (0.1141)

PRHRL(b,θ, α) 1.59 × 106 3.93 × 10−1 1.30 × 106

2.01 × 103 0.0004 × 10−1 0.95 × 106

SGML(b,θ, α) − 1.04 × 10−1 6.45 × 106 6.33 × 106

(4.1 × 10−10) (3.21 × 106) (3.8573)

GL(b,θ, α) 1.9073 35,842.433 39,197.57

(0.3213) (6945.074) (151.653)

OLLL(b,θ, α) 1.66419 6.340 × 105 2.01 × 106

(1.8 × 10−1) (1.68 × 104) 7.22 × 106

123



S116 M. Aboraya et al.

Table 9 (continued)

Model Estimates

exp-L(b,θ, α) 1.9145 22,971.15 32,882.0

(0.348) (3209.53) (162.22)

RBHL(θ, α) 14,055,522 53,203,423

(422.01) (28.5232)

ROLLL(θ,θ ) 2.37233 0.69109

(0.2683) (0.0449)

L(θ, α) 99,269.8 207,019.4

(11,864) (301.237)

Table 10 GOF statistics for 2nd data

Model AICr BICr CAICr HQICr

PEEL 207.087 213.517 207.494 209.616

KL 209.735 218.308 210.425 213.107

TTLL 212.900 221.472 213.589 216.271

GL 211.666 218.096 212.073 214.195

SGML 211.788 218.218 212.195 214.317

BL 213.922 222.495 214.612 217.294

exp-L 213.099 219.529 213.506 215.628

OLLL 215.808 222.238 216.215 218.337

PRHRL 224.597 231.027 225.004 227.126

L 222.598 226.884 222.798 224.283

ROLLL 225.457 229.744 225.657 227.143

RTTLL 230.371 236.800 230.778 232.900

RBHL 229.201 233.487 229.401 230.887

new density can be “monotonically left skewed,” “monotonically right skewed” and
“symmetric” with various useful shapes. The new hazard rate can be “upside down
bathtub-increasing,” “bathtub (U-shape),” “monotonically decreasing,” “increasing-
constant” and “monotonically increasing.” Relevant statistical properties such as
ordinary moments, incomplete moments, moments of residual life, moments of the
reversed residual life and mean deviation are derived. For facilitating the mathemat-
ical modeling of the bivariate real data sets, we derive some new bivariate Poisson
exponentiated exponential Lomax distributions using “Farlie–Gumbel–Morgenstern
copula, modified Farlie–Gumbel–Morgenstern copula which contains four internal
types,” Clayton copula,” “Renyi’s entropy copula (RECp)” and “Ali-Mikhail-Haq cop-
ula.” However, future works may be allocated to study these new models.
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Fig. 5 EPDF, EHRF, P-P, KMS plots for the 1st data set

After studying the main statistical properties and presenting some bivariate type
extensions, we briefly considered and then described different estimation methods,
namely themaximum likelihood, Cramér-von-Mises estimation, ordinary least square,
weighted least square, Anderson–Darling, right tail Anderson–Darling and left tail
Anderson–Darling. These methods are used in estimation process of the unknown
parameters. Monte Carlo simulation experiments are performed for comparing the
performances of the proposed methods of estimation for both small and large sam-
ples. Furthermore, two applications are provided for illustrating the applicability of the
Poisson exponentiated exponential Lomaxmodel. The Kernel density plot, the “Quan-
tile–Quantile plot, the total time in test plot and box plot are provided and analyzed.
Based on two real data sets, the Poisson exponentiated exponential Lomax model
gives the lowest statistic test AICr � 267.836, CAICr � 268.136, BICr � 275.1288
and HQICr � 270.768 for the failure times data and AICr � 207.087, CAICr �
207.494, BICr � 213.517 and HQICr � 209.616 for the service times data.
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Fig. 6 EPDF, EHRF, P-P, KMS plots for the 2nd data set
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