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Abstract
We deal with the integral representation of Bargmann type of the functions belonging
to the β-modified Bergman space on the punctured unit disc, bymeans of some special
kernel-distribution involving the confluent hypergeometric functions and generalizing
the classical second Bargmann transform. As application, we derive integral formula
on the unit disc for the product of confluent hypergeometric functions, by considering
the associated fractional Hankel transform.

Keywords Reproducing kernel · β-Modified Bargmann transform · β-Fractional
Hankel transform

Mathematics Subject Classification Primary 30H20; Secondary 46E22 · 44A20

1 Introduction and Statement of Main Result

The so-called Bargmann transform was introduced by Bargmann [1] in his famous
paper. It is defined as a unitary integral transform mapping the wave functions
(Schrödinger) space to the classical Bargmann–Fock space on the complex plane,
whose kernel function corresponds to the generating function of the Hermite func-
tions. Since then, it has been investigated by many authors within the framework of
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quantum mechanics, signal processing and time frequency analysis. We refer to the
nice book by Folland [5], the survey by Hall [8], and the rich list of references therein.

In contrast, the second transform introduced by Bargmann in the same paper [1,
p. 203] does not gain such renewed interest. It can be realized as the coherent state
transform on the quantum mechanical configuration spaceHγ (R+), the Hilbert space
of complex-valued measurable functions that are square integrable on the real half line
R

+ with respect to the measure (xγ /�(γ + 1))dx ; γ > 0, where �(·) is the gamma
function. More explicitly, the transform

[˜Bγ ϕ](z) = (γ /π)1/2

(1 − z)γ+1

∫ +∞

0
ϕ(x) exp

(−x(1 + z)

2(1 − z)

)

xγ

�(γ + 1)
dx, (1.1)

madeHγ (R+) unitary isomorphic to the classical weighted Bergman space A2,γ (D)

of holomorphic functions on the unit disc D = {z = x + iy ∈ C; |z| < 1} belonging
to the Hilbert space L2(D, (1 − |z|2)γ−1dλ), dλ(z) = dxdy being the area measure.
The phase space A2,γ (D) may be realized as the null space of the densely defined
second-order differential operator

�γ = −4
(

1 − |z|2
)

(

(

1 − |z|2
) ∂2

∂z∂z
− (γ + 1)z̄

∂

∂ z̄

)

, (1.2)

which can be interpreted as a Hamiltonian of a charged particle in an external constant
magnetic field. The involved kernel function is closely connected to the generating
function for the generalized Laguerre polynomials

L(τ )
n (x) =

n
∑

k=0

(−1)k
�(τ + n + 1)

�(n − k + 1)�(τ + k + 1)

xk

k! . (1.3)

Namely, we have

A(z; x) = e−x/2
∞
∑

n=0

znL(γ )
n (x) = (1 − z)−γ−1 exp

(−x(1 + z)

2(1 − z)

)

.

Other generating functions on the underlying Hilbert space Hγ (R+) have been con-
sidered by Bargmann in his paper [2] of 1967 (Part II), whose associated phase spaces
are different of A2,γ (D).

Notice for instance that equivalent forms of ˜Bγ in (1.1) can be given making
use of canonical isometrics onto Hγ (R+). Thus, on the Hilbert space L2

τ (R
+) :=

L2(R+, dντ ); τ > 0, of complex-valued functions that are square integrable on R
+

with respect to the inner scalar product

〈ϕ,ψ〉τ =
∫ +∞

0
ϕ(x)ψ(x)dντ (x); dντ (x) := xτ e−xdx,
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the transform ˜Bγ reads equivalently

[Aτ f ](z) =
(

1

π�(τ)

)1/2 ∫ +∞

0

xτ e−x

(1 − z)τ+1 exp

( −zx

1 − z

)

f (x)dx (1.4)

and maps L2
τ (R

+) unitarily onto A2,τ (D). Another variant on L2(R+, dx/x) was
considered in [3], and next extended to generalized Bargmann transforms giving rise
to the integral representation of the weighted m-th Bergman space seen as the L2-
eigenspace of �γ in (1.2) associated the m-th hyperbolic Landau level 4m(γ − m);
m = 0, 1, . . . , [γ /2], where [·] denotes the integer part.

Recently, the so-called β-modified Bergman spaceA2,α
β (D) = Hol(D∗)∩ L2,α

β (D)

was introduced in [7]. It is defined as the closed subspace of holomorphic functions
on the punctured unit disc D

∗ := D � {0} embedded in the Hilbert space L2,α
β (D) :=

L2(D, dμα,β); α, β > −1, of Borel measurable complex-valued functions f on D

subject to

‖ f ‖2α,β :=
∫

D

| f (z)|2dμα,β(z) < +∞,

where

dμα,β(z) := |z|2β
(

1 − |z|2
)α

dλ(z).

The sequence characterization reads

A2,α
β (D) =

{

f (z) =
∞
∑

n=0

anz
n−m;

∞
∑

n=0

B(α + 1, β + n − m + 1)|an|2 < +∞
}

,

where B(x, y) = �(x)�(y)/�(x + y) denotes the classical Beta function and m =
min{k ∈ Z; β ≤ k} (i.e., β = β0 + m with m ∈ N and −1 < β0 ≤ 0). We refer to
[6, 7] for the motivation and additional information on this space. The nature and the
distribution of the zeros of its reproducing kernel Kα,β is described in details in [6].

In the present paper, we are concerned with integral representation theorems for the
consideredβ-modifiedBergman space.Weprovide sufficient and necessary conditions
to given holomorphic function on the punctured unit disc to be the image of some
complex-valued functionbelonging to the configuration space L2

τ (R+)by some second
Bargmann-like transform. Namely, we deal with the integral transforms

[Gα,βψ
]

(z) := cα

∫ +∞

0

xα+1

zβ(1 − z)α+2 exp

(

− x

1 − z

)

ψ(x)dx (1.5)

and

[

˜Gα,βψ
]

(z) := cα

�(−α)

∫ +∞

0

e−x

xα+1zα+β+1(1 − z)
1F1

(

1
−α

∣

∣

∣

∣

− xz

1 − z

)

ψ(x)dx .

(1.6)
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1370 A. Ghanmi, S. Snoun

Here,

cα =
(

1

π�(α + 1)

)1/2

(1.7)

and 1F1 denotes the confluent hypergeometric function defined by the absolutely
convergent series

1F1

(

a
c

∣

∣

∣

∣

z

)

=
+∞
∑

n=0

(a)n

(c)n

zn

n! , (1.8)

where (a)n = �(a + n)/�(a) is the Pochhammer symbol for any nonnegative
integer n. For the special case β = 0 (and then m = 0), we recover the conven-
tional weighted Bergman space A2,α+1(D). Moreover, the corresponding transform
Gα,0, given through 1.5, reduces to the second Bargmann transform in (1.4) with
τ = α + 1 = γ .

More precisely, we aim to show that, under the assumption that τ = α+1 andβ is in
addition a nonnegative integer, a complex-valued function f belongs toA2

α,β(D) if and

only if there exists ϕ ∈ L2
τ (R

+) such that f = Gα,βϕ (Theorem 3.1). A similar state-
ment holds true for the transform ˜Gα,β when −1 < α < 0 and α + β is a nonnegative
integer with τ = −α − 1 (Theorem 3.2). This leads to the concrete description of the
spectral and analytical properties of Gα,β and ˜Gα,β when acting on the Hilbert spaces
L2

α+1(R
+) and L2−α−1(R

+), respectively. This explicit characterization is valid only
for special values of α and β. The general case needs further investigations. Thus, we
also show that the concerned kernel functions are closely connected to the reproducing
kernel function and we give the explicit expression of the inversion formula for the
integral transforms Gα,β and ˜Gα,β . As application, by combining the obtained results
with the fractional Hankel transform, we derive original integral formulas on the unit
disc, including the one for the product of the confluent hypergeometric function, in
terms of the modified Bessel function (Theorem 4.1).

In Sect. 2, we give an equivalent closed formula for the reproducing kernel of
the β-modified Bergman space A2,α

β (D) (Proposition 2.1). In Sect. 3, we establish

the main properties of the transforms Gα,β and ˜Gα,β , including the explicit action
on an orthonormal basis of L2

τ (R
+), leading to the proof of our first main results

(Theorems 3.1 and 3.2). Section 4 is devoted to the proof of Theorem 4.1 concerning
a direct application of the obtained result making use of associated fractional Hankel
transform.

2 Closed Formula for K˛,ˇ

We give below a closed formula for the reproducing kernel Kα,β in terms of the Gauss
hypergeometric function 2F1 defined by

2F1

(

a, b
c

∣

∣

∣

∣

z

)

=
+∞
∑

n=0

(a)n(b)n
(c)n

zn

n! . (2.1)
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Proposition 2.1 The reproducing kernel of A2,α
β (D) is given by

Kα,β(z, w) := (zw)−m

πB(α + 1, β − m + 1)
2F1

(

1, α + β − m + 2
β − m + 1

∣

∣

∣

∣

zw

)

. (2.2)

Proof The closed formula (2.2) for the reproducing kernel Kα,β(z, w) can be handled
making use its expansion reads

Kα,β(z, w) :=
∞
∑

n=0

eα,β
n (z)eα,β

n (w),

for orthogonal basis eα,β
n of A2,α

β (D). Thus, using the orthonormal basis

eα,β
n (z) := γ α,β

n zn−m; n = 0, 1, 2, . . . ,

with

(γ α,β
n )2 := 1

πB(α + 1, β − m + 1)

(α + β − m + 2)n
(β − m + 1)n

(2.3)

we easily deduce the closed expression in (2.2). The existence of Kα,β is due to the
Riesz representation theorem since the evaluation mapping is continuous. In fact, we
have

| f (z)| ≤
( ∞

∑

n=0

|γ α,β
n |2

)1/2

‖ f ‖α,β

≤ 1

π�(α + 1)

( ∞
∑

n=0

�(α + β − m + n + 2)

�(n + β − m + 1)

)1/2

‖ f ‖α,β

for every f ∈ A2,α
β (D). The convergence of the involved series can be handled using

the Euler asymptotic estimate

�(α + β − m + n + 2)

�(n + β − m + 1)
∼ 1

nα+1

valid for n large enough. ��
Remark 2.1 Some interesting estimates for f ∈ A2,α

β (D) are obtained in [7] and can
be used to prove the continuity of f → f (z) for fixed z ∈ D

∗.
For β = 0 (and then m = 0), we recover the reproducing kernel of the weighted

Bergman space A2,α+1(D), to wit

Kα,0(z, w) := 1

πB(α + 1, 1)
2F1

(

1, α + 2
1

∣

∣

∣

∣

zw

)

= α + 1

π

1

(1 − zw)α+2 .

The following result discusses the particular case α = 0.
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1372 A. Ghanmi, S. Snoun

Corollary 2.2 The reproducing kernel of A2,0
β (D) is given by the closed formula

K0,β(z, w) := (β − m + 1) − (β − m)zw

π(1 − zw)2(zw)m
. (2.4)

Proof The proof is immediate by direct computation since for |ξ | < 1, we have

2F1

(

1, c + 1
c

∣

∣

∣

∣

ξ

)

=
(

I d + ξ

c

d

dξ

) (

1

1 − ξ

)

= c + (1 − c)ξ

c(1 − ξ)2
.

��

3 Integral Representation ofA2,˛
ˇ (D)

The construction of bounded integral transforms on separable Hilbert space with pre-
scribed kernel function can be done following a general scheme. In fact, for our
underlying Hilbert spaces L2

τ (R
+) with the orthonormal basis ϕτ

n and A2,α
β (D) with

the orthonormal basis eα,β
n , the condition

∥

∥

∥

∥

∥

N
∑

n=0

ane
α,β
n

∥

∥

∥

∥

∥

α,β

≤ c

∥

∥

∥

∥

∥

N
∑

n=0

anϕ
τ
n

∥

∥

∥

∥

∥

τ

(3.1)

(for certain c ≥ 0) for every N and an ∈ C; 0 ≤ n ≤ N , shows the existence of a
uniquely defined bounded operator G on L2

τ (R
+) such that Gϕτ

n = eα,β
n (see [1, p.

195]). Moreover, the corresponding kernel function is given by the bilinear generating
function

∞
∑

n=0

ϕτ
n (x)eα,β

n (z).

We aim to prove the following main results

Theorem 3.1 The integral transform Gα,β is well bounded defined operator on the
Hilbert space L2

α+1(R
+) when β is a nonnegative integer and maps it isometri-

cally onto the β-modified Bergman space A2,α
β (D). Its inverse G−1

α,β : A2,α
β (D) −→

L2
α+1(R

+) is given by

G−1
α,β [ f ](x) = cα

∫

D

1

zβ(1 − z)α+2
exp

(

− xz

1 − z

)

f (z)dμα,β(z).

Theorem 3.2 The transform ˜Gα,β is well bounded defined operator on the Hilbert
space L2−α−1(R

+) with −1 < α < 0, and α + β is a nonnegative integer. Its range
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coincides with the β-modified Bergman space A2,α
β (D). The inverse is given by

˜G−1
α,β [ f ](x) = cα

�(−α)

∫

D

1

zα+β+1(1 − z)
1F1

(

1
−α

∣

∣

∣

∣

− xz

1 − z

)

f (z)dμα,β(z).

To this end, we begin by providing the expansion series of the involved kernel
functions

gα,β(x, z) = cα

xα+1

zβ(1 − z)α+2 exp

(

− x

1 − z

)

and

g̃α,β(x, z) = cα

�(−α)

x−α−1e−x

zα+β+1(1 − z)
1F1

(

1
−α

∣

∣

∣

∣

− xz

1 − z

)

(3.2)

of Gα,β(x; z) and ˜Gα,β(x; z). Thus, let consider the functions

ϕτ
n (x) = ρτ

n L
(τ )
n (x); ρτ

n :=
(

n!
�(τ + n + 1)

)1/2

, (3.3)

associatedwith the generalizedLaguerre polynomials L(τ )
n (x) in (1.3), and constituting

an orthonormal basis of L2
τ (R

+) .

Proposition 3.3 Let cα be the constant in (1.7). The distribution-kernels for Gα,β(x; z)
and ˜Gα,β(x; z) are given, respectively, by

gα,β(x, z) = cαx
α+1e−x

∞
∑

n=0

zn−mL(τ )
n (x) (3.4)

when β = m is a nonnegative integer and α > −1, and by

g̃α,β(x, z) = cα

�(−α)
x−α−1e−x

∞
∑

n=0

n!
�(τ + n + 1)

zn−α−β−1L(τ )
n (x). (3.5)

when α + β is a nonnegative integer and −1 < α < 0.

Proof Let

Sτ
α,β(x; z) :=

∞
∑

n=0

ϕτ
n e

α,β
n (z) =

∞
∑

n=0

γ α,β
n ρτ

n zn−mL(τ )
n (x)

For τ = α + 1 and β = m (β nonnegative integer), we get γ
α,β
n ρτ

n = cα for any
n = 0, 1, 2, . . .. Therefore, the previous series reduces further to

Sα+1
α,β (x; z) = cαz

−m
∞
∑

n=0

znL(τ )
n (x) = cα

exp
(

− xz
1−z

)

zm(1 − z)α+2 .

123



1374 A. Ghanmi, S. Snoun

The last equality readily follows by means of the classical generating function for the
Laguerre polynomials [10, p.242]. This shows that xα+1e−x Sα+1

α,β (x; z) = gα,β(x; z)
is exactly the kernel function of the integral transform given through (1.5).

Now, for the case of τ = −α − 1 with −1 < α < 0 and under the assumption that
α + β is a nonnegative integer, we obtain γ

α,β
j = cαρ

α,β
j and hence

S−α−1
α,β (x; z) = cα

∞
∑

j=0

(ρ
α,β
j )2z j−mL(τ )

j (x) = cα

�(τ + 1)

∞
∑

j=0

j !
(τ + 1) j

z j−mL(τ )
j (x).

Thus, we recognize the generating function [10, p. 242]

∞
∑

j=0

(λ) j

(τ + 1) j
z j L(τ )

j (x) = (1 − z)−λ
1F1

(

λ

τ + 1

∣

∣

∣

∣

− xz

1 − z

)

.

This shows that

S−α−1
α,β (x; z) = cα

�(−α)

1

zm(1 − z)
1F1

(

1
τ + 1

∣

∣

∣

∣

− xz

1 − z

)

= xα+1ex g̃α,β(x, z).

��
Remark 3.1 It is interesting to point out that the conditions −1 < α < 0 and α + β

are nonnegative integer imply that α + β + 1 = m = min{k = 0, 1, 2, . . . ; k ≥ β},
and then, the corresponding integral transform ˜Gα,β is very specific and depends only
in β.

The obtained kernel functions are closely connected to the reproducing kernel
function discussed in the previous section. Namely, we prove the following key result.

Proposition 3.4 Under the assumptions of Proposition 3.3, we have

〈

Sτ
α,β(., z), Sτ

α,β(., w)
〉

τ
= Kα,β(z, w). (3.6)

Proof The result can be checked at least formally using the expansion series of the
involved series provided by Proposition 3.3. However, a rigorous proof can be given by
direct computation. Below, we prove only the identity involving the second transform
with α + β + 1 = m. Thus, we have

〈

Sτ
α,β(., z), Sτ

α,β(., w)
〉

τ
= c2α

�2(−α)

(zw)−m

(1 − z)(1 − w)
Nα(z), (3.7)

where Nα(z) stands for

Nα(z) :=
∫ +∞

0
e−x x−(α+1)

1F1

(

1
−α

∣

∣

∣

∣

− xz

1 − z

)

1F1

(

1
−α

∣

∣

∣

∣

− xw

1 − w

)

dx .
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The explicit computation of the integral Nα(z) can be handled making the change of
variable y = −xz/(1 − z) for z ∈] − 1, 0[ and using again the identity [10, p. 293].
Indeed, we get

Nα(z) =
∫ +∞

0
y−(α+1)e− y(z−1)

z

(

z

z − 1

)α

1F1

(

1
−α

∣

∣

∣

∣

y

)

1F1

(

1
−α

∣

∣

∣

∣

w(z − 1)

z(w − 1)
y

)

dy

= �(−α) (1 − z) (1 − w) 2F1

(

1, 1
−α

∣

∣

∣

∣

w(z − 1)

z(w − 1)

z2(w − 1)

(z − 1)

)

. (3.8)

Using the principle of isolated zeros, the Eq. (3.8) remains true for all z ∈ D
∗. There-

fore, from (3.7) and (3.8) we obtain

〈

Sα,β(., z), Sτ
α,β(., w)

〉

τ
= (zw)−m

πB(α + 1, β − m + 1)
2F1

(

1, α + β − m + 2
β − m + 1

∣

∣

∣

∣

zw

)

.

The right hand-side is exactly the closed expression of the reproducing kernel function
given in Proposition 2.1. ��
Proposition 3.5 The integral transform Gα,β is well defined on the Hilbert space
L2

τ (R
+) for τ = α + 1 and β being a nonnegative integer, while ˜Gα,β is well defined

on the Hilbert space L2
τ,σ (R+) for τ = −(α + 1), −1 < α < 0, and α + β being a

nonnegative integer.

Proof Set Kα,β z(w) := Kα,β(w, z). Then, by making use of the Cauchy–Schwarz
inequality, we obtain

∣

∣

(Gα,βϕ
)

(z)
∣

∣ ≤
(∫ +∞

0
|Sτ

α,β(x, z)|2dν(x)

)1/2

‖ϕ‖τ

≤ (

Kα,β(z, z)
)1/2 ‖ϕ‖τ

≤ ∥

∥Kα,β z

∥

∥

α,β
‖ϕ‖τ .

These inequalities readily follow making use of Propositions 3.3 and 3.6. The fact
Kα,β(z, z) = ∥

∥Kα,β z

∥

∥

2
α,β

is well-known from general theory of reproducing kernels
and can be handled at least formally using the reproducing property applied to Kα,β z

(belonging to A2,α
β (D)). The proof for the second transform ˜Gα,β is quite similar. ��

The following result gives the explicit action of the considered integral transforms
on the orthogonal basis of L2

τ (R
+) generated by the generalizedLaguerre polynomials.

Proposition 3.6 Keep assumptions on the reals α and β as in Proposition 3.3. Then,
we have

Gα,β

(

ϕτ
n

)

(z) = eα,β
n (z)

123



1376 A. Ghanmi, S. Snoun

and

˜Gα,β

(

ϕτ
n

)

(z) = eα,β
n (z).

Proof The formal proof is immediate using the expansions of the involved kernels
in Proposition 3.3. However, we present below a direct proof by making explicit
computation. Indeed, for τ = α + 1, we have

[

Gα,βϕα+1
n

]

(z) = cαρα+1
n

zβ(1 − z)α+2

∫ +∞

0
xα+1 exp

(

− x

1 − z

)

L(α+1)
n (x)dx

=
(

1

πB(α + 1, n + 1)

)1/2

zn−m = eα,β
n (z)

by means of [10, p. 244]. For the second case of τ = −(α + 1) with −1 < α < 0 and
α + β being a nonnegative integer (and then α + β + 1 = m), we make use of [10, p.
293] to derive the following

[Gα,βϕτ
n

]

(z) = cαρτ
n

�(−α)zm(1 − z)

∫ +∞

0

e−x

xα+1 1F1

(

1
−α

∣

∣

∣

∣

− xz

1 − z

)

L(τ )
n (x)dx

= cαρτ
n

�(−α)zm(1 − z)

(−α)n

n!
∫ +∞

0

e−x

xα+1 1F1

(

1
−α

∣

∣

∣

∣

− xz

1 − z

)

1F1

(−n − m
−α

∣

∣

∣

∣

x

)

dx

=
(

1

πB(α + 1, β − m + n + 1)

)1/2

zn−m = eα,β
n (z).

��
Proposition 3.7 The range of the configuration space L2

α+1(R
+) (resp. L2−α−1(R

+))
by the transform Gα,β (resp. ˜Gα,β ), under the assumptions of Proposition 3.3, is exactly
theβ-modifiedBergman spaceA2,α

β (D).Moreover, the transformsGα,β and˜Gα,β define
unitary bounded operators.

Proof From Proposition 3.6, the condition (3.1) holds since for every ϕ =
∑N

n=0 anϕ
τ
n ∈ Span{ϕτ

n ; n = 0, 1, 2, . . .}, we have Gα,βϕ = ∑N
n=0 ane

α,β
n and then

‖ϕ‖2τ =
N

∑

n=0

|an|2 = ∥

∥Gα,βϕ
∥

∥

2
α,β

.

Therefore, Gα,β defines a bounded operator from L2
τ (R

+) onto its range

Gα,β

(

L2
τ (R

+)
)

= Span
{

eα,β
n ; n ≥ 0

}L2,α
β (D)

= A2,α
β (D).

��
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Corollary 3.8 The inverse integral transforms from A2,α
β (D) onto L2

τ (R
+) are given

by

G−1
α,β [ f ](x) = cα

∫

D

(

1 − |z|2)α
zβ

(1 − z)α+2 exp

(

− xz

1 − z

)

f (z)dλ(z) (3.9)

and

˜G−1
α,β [ f ](x) = cα

�(−α)

∫

D

(

1 − |z|2)α
zβ

zα+1(1 − z)
1F1

(

1
−α

∣

∣

∣

∣

− xz

1 − z

)

f (z)dλ(z). (3.10)

Proof Using Proposition 3.3, it is not hard to see that the kernel functions for the
inverse integral transforms G−1

α,β : A2,α
β (D) −→ L2

α+1(R
+) and ˜G−1

α,β : A2,α
β (D) −→

L2−α−1(R
+) are given by (1−|z|2)α|z|2β Sτ

α,β(x; z) (with τ = α +1 and τ = −α −1,
respectively). This can also be recovered starting fromProposition 3.6.More explicitly,
we have

G−1
α,β [ f ](x) =

∫

D

x−α−1ex gα,β(x; z) f (z)dμα,β(z)

and

˜G−1
α,β [ f ](x) =

∫

D

xα+1ex g̃α,β(x; z) f (z)dμα,β(z).

which gives rise to (3.9) and (3.10), respectively. ��

4 Application

Let Iη be the modified Bessel function

Iη(ξ) =
∞
∑

n=0

1

n!�(η + n + 1)

(

ξ

2

)2n+η

. (4.1)

For m = 0, 1, 2, . . . and τ = α + 1 or τ = −α − 1, we consider

V (x, y|θ) :=
(√

xyθ
)−τ

(1 − θ)θm
exp

(−(x + y)θ

1 − θ

)

Iτ

(

2
√
xyθ

1 − θ

)

(4.2)

for x, y > 0 and |θ | < 1, as well as

Jα
1 (θ) =

∫

D

(

1 − |z|2)α

(

1 − θ z − z + θ |z|2)α+2 exp

(

− xz + yθ z − (x + y)θ |z|2
1 − θ z − z + θ |z|2

)

dλ(z)

(4.3)
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and

Jα
2 (θ) =

∫

D

(

1 − |z|2)α|z|−2(α+1)

(

1 − θ z − z + θ |z|2) 1F1

(

1
−α

∣

∣

∣

∣

− xz

1 − z

)

× 1F1

(

1
−α

∣

∣

∣

∣

− yθ z

1 − θ z

)

dλ(z). (4.4)

Theorem 4.1 The integrals Jα
1 (θ) in (4.3) and Jα

2 (θ) in (4.4) are closely connected to
V (x, y|θ) in (4.2). More precisely, we have

c2α J
α
1 (θ) = θmV (x, y|θ) and c2α J

α
2 (θ) = θm�2(−α)V (x, y|θ).

Proof In order to prove Theorem 4.1, we adopt the formalism presented recently in
[3] that we adapt to the complex setting. Thus, let Sα,β denote the integral transform
Gα,β or ˜Gα,β , and set

Sα,β(ϕ)(z) =
∫

R+
Sτ
α,β(x, z)ϕ(x)dντ (x)

with kernel function given by Sτ
α,β(x, z) = x−α−1ex gα,β(x, z) in (3.4) when Sα,β =

Gα,β and Sτ
α,β(x, z) = xα+1ex g̃α,β(x, z) in (3.5) when Sα,β = ˜Gα,β . Thus, by com-

bining Sα,β and its inverse given by

S−1
α,β( f )(x) =

∫

D

Sτ (x, z) f (z)dμα,β(z),

we perform the operator Hθ = S−1
α,β ◦ �θ ◦ Sα,β , where �θ( f )(z) = f (θ z). Such

operator is an integral transformwith kernel given by the expansion series (converging
absolutely and uniformly)

V (x, y|θ) =
∞
∑

j=0

θ j−m(

ρτ
j+m

)2
L(τ )
j (x)L(τ )

j (y)

= 1

θm

∞
∑

j=0

j !
�(τ + j + 1)

θ j L(τ )
j (x)L(τ )

j (y)

= 1

θm(1 − θ)
exp

(

θ(x + y)

1 − θ

)

√

θxy
−τ

Iτ

(

2
√

θxy

1 − θ

)

. (4.5)

The last identity is obtained thanks to the Hardy–Hille formula [10, p. 242]. In the
formula above, Iτ is the modified Bessel function in (4.1).
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On the other hand, by Fubini theorem we get

Hθ (ϕ)(x) =
∫

R+

(∫

D

Sτ (x, z)Sτ (y, θ z)dμα,β(z)

)

ϕ(y)dντ (y)

=
∫

D

Sτ (x, z)

(∫

R+
Sτ (y, θ z)ϕ(y)dντ (y)

)

dμα,β(z)

for every ϕ ∈ L2
τ (R

+). Thus, the kernel function V (x, y|θ) reads

V (x, y|θ) :=
∫

D

Sτ (x, z)Sτ (y, θ z)dμα,β(z). (4.6)

More exactly, keeping in mind the expression of the kernel given through (3.4) and
(3.5), we get

V (x, y|θ) = c2α
θβ

∫

D

(

1 − |z|2)α exp
(

− xz+yθ z−xθ |z|2−yθ |z|2
1−θ z−z+θ |z|2

)

(

1 − θ z − z + θ |z|2)α+2 dλ(z)

and

V (x, y|θ) = c2α
�2(−α)θα+β+1

∫

D

(

1 − |z|2)α

|z|2α+2(1 − θ z)(1 − z)
1F1

(

1
−α

∣

∣

∣

∣

− xz

1 − z

)

× 1F1

(

1
−α

∣

∣

∣

∣

− yθ z

1 − θ z

)

dλ(z)

Subsequently, the assertion of Theorem 4.1 follows by comparing (4.6) and (4.5). This
completes the proof of Theorem 4.1. ��
Remark 4.1 The transform Hθ in the previous proof is exactly the fractional Hankel
transform considered by Namias in [11] (see also [3, 9]).

5 Concluding Remarks

The previous formalism can be extended to deal with a family of bounded integral
transforms on truncated Hilbert subspace of L2

τ (R
+). Thus, if we denote by L2

τ,σ (R+)

the closed subspace spanned by the generalized Laguerre polynomials L(τ )
n+σ ; n =

0, 1, . . .. Their images A2,α
β,σ (D) form a decreasing sequence of closed subspaces of

the β-modified Bergman space A2,α
β (D), and so that for the limit case σ = m, we

recover the transforms described in Sect. 2. In fact, by performing

Sτ,σ
α,β (x; z) :=

∞
∑

n=a0

ϕτ
n+σ (x)eα,β

n (z) =
∞
∑

j=a0+σ

γ
α,β
j−σ ρτ

j z
j−σ L(τ )

j (x)
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and specifying τ = ε(α + 1) with ε = ±1, and σ = β + 1−ε
2 (α + 1) we get

γ
α,β
j−σ ρτ

j = cα

2

(

(1 + ε) + (1 − ε)
(1) j

�(−α)(τ + 1) j

)

Subsequently, we claim that

Sτ,σ
α,β (x; z) = (1 + ε)

2
Sα+1
α,β (x; z) + (1 − ε)

2
S−α−1
α,β (x; z)

−
⎛

⎝

(1 + ε)cα

2

a0+σ−1
∑

j=0

z j−σ L(τ )
j (x) + (1 − ε)cα

2�(−α)

a0+σ−1
∑

j=0

(1) j
(τ + 1) j

z j−σ L(τ )
j (x)

⎞

⎠ .

Here, Sα+1
α,β (x; z) and S−α−1

α,β (x; z) can be computed in a similar way as those involved
in the previous section. Thus, we claim

Sα+1
α,β (x; z) = cα

zσ (1 − z)τ+1 exp

(

− xz

1 − z

)

and

S−α−1
α,β (x; z) = cα

�(−α)zσ (1 − z)
1F1

(

1
τ + 1

∣

∣

∣

∣

− xz

1 − z

)

hold trues for some specific values of α and β. In a separate forthcoming paper, we
emphasize to extend the results to other values of α and β, and to provide a concrete
description of the ranges of the corresponding integral transforms.
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