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Abstract

Sarmanov family of bivariate distributions, which was suggested by Sarmanov (Math-
ematical models in hydrology symposium, 1974) as a new mathematical model of
hydrological processes, is considered one of the most flexible and efficient extended
families of the traditional FGM family. Despite its manifest advantages, it was never
investigated in the literature. In this paper, we revisit this family by revealing sev-
eral new prominent statistical properties. The distribution theory of concomitants of
order statistics from this family is investigated. Besides, some aspects of information
measures, namely the Shannon entropy, inaccuracy measure, and Fisher information
number, are theoretically and numerically studied. Two bivariate real-world data sets
have been analyzed for illustrative purposes, and the performance is quite satisfactory.

Keywords Sarmanov family - FGM family - Iterated FGM family - Concomitants of
order statistics - Shannon entropy - Inaccuracy measure - Fisher information number

Mathematics Subject Classification 60B12 - 62G30

1 Introduction

In modeling multivariate data, when the available information is only in the form of
marginal distributions, it is suitable to consider families of multivariate distribution
functions (DFs) with specified marginals. The Farlie—Gumbel-Morgenstern (FGM)
family of bivariate DFs provides a flexible family that can be used in such situations.
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The FGM family of bivariate DFs is defined by Fx y(x,y) = Fx(x)Fy(y)[l +
wFx(x)Fy(y)], =1 <w < 1, where Fx(x) = P(X < x)and Fy(y) = P(Y <)
are the marginals DFs, while Fx and Fy are the survival functions of Fy and Fy,
respectively. The FGM family was originally introduced by Morgenstern [40] for
Cauchy marginals. A well-known drawback to this family is the low dependence
level it permits between random variables (RVs), where the Spearman’s Rho p €
(—0.33, 0.33). Therefore, the FGM family is a useful family in applications provided
that the correlation between the variables is not too large. Nowadays, several extensions
for the family FGM have been introduced in the literature in an attempt to improve the
correlation level. We shall mention here a number of the most important extensions of
the FGM family developed primarily to increase the maximal value of the correlation
coefficient. All these extensions are polynomial type (i.e., that are expressed in terms
of polynomials in Fx and Fy ).

1. Huang and Kotz [34] used successive iterations in the FGM family. As a particular
case, the bivariate FGM with a single iteration is defined by

Fxy(x,y) = Fx(X)Fy(y) [1 + AFx (x) Fy (y) + 0 Fx (x) Fy () Fx () Fy ()] ,

denoted by IFGM(A, w). When the two marginals Fy and Fy are continuous,
Huang and Kotz [34] showed that the natural parameter space <2 (the admissible set
of the parameters A and w that makes F y is a DF) is convex, where 2 = {(A, w) :

—1<A<liw+r>-1,w< 3=AVI-6A=3A7 W}. Moreover, when the marginals

are uniform, the correlation coefficient is p = % + %, with the maximal positive
value 0.434. Recently, this family was studied in different important aspects by
Alawady et al. [7], Barakat and Husseiny [15], and Barakat et al. [16,19].

2. Huang and Kotz [35] proposed two analogous extensions by

Fyy (. y) = FxFy () [1+ (1 = F{ ) — F o). pr = 1. (1D

and

Fy(x,y) = Fx(0)Fy () [1+22(1 = Fx()P2 (1 — Fr()™?], p2 > 1. (1.2)

The admissible range of the shape parameter vectors (A1, p;) and (A2, p2) is
Q={,p) i —pt < <p;pi=1}and Q= {(a, p2): =1 <A <
(%—ﬂ)pz : , p2>1lor —1<Xiy <+1, py = 1}, respectively. The maximal
positive correlation for the families (1.1) and (1.2) is given by 0.375 and 0.391,
which are attained at p; = 2 and p, = 1.1877, respectively. The most works
about the extensions (1.1) and (1.2) are concerning to the family (1.1). Among
those works are Abd Elgawad et al. [2,5], Bairamov and Kotz [12], Barakat et al.
[18], and Fisher and Klein (2007).
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3. Bekrizadeh et al. [21] proposed a generalization family for FGM by

Fxy(x,y) = Fx(x)Fy(y) [1 + A1 — Fg(x)(1 — Ff(y))]N,
p>0 N=0,1,2,... (1.3)

e L
Np Np

Bekrizadeh et al. [21] showed that by means of the family (1.3), the strongest
positive of Spearman’s correlation coefficient between the marginal distributions
becomes p = 0.43, while the weakest negative of Spearman’s correlation coef-
ficient remains p = —0.50. Moreover, Barakat et al. [20] showed that when
0 < p < 1, the model (1.3) becomes poor and is not allowing any improvement
in the positive Spearman’s correlation. Recently, Abd Elgawad et al. [3] discussed
some aspects of the distribution of the concomitants of generalized order statistics
from the family (1.3).

4. Bairamov et al. [11] suggested a four-parameter family, which is the most general

form of the FGM family, by

The admissible range of the associated parameter A is —min { 1

Fxy(x,y) = Fx(x)Fy ()1 4+ A1 = F' )? (1 — F2 ()],
Pi, P2, 41,42 > 1, (1.4)
with p € (—0.48, 0.502) for uniform marginals. For some recent works about this

family and its properties, see Alawady et al. [8] and Barakat et al. [17].
5. Sarmanov [43] suggested an extension of FGM defined by

Fry(x,y) = Fx()Fy0)[ 14+ 3aFx () Fy () + 5 @Fx (x) = 1)
QFy () = DFx@Fr () (15)

denoted by SAR(w). The corresponding probability density function (PDF) is
given by

fxy(xy) = fx@) fr([1+3a@2Fx(x) — DQ2Fy(y) — 1

o4

S 12 12
+ 707 6QFK &) = D7 =DHOEFY() =D7 =D |, le| =
(1.6)
Moreover, when the marginals are uniform (to get the copula), the correlation

coefficient is . Thus, in this case, the minimal and maximal correlation coefficient
p of this copula are —0.529 and 0.529, respectively (cf. [13]; page 74).

It is worth noting that all the preceding extended families are special cases of an
extended family to the family FGM, which is defined via its PDF

fxy (e, y) = fx () fy (A + O(K; x, y)), (1.7
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where fx and fy are the PDFs of Fy and Fy, respectively, x is a shape-parameter
vector, | +0O(k; x, y) > 0, and ® is ameasurable function satisfying E(® (k; X, y)) =
E(®(k; x, Y)) = 0 (the last two conditions are necessary conditions for fx y to be a
bona fide joint PDF). This legitimates that we consider the family (1.6) as an extension
of the FGM family, although there is no value of the shape parameter « makes the
family switching to the FGM family. Moreover, the PDF (1.7) is a slight extension of the
Sarmanov density, which was introduced by Sarmanov [42]. For the Sarmanov density,
we have O (k; x, y) = A01(x)02(y), where A is a shape parameter, 61 (.) and 6> (.) are
measurable functions satisfying 1 +161 (x)62(y) > 0, and E(61 (X)) = E(62(Y)) = 0.
For more details about the Sarmanov density and its advantage and wide applications,
see Abdallah et al. [1], Bolancé and Vernic [22], Bolancé et al. [23], and Lin and
Huang [38].

Clearly, the SAR(«) family is the most efficient one among all the mentioned
extended families (actually it is one of the most efficient extended families in the
literature) in the sense that it provides the best improvement in the correlation level.
Moreover, this family, among all the well-known extensions, has one shape parameter,
which makes it the most flexible family; particularly, this shape parameter represents
the correlation coefficient in the case of uniform marginals. The last individual feature
facilitates the estimation of the shape parameter by using, for example, the sample
correlation estimate, and thus this family is easy to use in the modeling of bivariate data.
Despite all these useful and unique features of this family, it has not been studied or paid
any attention to by researchers since its proposal. In the present paper, we reveal some
additional motivating properties for the Sarmanov family (1.6). Moreover, we discuss
some aspects of the concomitants of order statistics (OSs) and some information
measures pertain to this disused family. In view of these information measures and
via a computational study, some comparisons are carried out between the IFGM(A, w)
and SAR(«) families based on the admissible values of the correlation coefficient.

The study of concomitants of OSs is a growing field. The concept of concomitant
OSs is related to the ordering bivariate RVs. The concomitants of OSs arise when one
sorts the members of a random sample according to corresponding values of another
random sample. More specifically, in collecting any data for an observation, several
characteristics are often recorded; some of them are considered primary and others can
be observed from the primary data automatically. The latter one is called concomitant
or explanatory variables or covariables. David [24] was among the early authors who
popularized the study of this subject. Further authoritative updates on concomitants
of OSs are given in Barakat and El-Shandidy [14], David and Nagaraja [25,26], David
et al. [27], Eryilmaz [29], and Hanif [33]. The PDF of the rth concomitant, Yj,.,, of
the rth OS, X,.,, 1 <r <n, is given by

f[r:n](y) = / leX(y|x)fr:n(x)dxa (1.8)

where f,., (x) is the PDF of rth OSs and fy|x (y|x) is the conditional PDF of Y given
X (see,e.g., [2] and [18,19]). Moreover, the joint PDF of the rth and sth concomitants,
Y[r:n) and Y[z, of the rth and sth OSs X, and X.,, | <r < s < n, respectively,
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is given by
0o px
Jirsm1 (1, ¥2) =/ f Syix ilxn) frix (v21x2) fr s (x1, x2)dx1dx2, (1.9)
—00 —00

where f; 5., (x1, x2) is the joint PDF of X,., and Xj., (see, e.g., [2] and [18,19]).

Although most of the results of this paper are derived for arbitrary marginal DFs, we
consider the generalized exponential DF, which is defined by Fy (x) = (1 - e—ex)a ,
x;a,0 > 0, and is denoted by GE (0; a), as a case study example. Clearly, GE(9; 1)
is an exponential DF. Many authors studied various properties of this distribution,
e.g., Kundu and Pradhan [37]. Gupta and Kundu [32] showed that the £th moment of
GE(0; a) is given by

o _ at! &y .
My = 97 Z WA(G — 1, l), (110)
i=0

where A(a — 1,i) = (“?1) and ¢(x) = oo, if x is non-integer and ¢(x) = x, if x
is integer. Moreover, the mean, variance, and moment-generating function (MGF) of
GE(0; a) are given, respectively, by

B C
ux =E(X) = %,Var(X) = 0)2( = 9(2a) and Mx(t) = apf (a, 1—- g) )

(1.11)

where B(a) = W(a+1) = W(l), C(a) = W'(1) = W'(a+1), Bla, b) = L and
W (.) is the digamma function, while W’(.) is its derivation (the trigamma function).

The Shannon entropy is a mathematical measure of information that measures the
average reduction in uncertainty or variability associated with a RV. This measure
is maximal for uniform distribution, additive for independent events, increasing in
the number of outcomes with nonzero probabilities, continuous, nonnegative, and
permutation-invariant. For more details about this measure, see Abd Elgawad et al.
[2], Alawady et al. [9], Barakat and Husseiny [15], and Abd Elgawad et al. [4].

In this study, we consider also an inaccuracy measure known as Kerridge measure
of inaccuracy associated with two RV as an expansion of uncertainty, that was defined
by Kerridge [36].

The Fisher information number (FIN) is the second moment of the “score function”
where the derivative is with respect to x in a given PDF fx (6, x), rather than the
parameter 6. It is a Fisher information (FI) for a location parameter; for this reason, it
is also called shift-invariant FI. Recently, FIN is frequently used in different aspects
of science. For example, the FIN is intimately related to many of the fundamental
equations of theoretical physics, cf. Frieden and Gatenby [31]. For some recent works
about this measure, see Abd Elgawad et al. [2], Tahmasebi and Jafari [44], and the
references therein.

The rest of the paper is organized as follows. In Sect. 2, we study some distributional
characterizations of the Sarmanov family. We obtain some new interesting results per-
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taining to the Sarmanov family and concomitants of OSs that are based on it. In Sect. 3,
we first study the concomitants of OSs based on SAR(«) with general marginals. As an
example, the GE is taken as possible marginals, denoted by SAR-GE(61, ai; 62, a2).
Moreover, some recurrence relations between the PDFs, MGFs, and moments of con-
comitants are derived. At the end of Sect. 3, we study the joint concomitants of OSs
based on SAR(«). In Sect. 4, we get some new elegant and useful relations for the
Shannon entropy concerning the Sarmanov copula. Moreover, the Shannon entropy,
inaccuracy measure, and FIN for the Sarmanov family are derived and then computed
with some comparison with those measures for the IFGM family. In Sect. 5, which
contains evaluations of two real-world data sets, we examine the Shannon entropy
and inaccuracy measure. Furthermore, when comparing the Sarmanov family to the
FGM family for the second real data set, we find that the Sarmanov family fits the data
better. Finally, we conclude the paper in Sect. 6.

2 Some Distributional Characterizations of the Sarmanov Family
Let X ~ GE(01;a;1) and Y ~ GE(02; a). Thus, it is easy to show that the (n, m)th
joint moments of the SAR-GE(01, ay; 62, ay) family are given by
o0 o0
EX"Y™) = / / X"Y" fx (o) fy DI+ 3a2Fx (x) — DRFy(y) — 1)
—00 J —00

+%a2(3(2FX(x) —1)? = DBQFy(y) — 1)* = D]dxdy

=3a [E(U}) — EXM][E(V") — EQY™)]
+§a2 [4E(U3Y) — 6EUY) +2E(X")]|[4E(VS") — 6E(V{") + 2E(Y™)]
+EXMEXY™) ;n,m=1,2,... .1

where Uy ~ GE(6;2a1), Uo ~ GE(@1;3a1), Vi ~ GE(62;2ap) and V, ~
GE(02; 3az). Thus, by combining (2.1) and (1.11), we get

1
E(XY) = @{[3(01)3(5’2) + 3aD(2a1)D(2az)]

+§a2 [4B(3az) — 6B(2a3) +2B(az)] [4B(3a1) — 6B(2a1) + 2B(ay)l},
(2.2)

where D((k + 1)a) = B((k + 1)a) — B(ka), k = 1, 2. Therefore, the coefficient of
correlation between X and Y is

_ 3eDQa)DQay) + Jo’(4B(3az) — 6B(2a2) +2B(42))(4B(3ar) — 6B(2ar) + 2B(ar))
Prr = JC@nCa) '

(2.3)
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Table 1 Coefficient of

correlation, p, in SAR-GE P « a a2 P ¢ a a2

01, a13 62, a) 00283295 0.1 0.1 0.1 0353196 04 7 7
00352821 0.1 02 0.1 0390046 044 8 8
00352821 0.1 01 02 039026 044 8 9
0134652 02 05 05 0460609 052 5 5
0.148023 02 07 08 0461859 052 8 5
0.2375 03 1 1 0462583 052 8 8
0255514 03 2 3 0463407 052 8 9
0351938 04 5 6 0463637 052 9 9

Table 1 displays the coefficient of correlation for SAR-GE(6y, ay; 62, a2), by using
(2.3). The result of this table shows that the maximum value of p, , from SAR-
GE(01, ay; 62, ap) is 0.463407.

After simple algebra, the conditional DF of Y given X = x is given by

5
FrixOl) = Fy )1+ 3a(Fy (») = D@Fx(x) = 1) + Jo* B@Fx () = )? — 1]

x [4F} () — 6Fy(n) + 2], 2.4)

Therefore, the regression curve of ¥ given X = x for SAR(w) is

1
E(VIX =0 = -(B(@) +3aDQa) 2Fx () = ) + Zaz [3(2Fx(x) — 12— 1]
x [4B(3az) — 6B(2az) + B(az)l}, (2.5

where the conditional expectation is nonlinear with respect to x.

We end this section by revealing two interesting features of the Sarmanov copula.
A bivariate copula is a bivariate DF whose marginals are uniform on the interval
(0, 1) (see, [41]). Therefore, to obtain the copula of any extended families (1-5), we
use the transformation u = Fy(x), v = Fy(y). For example, the FGM copula is
Clu,v;w) =uv(l+w(l —u)(1 —v)), 0 <u,v <1 and the corresponding density
copula is C(u, v; w) = 1 + w(1 — 2u)(1 — 2v). Clearly, the FGM copula is radially
symmetric about (%, %), ie., C(% —u, % —v,w) = C(% +u, % + v; w) (cf. [41]). We
have the following result concerning the Sarmanov copula.

Proposition 1 The Sarmanov copula is radially symmetric. No other copula con-
cerning the extended families (1-4) is radially symmetric. Moreover, the PDF of rth
concomitant of OSs, Siy.n)(.; &) based on the Sarmanov copula satisfies the relation

1 1
Siran <§ - a> = Slp—r+1] (5 +v; oe) ,0<v<l. (2.6)

Proof The first part of the proof is elementary. To prove the second part, let S(., .; )
be the PDF of the Sarmanov copula. According to (1.8), we get Spy(v; o) =
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fol S(u, v; &) frn(w)du, where fy., (1) is the rth OS from uniform distribution over

(0,1). Taking the transformation u = % — z, and change v to ( % —v), we get

1
1 2 1 1 1
Strn (z_vs Ol) :/—5 S(E_Z,E_U,a)fr:n (E_Z>

1
1 1 1
<5 +z, 5 + v Ol) fnfr+1:n (5 + Z> dz,

2
dz = / 1 S
since fr:n(% —2)= fn—r+1:n(% +2). Put % +z=mn, we get

-2
1 ! 1
Sirn) 57 v, | = /(; Sin, 5 +via ) furr1a(ndn

1
= S[n—r+1:11] (E +v; Ol) .

This proves the second part. O

Remark 1 The proof of Proposition 1 shows that the »th concomitant of OSs based on
any radially symmetric copula satisfies the relation (2.6).

The following interesting result connects the FGM and Sarmanov copulas via the
concomitants of OSs based on them.

Theorem 2.1 Let Cpr.n1(.; @) be the PDF of the rth concomitant of OSs based on the
FGM copula C(., .; o). Then, we get

S[n7r+1:n](v; a) — S[r:n](v§ a) = 3[C[n7r+l:n](v§ a) — C[r:n](”? a)l, 0<v =<1
2.7

Proof A quick look at the Sarmanov copula enables us to write
S(u,v; ) =3C(u, v;a) + L(u, v; a), 2.8)

where L(u, v; o) = 3¢2[3Qu — 1) — 11[32v — 1)> — 1] — 2. Clearly, L(5 +u, 5 +

v,a) = L(% —u, % — v; a) (i.e., the function L(u, v; o) is radially symmetric).

Moreover, the relation (2.8) yields

1
Sprany (V3 @) = 3Cprany (v @) + fo L, v; @) frn ()l

= 3Cprn(v; @) + J; (v; ), (2.9

where f;.,(u) is the PDF of the »th OS based on the uniform distribution over (0,1).
In view of the fact that the function L(u, v; «) is radially symmetric, we can proceed
as we have done in the proof of Proposition 1 to prove, after some simple algebra,
that J,—,4+1(v; @) = J»-(v; ). Thus, by using the relation (2.9), we get the required
relation (2.7). O
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3 Concomitants of OSs Based on the Sarmanov Family

In this section, the marginal DF, MGFs, moments and recurrence relations between
PDF, MGFs and moments of concomitant of OSs for SAR () are obtained. As an exam-
ple of the relevant obtained results, the SAR-GE(61, ay; 62, a2) is studied. Moreover,
the joint DF of the bivariate concomitants of OSs based on SAR(«) is derived.

3.1 Marginal Distributions of Concomitants of OSs

The following theorem gives a useful representation for the PDF of Y[, ..

Theorem 3.1 Let Vi ~ F2 and V> ~ F;. Then,

5 15
firm ) = (1 —3A + QAQ?B:,,) fry+ (3A§°f2;n - 7A§‘f3;n) ()
+SAY), fr (), 3.1)
where Agar)n = % and Agofr):n =202 [1 - 6%] .

Proof By using (1.8) and simple algebra, we get

frm () = f Fr) {1 +3a2Fx (x) — DQ2Fy(y) — 1)
5
+ g [3eFc@ - D2 1] [3eF ) - 1 - 1]}
r—1 n—r
G DX = Fx) T fx(dx
5
= fr+30mO) = rONh + [4fv,(») = 6fv,(») + 2y (W] L2,

where
o o r— n—r
h= m[m(ZFx(x)— DF 0 = Fx ()™ fy(x)dx
_e@ron=l _ @
n+ 1 Jrin
and

O(z *° 2 r—1 n—r
T ——) f_oo [32Fx) = D? = 1] F (1 = Fe @)™ fx(odx

Y] PR Gl PN

This completes the proof. O
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Relying on (3.1), the MGF of Y/,.,] based on SAR(«) is given by

5 15
M ® = (13000, + 2052, ) My + (3812, = T AL, ) My )

+5A5) My, (1), (3.2)

where My (t), My, (t) and My, (¢) are the MGFs of the RVs Y, V| and V,, respectively.
Thus, by using (3.1) the £th moment of Y/,.,) based on SAR(«) is given by

(O] ()
Hipin) = (I-=34A

5 @\, 0
1,r:n+§Aa Iy

2,r:n

15 ¢ ¢
Lo~ SAn 0 a0l 09

where Mg}e) = E[YY], M(‘f]) = E[Vle] and ,uifz) = E[ng]. Moreover, by putting £ = 1

in(3.3) and by using (1.11), we get the mean of Y/,.,) based on SAR-GE(01, a1; 62, a2),
by

1 5 15
i = o | (13000 + 388, ) B + (3862, - 7082, ) BCa
+5A%), BGar)]|. (3.4)

The following theorem shows that both the FGM and Sarmanov families share an
interesting property concerning the concomitants of OSs based on them.

Theorem 3.2 Let f[(rc;zl] (y; w) be the PDF of the Y|,.,) based on the FGM(w) family.

Furthermore, throughout this theorem, fir.n1(y; o) will denote the PDF of the Y[ .y
based on the Sarmanov family. Then,

1. f[(rcil](y; —w) = f[szclr-l-l:n](y; w),
2. f[r:n] (y; —a) = f[n—r+l:n](y; o).

Proof The first part of the theorem follows from the obvious relation f[(rle] (v, w) =1—

A n(0)[2Fy (y) — 1], where A, (0) = (1 — %)w and Ay (=) = Ap—r41,0(@).
We now prove the second part. By applying the easy-check relations

A(a) _ a(2r —n — 1) B (—a)

l,rim — n4 1 - l,n—r+1l:n’

@) 2 rin—r+1 @ @ (—a)
AZ(Ttr:n =2a [1 - 6(n +1)(n+2) = AZ(Tn—r+1:n’ and A2(?[}’:;1 = AZ,rt?n’

we immediately get the relation fj,.,) (y; =) = fia—r+1:1](y; @). This completes the
proof. O
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3.2 Some Recurrence Relations

In this subsection, we derive some useful recurrence relations between the PDFs,
MGFs, and moments of concomitants. From (3.1), we get the following general recur-
rence relation:

firmO) = fir—im— () =3A% (P (9) = Fr ()

1 3
+5857 o <§fy ()= 5O + frs <y>) , (3.5)

where

@ _ 2(ni —rj +1)
PRI (4 D+ 1= )
_12a2|:(r—i)(n—r+1+i—j)_ r(n—r+1):|
B m+1—jmn+2—j) @+D@r+2)]

and

A(O{)

2,i,jirin

Using (3.5), we get the following recurrence relations between the MGFs and moments,
for the concomitants of OSs based on SAR(«), respectively, by

M) (t) — Mp—iin—j)(t)

1 3
=3AT L (My, (1) = My(D) +5A%) <§My(t) = 5 My, (1) + My, (t))

and

0 0
Hipn) — M[r—i:n—j]

1 3
(o) () © (o) (© () ©
= 3A1’i’j;m ('“Vl — Uy ) + SAZJ’J.;M <§MY — EMVI + “Vz) . (3.6)

The following two theorems give some useful recurrence relations satisfied by the £th
moments of concomitants of OSs based on SAR(«) for any arbitrary distribution.

Theorem 3.3 Forany { e W and 1 <r <n — 2, we have

(&) (&) 2 1, 3 (0)
MEQ&-Z:n] _ 'U’Ef:)n] B 20(n +2) (“Vl — Ity ) —60a?(n —2r — 1) (E/,LY — 3y, + MVz)
(0) ©
Hirt1im) = Firn) a(n+2) (Mifl) - u&‘”) = 300(n — 2r) (%M(f) - 3uy) + M(\fz))
(3.7
and
(0 () o) (O 6ar ] 0
Mirgom T Mg = 2P = n+1) Hy, — Ky
600[2(31’1 —6r — 2) 1 ) 3 0 4)
- = - = + . 3.8
G+ Dm+2) 2% T2t T oo
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Proof Puti =2, j =0, and replace r by r + 2 in (3.6), we get

4o
0) © _ O] ©
Hirvam) = Py = n+1 ( v —Hy )
1200*(n = 2r = 1) ©o_ 3 ©, o
3.9
T DR T2 <2l/«y 2/"\/1 + Uy, (3.9)

On the other hand, puti = 1, j = 0, and replace r by r 4 1 in (3.6), we get

Hir1n) = Mirm) = n+1) Ky

60(12(I’l—27') ) 3 (g) )
Tt D +2) (2“Y 2iw iy

© © _ 2« ((z) <e>>
> (3.10)

Now, by dividing (3.9) by (3.10), we obtain (3.7). Relation (3.8) follows by adding
(3.9) to (3.10). O

Theorem 3.4 Forany { € Nt and 1 <r <n, we have

] )
Hirin) = Birn—2)

(0) (0)
Hirn) = Mirn—1)

[4 {4 ¢ (4 ¢
6Oa2(rn —2nrt—r —r)( g,) 2 E/I)—I— E/Z))—Z(xrn(n—I—Z)( © /xg,)>

(3.11)
T 300201 — Dnr — 22 (2,&7) Ius) + /ﬂ)) ar(n —1)(n +2) (M(v"? M;"’))
and
() (©) ()
2N’[r ]~ Plrn—21 — Hrn—1)
60a2(3rn - 6nr —rn — 2}") (@) 3 (5) £)
= — 'U“Y My, + Iy,
nn+1DHm+2)(n—1) 2 2
2ar(3n — 1)
— S () - ). (3.12)
nn—1m+1)
Proof First, we use the representation (3.6) with i = 0, j = 2, we get
{4 {4
© . ® —dar (“ W - “(Y)>
/"L[rn] /"L[rn 2] (n_ l)(n+l)
120a2(rn —2nr —r — 1) ) 3 ([) (£)
. 3.13
nn+ D +2)(n — 1) (2“Y Pl ) G-13)
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On the other hand, using the representation (3.6) withi =0, j = 1, we get

G —2ar ( © _Mw)) 60a” (nr — 2r%)
[r:n] [r:in—1] nn+ 1) Vi Y nn—+1)(n+2)
L o 3 « ¢
x (Eu(y) = SH ) 314

Now, by dividing (3.13) by (3.14) we obtain (3.11). Finally, adding (3.13) to (3.14),
we get (3.12). m]

3.3 Joint Distribution of Bivariate Concomitants of OSs Based on SAR(a)

The following theorem gives the joint PDF f, s.,1(y1, y2) (defined by (1.9)) of the
concomitants Y|,.,] and Ys.,), ¥ < s, based on SAR(«).

Theorem 3.5 Let Vi ~ F2 and V> ~ F;. Then,

f[r,x:n] (yl 5 y2)

o 5 o o
= fronfrm) + (3&1,3:,, - EA;)W) oD o0 = frn) + (321,

5
- EAS?{Q:") FrODUn 6) = frm) +5AYL fr ) (fr, ) — fr, (1)

15 (o 15 (o

+SAT), fr D () = fr () + <9A§f’3,5;,, = 5 B2 = 5 B

25 (« o 25 (@
+ qAZ,E,M) P D) = frOm v (02) = fr(32) + (15A;,),m - 7A§,B,m>

0w 2 @
< (fra () = fr DY (v, (02) = fr (7)) + (15ququ - EAL},M) ()

—Fr s (72) = fry (32)) + 25AL) L (Frn (1) = fry O (s (72) = fiy (32)),
(3.15)

where A and A are defined by replacing r with s in A9 and AW

Lsn 25 Lrn 2.rm respec-
tively,
A@ g2 [ 4r(s+ 1) _2(r+s) |
1,r,sn _(I’l+1)(l’l—|—2) n+ 1 s
AW _ [ 2D+ 2+ D120+ D) A5 +12r
2rsn =S i+ 3+ 2+ 1) (n+1D(n+2) n+1 ’
A@ s[ 246+ D6+2) 24+ D+ 1256+ D Ard 12
= - - ’
3r.sim L (n+ D)(n +2)(n +3) (n+1(n+2) n+1
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m+1Dn+2)(n+3)(n+4) m+Dn+2)(n+3)
+24r(r + 1)+ 144r(s+1) +24s(s + 1) _ 24(r +5) +4i|
(n+ Dn+2) ntl :

ﬂ 44r(r+ D +2)(s+3)  M44rs +2) (s +r+2)

Proof Consider the following integration:

I, ,(r.s,n)
_ Fnt D F T p N R ey ]
T T(OMGs —NT(—s 1 1) /_oo /_oo OO DR )

X (Fx(x2) — Fx(x1))" ™" (1 — Fx(x2))"™* fx (x1) fx (x2)dx1dxz.

Taking the transformation u; = Fx(x1) and u» = Fx(x3), we get

I(n+1)
I, (r,s,n)=
P-4 re)yfs—rlrn—-—s+1)
1 us |
/ / uf+r_ ug(uz —u)* 7N = un)" S duy dus.
0 Jo
Furthermore, by using the transformation z = %, we get
C(n+1)
Ip,q("’ S’ n) -

rHrs—rrn—s+1)
1 1
/ / Zp+r—1(1 _ Z)S—r—lu§+q+5_l(1 _ uz)"_sdzduz
0 Jo

T+ DTe+pTs+p+q)
T Tn+p+g+DT)TGs+p)’

p.gq=123,... (3.16)
Now, by using (1.9), we get

Jrrsmi 1, y2) = /:; _/:;20 Srixlxn) frix (21x2) frosin (x1, x2)dx1dxn
= /_ Z _Z Frsm @1 )y 1) + e fy () RFx (x1) — DFy (y1) — 1)
+ Zasz(YI)@(ZFX(xl) - 1? = DERFy(y) — 1> = )]
x [fr () + 3 fr (1) 2Fx (x2) = DRFy(y2) — D) + %asz(yz)
X B32Fx(x2) — 1)2 —1D@BQRFy(y2) — 1)2 — 1)]dxdx;.
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By using therelations fy, = 2 fy Fy and fy, =3 fy F % and carrying out some algebra,
we get

f[r,s:n] 1, y2)

00 X
2/ [ Srsmr, x2)[fy () +3a2Fx (x1) — D(fv, (y1) = fr (1))

+ §a2<12F§(x1) — 12Fx (x1) + 204 v, (1) — 6.fv; 1) + 2y (v1))]
x[fy (32) + 3a2Fx (x2) — D (fv, (v2) — fr (32))

+ §a2(12F§(xz) — 12Fx(x2)

+2)@ fv,(y2) — 6 fv, (32) + 2 fr (y2))]dx1dxs.

On the other hand, upon using (3.16), with p = 1 and ¢ = 0, for t = 1, and with
p =0and g =1, for r = 2, we get after some algebra

o rx T+ 1) .
/_oo /_oo TOTG = —s 4 @t = DE )

X (Fx(x2) — Fx(x1)) ™" 11 = Fx(x2))"™* fx (x1) fx (x2)dx;dxz

_ Ja@hotsomy —1) = 4Cn=D = A =1,

o (2,1 (ros,m) — 1) = CEA=D = A =,
Finally, by the same way, we can obtain Agflr):’l, A(fs):n, Ag‘fr),s:n’ Ag?lr),s:n’ Agfr)mn, and
Aé(gr),s:n' This completes the proof. O

As a direct consequence of Theorem 3.4, the joint MGF of concomitants Yj,.,; and
Y[s:n], ¥ < 5, based on SAR(«) is given by

M[r.s:n](tl ) t2)

_ @ 3@ _ @

= My (n)My () + | 3A7., ZAZ’”" My (1)(My, (t1) — My (t1)) + (344,
5

- EA&‘;,,) My (1)(My, (1) — My (1)) + SAY). My (1) (My, (11) — My, (11))

+5A% My (1) (My, (12) — My, (1))

2,s:n

15 15 25
() (o) (o) (9]
+ (9A1(Tr,x:n - 7A20,lr,x:n - TAS(Tr,s:n + IAfr,s:n)

25
x (My, (1) — My (1)) (My, (12) — My (12)) + (15A§?ﬁﬁs;n - gAi‘f,?,m> (My, (1)

25
— My, (1)) (My, (1) — My(2)) + (15A§‘f‘3,m - ?Ag‘f‘),m> (My, (1)) — My (1))

X (My,(12) — My, (12)) +25A%) . (My, (11) — My, (1)) (M, (82) — My, (12)).
(3.17)
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The product moment E[Y{.y1Y[s:n]] = K[r.s:n 1S Obtained directly from (3.17) by

5
KUir,s:n] = |:3 (Afr):n + A(I(?t;:n> - 5 ( gftr):n + Agfs):n)] /’LY(MVJ - 'U“Y)

+ ZSAfl?,s:n (l’LVZ - MK )2

5
+ E (A(Z(Tr):n + Agfs):n) I’LY(H’VZ - H“Vl)

+ [15 (Ag,xr),s:n + Agjtr),s:n) - ZSAE&E’S:”] (MVl - MY)
X (I’LVZ - MV])
15 15 25
(@) (@) (@) (@) ) 5
- <9A1?[r"m B EAZ(T""’:" - 7A30’[r~53” + ZAfr,s:n) vy — my)” + py.

(3.18)

Now, the product moment E[Y[.,1Y[s:n]] = K[r,s:n]) based on SAR-GE(0y, ay; 62, a2)
is obtained from (3.18) (and by using (1.11)) by

1 5
Kr,s:n] = 97 {Bz(@) + |:3 (A(ll?r):n + A??:n) - E (A(;r):n + Agyx)n)]
2
x B(a2)(B(2a2) — B(a2)) + 25A) . (B(3a2) — B(2a2))>

4,r,s:n
5
o3 (), 1 a0,)

2,r:n

B@)(BGay) — BRa) + [15(aL), + 4%, ) — 25807 ]

2,r.s:n 3,r.s:n
x (B(2az) — B(a2))(B(3az) — B(2a2))
15 (o 15 25
(98— FALL o~ SO+ T AL, ) (BCa - B,

4 Shannon Entropy, Inaccuracy Measures, and FIN

In Sect. 4.1, we get some useful theoretical relations for the Shannon entropy con-
cerning the Sarmanov copula and any radially symmetric copula. In Sect. 4.2, the
Shannon entropy, inaccuracy measure, and FIN for Sarmanov family are derived and
then computed with some comparison with those measures for the [IFGM family.

4.1 Some Theoretical Relations

We have the following general result concerning any radially symmetric copula and
especially concerning the FGM and Sarmanov copulas.

Proposition 2 For any radially symmetric copula about (%, %) with density L(u, v),
the Shannon entropy

1
H[r:n] = _./(; »C[r:n](v) log E[r:n](v)dvs 4.1
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where Li,.n1(.) is the PDF of the rth concomitant of OSs based on L(u, v), satisfies
the relation

H[r:n] = H[n—r+1:n]- 4.2)

Proof Taking the transformation v = % — z in (4.1) and by using Proposition 1 and

Remark 1, we get

1
2 1 1
Hyppy = — Lirn) (5 - Z) log Ly (5 — z) dz

! 1
- ) Lin—rt1n) <§ + Z) log Lin—r+1:n) <§ + Z) dz.

)

Rl—= o

. 1
Now, let % + z = n, we obtain Hyy) = — fO Lin—r+1:01(1) 108 Lin—rt1:01(m)dn =
Hij—r+1:n]. This proves the proposition. O

Theorem 4.1 Let the Shannon entropy associated with the FGM and Sarmanov cop-
ulas be denoted by H[(rL;L](a)) and H[(fil](a), respectively. Then, we get
1. H) (@) = HE) (—o),

r:n)

2. HP) (@) = H{) ((—e).
Proof From (4.1) and (4.2), we get
(©)
H[rcn](_w)

1
_/ Clrin(v, —) log Cin1 (v, —w)dv
0

1
- / Cin—rt+1:01(v, ) 10g Cr—yp41:0) (v, w)dv
0
(c) (c)
= Hj,_, (@) = Hj, (@)

This proves the first part of the theorem. To prove the second part, we use again (4.1)
and (4.2) for the Sarmanov copula and proceeding in a similar way as the first part.
The proof is completed. O

4.2 Shannon Entropy, Inaccuracy Measure, and FIN Based on the Sarmanov Family

Theorems 4.2, 4.3, and 4.4 give an explicit form of each of the Shannon entropy,
inaccuracy measures, and FIN for concomitants of OSs based on SAR(«) family,
respectively.

Theorem4.2 Lera(r) = 1-3A\), +3A%)  b(r) =3A) LAY ande(r) =

1,r:n 2,r:in’ 1,r:n 2,r:n’

—(a(r)+b(r)—=1). Furthermore, let 3a(r)c(r) —b*(r) > 0 and b(r)+2c(r)+1 > 0.
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Then, the explicit form of the Shannon entropy of Y|y.n), 1 < r < n, based on SAR(«)
is given by

H[r:n](a) = E[_ 10g fr:n](Y[r:n )] = S[r:n] - E(_ 10g fY(Yr:n]))

5
= S + HOO)( =341, + SAF) ) — ¢ (D6AYT, — 1507,

—¢r@(I5AY) ), 43)
where H(Y) = —E(log fy(Y)) = — ffooo fr(y)log fy (v)dy is the Shannon entropy
of Y, ¢r(p) = [Zog FY ) fr(y)log fy(y)dy = fol u? log fy (Fy ' (u)du, p =
1,2, 8ppum) = — log (1 +3A 4 IA )+2b(r)J0(r,n)+6c(r)J1 (r.n), and

lrn 2,r:n

1 ¢ b 2 3
Jo(rm) Zf 9 (a(r)z+b(r)z +c(r)§ )dz, f—o.1.
o a(r)+2b(r)z+3c(r)z
Moreover,
2 -1 b
_1 b(2b” — 9ac) tan —
Jo(r,n) = — <3 ”2> — (b* = 3ac)loga
27 3ac — b2
2 - b+3
[y, 60, 2 b —Sa0 ()
54 ¢ 2 3ac — b?
—(b* = 3ac) log(a + 2b + 30)]) (4.4)
and
_ (—8b* + 42ab?c — 36a%c?) tan~! [ —2—
Ji(r,n) = ! ( ( 3“6472) — (4b® — 15abc) loga
162¢3 3ac — b?

+ V3ac—b?
162¢3

| { (=8b* + 42abc — 36a%c?) tan™! (&>
3ac — b?

+ (4b® — 15abc) log(a + 2b + 3¢))

3c( —4b% 4 3bc + 6¢(2a + c))
162¢3

4.5)

where in (4.4) and (4.5), a(r), b(r), and c(r) are abbreviated for simplicity to a, b,
and c, respectively.
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Proof The Shannon entropy of Y[.,] is given by

H[r:n](a) = _f f[r:n](y) log f[r:n]()’)d)’
I (@ B 5 @ e
= / fy(y)[1+3A1,,;,,(2Fy(y) D+ 3AYL,GQ@F () 1) 1)}
o 5 o
x log [fy(y) (1 +3A17,@Fy () = D + 247, G@Fy () = D — 1))] dy

5
= HY)(1=3A%, + A5 ) — ¢ (1)6AY), — 1545

1,r:n 2 2,r:in 1,r:n

—pr()(ISAS) ) + 81rm. (4.6)

where 8. = —E(log(1+3A\)., 2Fy (Yjrmp) — D+ 3 A, BQRFy (Vo)) — 1)? —

1,r:n 2,r:n

1))). Upon integrating by part, we get

[e¢)
St = = | im0 t0g (14387, GFr ()~ 1
—00
SING) 2
+IALLGREYG) ~ 2= 1) ) dy

5 o0
= —log <1 +3A, + EAg‘f‘j:n> + / V,dU,,
—00

where U, = log (1+3A(“)

1,rin 2,r:n
Ve = Fy(n( +3A7), (Fr(y) = 1) + 3A) QF}(y) = 3Fy(y) + 1)). Thus,
by using the integral probability transformation z = Fy (y) and simplifying the result,

we get

QFy(y) — D+ 34, BQFy(y) —1)> — 1)) and

5
Sirm) = — log (1 +3A, + EA;’)W) +2b(r) Jo(r, n) + 6¢(r) Jy (r, n). (4.7)

Therefore, by combining (4.7) and (4.6) we get (4.3), the integration J,(r, n) for
£ = 0,1 can be explicitly (as well as numerically) evaluated by MATHEMATICA
Ver.12 in the forms (4.4) (for £ = 0) and (4.5) (for £ = 1); if the conditions 3a(r)c(r)—
b2(r) > 0 and b(r) + 2¢(r) + 1 > 0 are satisfied, the latter condition leads to
a(r) + 2b(r) + 3c(r) > 0. This completes the proof. O

Proposition 3 We have H|,.,j(—a) = Hjp—r41:n](0).

Proof The proof follows directly from the definition of the Shannon entropy and the
second part of Theorem 3.2. O

Example 4.1 For the Sarmanov copula, we have H(Y) = ¢;(1) = ¢7(2) = 0.
Thus, by using Theorem 4.1, the Shannon entropy of Y., is given by H|,.,j(a) =
H[(:;LJ(‘X) = S[r:n]~
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Table 2 displays a comparison between the Shannon entropy of the rth concomitant
Y|r.n) based on the Sarmanov and IFGM copulas via some admissible common values
of the correlation, p.. Itis worth noting that the choosing values of the shape parameters
in the two copulas according to the same value of the correlation coefficient enable us
to make a comparison between the two copulas despite the differences between their
shape parameters. Table 3 displays the Shannon entropy for the Sarmanov copula for
values of p., where some of these values are not admissible by the IFGM copula.
The computations are carried out by using MATHEMATICA ver.12. The following
properties can be extracted from Tables 2 and 3.

1. Generally, we have Hj.,j(A, w) < H, (f:)n](a) at the same values of p., where

Hi,.n) (A, w) is the Shannon entropy concerning the IFGM(A, w) copula.
2. The value of Hiy)(h, @) and H')
increases.
3. With fixed r, Hj.y) (A, w) and H[(}Y:L] (a) decrease as the value of n increases.

4. Generally, HS) () = H{ | (@) and ) (—0) = H{),

the theoretical results given in Sect. 4.1.

J(oe), Vr, n, decreases as the value of p.

! (a), which endorse

Theorem 4.3 Let fi,.n1(y) be the PDF of the rth concomitant of OSs based on SAR(«t).
Then, the inaccuracy measure between fi,.n)(y) and fy(y) for1 <r <n,a #0is
given by

I[r:n] (05) = - / fY[r;n] (y) 10g fY (y)dy

5
= <1 - 3A(lo,tr):n + EAgfr):n) H(Y) - (6A(l(fr):n - 15A(2?(2:n)¢f(1) - ISA(ZO,t):nqsf(z)’
4.8)

where H(Y) = — ffooo fr(y)log fy (y)dy is the Shannon entropy of the RV'Y and

[e%9) 1
/() = / FPy () fr () log fy ()dy = /O u? log fy (F~y ()du, p=1,2.

Proof Clearly, we have

> @ 3, @
Iirm (@) = — le,;,,J Mlog fy(ydy=(1- 3Al,r:n + EAZ,r:n H(Y)
—00

—(6A{"),, — 15A57).) / Fy () fr () log fr (y)dy
_ISAEO,[r):n / Fy () fr () log fy (y)dy

5 ! _
=(1-3A1" + EAgfr):n)H(Y) —(6AY)., — 15A§‘f}:n% ulog fy (Fy (u))du
1
—158%) / u*log fy (Fy ' (u))du
o |
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=(1-3A

l,r:n

5
+§A(O‘) YH(Y) — 6A% — 157

2,rin l,r:n 2,rin

)pr(1) — 1505 60(2).
(4.9)

O
Proposition 4 We have Ij;.,)(—a) = Ijp—r+1:0](c0).

Proof The proof follows directly from the definition of the inaccuracy measure and

the second part of Theorem 3.2. O
Example 4.2 Suppose that X and Y have exponential distributions with mean 01—* and
(%, respectively. After simple algebra, we get H(Y) = — fooo Jfr(y) log fy(y)dy =
I —logb, ¢7(1) = [° frMWEFy()log frdy = =722 and ¢5(2) =

I fr ) F2(y) log fy (y)dy = —HE810e? ppep

5
lea@) = (1=387%, + 34, ) (1 = 1ogo) - 6A17, ~ 15857,

—3+2log0 —11 +6logh
x (#) — 150, (%) . (4.10)

Table 4 is devoted to some computed values of the inaccuracy measure for SAR (o)
and IFGM(A, w) families based on exponential marginals at the same value of the cor-
relation coefficient of the SAR(«) and IFGM (X, w) copulas, p.. Clearly, the choosing
values of the shape parameters in the two families according to the same value of
pc enable us to make a comparison between the two families despite the differences
between their shape parameters. Table 5 displays the inaccuracy measure for the Sar-
manov family for values of p., where some of these values do not admissible by the
IFGM copula. The following properties can be extracted from Tables 3 and 4.

1. Forall » and n, Ij,.) (A, @) < Ijyni(@), where Ij,.,1 (A, w) is the inaccuracy mea-
sure pertains to the family IFGM(A, w).

2. The value of the inaccuracy measures I[,.,)(A, @) and I[,.,(cr) increases with
decreasing the difference n — r.

3. With fixed r, the value of the inaccuracy measures Ij,.,)(A, ®) and Ij,.,)(a)
decreases as n increases.

4. Generally, Ij;.,)(—a) = Iju—r41:1)(e0), which endorses the result given in Propo-

sition 4.

With fixed r, the value of the inaccuracy measure I|,.,](r) decreases as n increases.

6. The value of [|,.,j(«) decreases with > 0 increases at r < % (median rank) and
increases with @ < 0 increases at r > 5 (median rank).

9]

Theorem 4.4 Let f,.n)(y) be the PDF of the rth concomitant of OSs based on SAR(«).
Then, the FIN of Y[,.n) for 1 <r < n is given by

o log firm(y)

2
3y ) :| =1pY) +15 +205 + 685,

y=y[r:n]

I, (Yipmp ) = E [(
4.11)
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where
 (dlog fr(»))
o= (ga— (A, @Fy () — 1)
—00 y
5
+ZAS,):,,(3(2FY()’) —D? = D) fr(y)dy,
oo
d)fY = / (6A§l?lr):n - 15Agf}?:n + 30Agfl3:nFY(y))f{/(y)fY(y)dy
—00
and
2
. /oo [ (6217, = 1588, +308%), Fr ()]
T e 0 3A1, + 38 + Fr 6l —158%),) + 155, ()
Sr(y)dy.

Proof By using (3.1), the FIN of Y}, is given by

I.fy(Y[r:nLU)
/9l rin] (Y 2

= [ (P ey
—00 y

—00

2
_ /oo (Blog A0, 9 log (1 +3A1 QFy () - D+ 34 B@Fy(y) — 1)? - 1)))
dy dy

5
x <fy(y) [1 +3A17, QFy () = 1) + JAY), GRFy () = 1) = 1)}) dy

:/00 (alogfy(y)>2fy(y)dy+/°° <alogfy(y)>2
oo ay ay

—00

5
XA, @Fy () = D+ 3457, G2Fy (3) = D? = 1) fr (y)dy

—00

2
00 (a log (143417, @Fy () = 1) + FAL), GCF () — 1 = 1)))
«
dy

o 5 o
X (1 +3A17, QFy () = 1) + JAY), GRFy () = 1) ~ 1)) fr (n)dy

+2/oo Dlog fr(») alog(l +3A QFy () — D+ A% B@Fy(y) — )2 — 1))
e dy dy

o 5 o .
x (1 +3A17, QFy () = D + JAY), GRFy () = 1) ~ 1)) fr(n)dy. (4.12)

Upon using the transformation u# = Fy(y) in the three integrations on the right of
(4.12) and simplifying the result, we get the required result. O

Proposition 5 We have I 7, (Y1, —) = I, (Yn—rs1:0], @).
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Proof The proof follows directly from the definition of the FIN and the second part
of Theorem 3.2. O

Example 4.3 Let X and Y have exponential distributions with means gi* and 1, respec-
tively. Then,

> 3log fr()\
I () = O8IV fy(ydy = 602,
0 dy
5
Tfy = (_3A§<Tr):n + EAgfr):n)

o0 (0.¢]
/ 03¢ Vdy + (6A")., — 15A§‘f‘}:n)/ 03 (1 — e ")e % dy
0 0

+15AW

2,r:n

o0
/ 31— e )2 dy =0
0
and

oo oo
¢r = (1585 — 64 ) / 3¢~V dy + 3003 A% / (=307 — ¢=290)qy
0 0

2,r:n 1,r:n 2,r:n
2 @ L3, @
=0 <_3A1,r:n + EAZ,r:n> :

Thus, the FIN of Y},.,) is given by

5
Lpy (V) @) = 6% +262(=3A1) + EA(;‘,{H) +6°7(0),

where
2
70 /N <6A(1(??:n - 15Agfr):n + 30Ag,¥2:n(1 - 679)*)) e
0 (1 =3A0, + 3AY) + 6AY), — 15AF) ) (1 — =) + 1A, (1 — 072

(4.13)

The integration in (4.13) can be numerically evaluated by MATHEMATICA Ver.12

Table 6 displays a comparison between the FIN of the rth concomitant Y[,.,,) based
on the Sarmanov and IFGM families with exponential marginals via some admissible
common values of the correlation, p.. Table 7 displays the FIN for the Sarmanov
family with exponential marginals for values of p., where some of these values do
not admissible by the IFGM copula. The following properties can be extracted from
Tables 6 and 7.

1. The FIN for SAR(«) and IFGM(A, w) families increases as the difference n — r
increases.

2. Generally, we have I (Yjr), —) = I, (Yjn—rs1:0], @), which endorses the
result given in Proposition 5.

@ Springer



S76 H. M. Barakat et al.

3. The value of Iz, (Y]], o) increases with an increase in @ (@ > 0) atr < % and
increases with a decrease ina (o < 0) atr > 5 + 1.

5 Application of Real Data

This section includes analyses of two real-world data sets, where the Shannon entropy
and inaccuracy measure are examined. Moreover, for the second real data set, we show
that the Sarmanov family gets the better fitting comparing the FGM family.

Example 5.1 The following data set, which is quoted from McGilchrist and Aisbett
[39] and was used and analyzed by Al turk et al. (2007) and Ahmed et al. [6] in the
context of different topics, represents the recurrence times to infection at point of
insertion of the catheter for kidney patients using portable dialysis equipment. The
RV X refers to the first recurrence time and the RV Y to second recurrence time. The
data for 30 patients are reported in Table 8.

Ahmed et al. [6] fitted the GE distribution to X and Y separately. The ML esti-
mates of the scale and shape parameters (6;,a;), i = 1,2, are (0.0062, 0.6638)
and (0.0096, 0.9244), respectively. The correlation between X and Y is 0.0531,
which yields « = 0.07 as an estimate of the shape parameter for the estimated
model SAR-GE (0.0062, 0.6638; 0.0096, 0.9244). The value of this estimate attunes
to the values given in Table 1. Table 9 examines the Shannon entropy and inaccuracy
measure for the model SAR-GE (0.0062, 0.6638; 0.0096, 0.9244) for the concomi-
tants Y[,30;, r = 1,2, 15, 16, 29, 30, i.e., the concomitants of lower extreme, upper
extreme, and central values. This table shows that the Shannon entropy has maxim
values at extremes, while the value of the inaccuracy measure slowly increases as r
increases. It is worth mentioning that for the GE marginal (the second marginal) the
FIN exists only fora, = 1, a» > 2. Therefore, for this data set the FIN is not available.

Example 5.2 The economic data set, which is quoted from El-Sherpieny et al. [28] and
reproduced in Table 10, consists of 31 yearly time series observations [1980 — 2010]
on response variable: Exports of goods and services X and GDP growth Y. These data
were originally collected by World Bank National Accounts data and OECD National
Accounts data. The data are relevant to the distribution based on FGM copula and
its generalizations including Sarmanov family, since the correlation between data is
0.2709. El-Sherpieny et al. [28] have used the MLE method to compare between
three FGM families with Weibull (FGM-W), Gamma (FGM-G), and GE (FGM-GE)
marginals. By applying the Akaike information criterion (AIC) and the Bayesian infor-
mation criterion (BIC), their result confirmed the best model is FGM-W to these data.
The summary of their result is reproduced in Table 11. By using the MLE method and
based on SAR(«), we estimate the four parameters a;, 8;, i = 1, 2, in the Weibull DF

a;
Fy(w) =1 —exp (— <ﬂﬂ) ) , w > 0, besides the shape parameter «. Moreover,

the AIC and BIC are computed for comparing purposes. Table 12 summarizes the
results of these estimates. A quick look at Tables 11 and 12 (at AIC and BIC) reveals
that the best model is SAR(0.5)-W to these data. Table 12 examines the Shannon
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Table 8 Recurrence times of infection for kidney patients
Patient X Y Patient X Y Patient X Y
1 8 16 11 7 333 21 152 362
2 23 13 12 141 8 22 402 24
3 22 28 13 96 38 23 13 66
4 447 318 14 149 70 24 39 46
5 30 12 15 536 25 25 12 40
6 24 245 16 17 4 26 113 201
7 7 9 17 185 117 27 132 156
8 511 30 18 292 114 28 34 30
9 53 196 19 22 159 29 2 25
10 15 154 20 15 108 30 130 26
i nnccuraey mesare H 30 10
1 6.98116 5.49199
2 6.67878 5.49852
15 4.76537 5.58757
16 4.77257 5.59475
29 6.87213 5.69214
30 7.1889 5.69995
Table 10 Data of economics
Years X Y Years X Y Years X Y
1980 30.51 10.01 1991 27.82 1.08 2002 18.32 2.37
1981 33.37 3.76 1992 28.40 443 2003 21.8 3.19
1982 27.03 9.91 1993 25.84 2.90 2004 28.23 4.09
1983 25.48 7.40 1994 22.57 3.97 2005 30.34 4.48
1984 22.35 6.09 1995 22.55 4.64 2006 29.95 6.85
1985 19.91 6.60 1996 20.75 4.99 2007 30.25 7.09
1986 15.73 2.65 1997 18.84 5.49 2008 33.04 7.16
1987 12.56 2.52 1998 16.21 4.04 2009 24.96 4.67
1988 17.32 7.93 1999 15.05 6.11 2010 21.35 5.15
1989 17.89 4.97 2000 16.20 5.37
1990 20.05 5.70 2001 17.48 3.54

entropy and inaccuracy measure for the model estimated SAR(0.5)-W for the con-
comitants Y317, r = 1,2, 15, 16, 30, 31, i.e., the concomitants of lower extreme,
upper extreme, and central values. This table shows that each of the Shannon entropy
and inaccuracy measure has maxim values at lower extremes.
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Table 11 AIC and BIC for

FGM-W, FGM-G, and FGM-GE FOM-W FOM-G FOM-GE
AIC 335.617 335.703 338.418
BIC 342.789 342.869 345.589

Table 12 Parameter estimation for SAR («), with Weibull marginals (SAR(«) -W)

ML parameters estimation

ay B ax B o AIC BIC

SAR(0)-W 0.74654.995 8.154 3 0.5013 167.8848 195.6587
ey of SAE(0.5)W at H (Y1) 1)
ay =8.154and f =3 1 0.541208 0.936661

2 0.546431 0.870911

15 0.329018 0.365174

16 0.318099 0.353118

30 0.262563 0.587043

31 0.237063 0.632517

6 Conclusion

In this paper, we revisited the Sarmanov bivariate DF, which was originally suggested
by Sarmanov [43] as a new mathematical model of hydrological processes that may
be used in stream flow control, in studying the persistence of sequences of years with
high and low flow, in calculating reservoir volume, and for many other applications.
We showed that this family belongs to the family of the extensions of the FGM family,
which is widely used in modeling bivariate data with low correlation, as well as it
belongs to a wider family suggested by Sarmanov [42], which has many recorded
applications in the literature. Moreover, several new prominent statistical properties
of this family were revealed, namely:

1. The Sarmanov family is the most efficient one among all the extended families of
the FGM family because on both the positive and negative sides, it delivers the
best improvement in the correlation level. This fact makes this family be able to
model the bivariate data with moderate correlation. Besides, Example 5.2 shows
that this family is a strong competitor to the FGM family and its known extensions
in modeling the data set with a low correlation.

2. Among all the known extensions, this family contains only one shape parameter,
which is shared by the two marginal variates. This property enables us to estimate
easily the shape parameter by using the sample correlation estimate.

3. The Sarmanov family is the only one of the extended families of FGM with a
radially symmetric copula about (—0.5, 0.5). This property was used in this paper
to reveal several prominent statistical properties for the concomitants of order
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statistics from this family and some of the information measures, namely the
Shannon entropy, inaccuracy measure, and Fisher information number, which were
theoretically and numerically studied. Moreover, these information measures were
computed with some comparison with those measures for the IFGM family.

Despite all of the above exclusive features, this capable and flexible family has never
been used in modeling bivariate real data sets, since its inception. This work was
primarily undertaken to fill this need and encourage statisticians to view this family
as a viable option for modeling bivariate data with low and moderate correlation.
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References

10.

11.

12.

13.

14.

. Abdallah, A., Boucher, J., Cossette, H.: Sarmanov family of multivariate distributions for bivariate

dynamic claim counts model. Insur. Math. Econ. 68, 120-133 (2016)

. Abd Elgawad, M.A., Alawady, M.A., Barakat, H.M., Xiong, Shengwu: Concomitants of generalized

order statistics from Huang-Kotz Farlie-Gumbel-Morgenstern bivariate distribution: some information
measures. Bull. Malays. Math. Sci. Soc. 43, 2627-2645 (2020)

. Abd Elgawad, M.A., Barakat, H.M., Alawady, M.A.: Concomitants of generalized order statistics

under the generalization of Farlie-Gumbel-Morgenstern type bivariate distributions. Bull. Iran. Math.
Soc. 47, 1045-1068 (2021a). https://doi.org/10.1007/s41980-020-00427-0

. Abd Elgawad, M. A., Barakat, H.M., Alawady, M.A.: Concomitants of generalized order statistics from

bivariate Cambanis family: some information measures. Bull. Iranian. Math. Soc. (2021b). https://doi.
org/10.1007/s41980-021-00532-8 (to appear)

. Abd Elgawad, M.A., Barakat, H.M., Xiong, S., Alyami, S.A.: Information measures for generalized

order statistics and their concomitants under general framework from Huang-Kotz FGM bivariate
distribution. Entropy, 23(335) (2021c). https://doi.org/10.3390/¢23030335

. Ahmed, D., Khames, S., Mokhlis, N.A.: Inference for stress-strength models based on the bivariate

general Farlie-Gumbel-Morgenstern distributions. J. Stat. Appl. Pro. Lett. 7(3), 141-150 (2020). https://
doi.org/10.18576/jsapl/070304

. Alawady, M.A., Barakat, H.M., Shengwu, X., Abd Elgawad, M.A.: Concomitants of generalized order

statistics from iterated Farlie-Gumbel-Morgenstern type bivariate distribution. Comm. Statist. Theory
Meth. (2020) https://doi.org/10.1080/03610926.2020.1842452 (to appear)

. Alawady, M.A., Barakat, H.M., Xiong, Shengwu, Abd Elgawad, M.A.: On concomitants of dual gener-

alized order statistics from Bairamov-Kotz-Becki Farlie-Gumbel-Morgenstern bivariate distributions.
Asian-European J. Math. 14(10), 2150-2185 (2021a). https://doi.org/10.1142/S1793557121501850

. Alawady, M.A., Barakat, H.M., Abd Elgawad, M.A.: Concomitants of generalized order statistics from

bivariate Cambanis family of distributions under a general setting. Bull. Malays. Math. Sci. Soc. 44,
3129-3159 (2021b). https://doi.org/10.1007/s40840-021-01102- 1

Al turk, L.I., Abd Elaal, M.K., Jarwan, R.S.: Inference of bivariate generalized exponential distribution
based on copula functions. App. Math. Sci. 11(24), 1155-1186 (2017). https://doi.org/10.12988/ams.
2017.7398

Bairamov, 1., Kotz, S., Becki, M.: New generalized Farlie-Gumbel-Morgenstern distributions and
concomitants of order statistics. J. Appl. Stat. 28(5), 521-536 (2001)

Bairamov, 1., Kotz, S.: Dependence structure and symmetry of Huang- Kotz -FGM distributions and
their extensions. Metrika 56(1), 55-72 (2002)

Balakrishnan, N., Lin, C.D.: Continuous Bivariate Distributions, 2nd edn. Springer, Dordrecht Heidel-
berg London New York (2009)

Barakat, H.M., El-Shandidy, M.A.: Computing the distribution and expected value of the concomitant
rank order statistics. Comm. Stat. Theory Meth. 33(11), 2575-2594 (2004)

@ Springer


https://doi.org/10.1007/s41980-020-00427-0
https://doi.org/10.1007/s41980-021-00532-8
https://doi.org/10.1007/s41980-021-00532-8
https://doi.org/10.3390/e23030335
https://doi.org/10.18576/jsapl/070304
https://doi.org/10.18576/jsapl/070304
https://doi.org/10.1080/03610926.2020.1842452
https://doi.org/10.1142/S1793557121501850
https://doi.org/10.1007/s40840-021-01102-1
https://doi.org/10.12988/ams.2017.7398
https://doi.org/10.12988/ams.2017.7398

S82

H. M. Barakat et al.

15.

16.

17.

18.

20.

21.

22.

23.

24.
25.

26.
27.

28.

29.

30.

31.

32.
33.

34.

35.

36.

37.

38.

39.

40.

41.

Barakat, H.M., Husseiny, I.A.: Some information measures in concomitants of generalized order statis-
tics under iterated FGM bivariate type. Quaest. Math. 44(5), 581-598 (2021). https://doi.org/10.2989/
16073606.2020.1729271

Barakat, H.M., Nigm, E.M., Husseiny, [.A.: Measures of information in order statistics and their
concomitants for the single iterated Farlie-Gumbel-Morgenstern bivariate distribution. Math. Popul.
Stud. 28(3), 154-175 (2021). https://doi.org/10.1080/08898480.2020.1767926

Barakat, H.M., Nigm, E.M., Syam, A.H.: Concomitants of order statistics and record values from
Bairamov-Kotz-Becki-FGM bivariate-generalized exponential distribution. Filomat 32(9), 3313-3324
(2018)

Barakat, H.M., Nigm, E.M., Syam, A.H.: Concomitants of ordered variables from Huang-Kotz-FGM
type bivariate-generalized exponential distribution. Bull. Malays. Math. Sci. Soc. 42, 337-353 (2019a)

. Barakat, H.M., Nigm, E.M., Alawady, M.A., Husseiny, I.A.: Concomitants of order statistics and record

values from iterated of FGM bivariate-generalized exponential distribution. REVSTAT 19(2), 291-307
(2019b)

Barakat, H.M., Nigm, E.M., Alawady, M.A., Husseiny, I.A.: Concomitants of order statistics and record
values from generalization of FGM bivariate-generalized exponential distribution. J. Stat. Theory Appl.
18(3), 309-322 (2019c). https://doi.org/10.2991/jsta.d.190822.001

Bekrizadeh, H., Parham, G.A., Zadkarmi, M.R.: The new generalization of Farlie-Gumbel-Morgenstern
copulas. App. Math. Sci. 6(71), 3527-3533 (2012)

Bolancé, C., Vernic, R.: Multivariate count data generalized linear models: Three approaches based on
the Sarmanov distribution. Insur. Math. Econ. 85, 89-103 (2019)

Bolancé, C., Guillen, M., Pitarque, A.: Sarmanov distribution with beta marginals: sn application to
motor insurance pricing. Mathematics 8(11) (2020). https://doi.org/10.3390/math8112020

David, H.A.: Concomitants of order statistics. Bull. Int. Stat. Inst. 45, 295-300 (1973)

David, H.A., Nagaraja, H.N.: Concomitants of order statistics. In: Balakrishnan, N., Rao, C.R. (eds.),
Handbook of Statistics, vol. 16, pp. 487-513 (1998)

David, H.A., Nagaraja, H.N.: Order Statistics, 3rd edn. John Wiley Sons. Inc (2003)

David, H.A., O’Connell, M.J., Yang, S.S.: Distribution and expected value of the rank of a concomitant
and an order statistic. Ann. Stat. 5, 216-223 (1977)

El-Sherpieny, E.A., Muhamed, H.Z., Almetwally, E.M.: FGM bivariate Weibull distribution. In: The
53rd Annual Conference on Statistics Computer Science and Operational Research (2018). Available
at: https://www.researchgate.net/publication/332109204

Eryilmaz, S.: On an application of concomitants of order statistics. Commun. in Statist. Theory Meth.
45(19), 5628-5636 (2016)

Fischer, M., Klein, I.: Constructing generalized FGM copulas by means of certain univariate distribu-
tions. Metrika 65, 243-260 (2007)

Frieden, B.R., Gatenby, R.A. eds.: Exploratory Data Analysis Using Fisher Information. Springer,
London (2007)

Gupta, R.D., Kundu, D.: Generalized exponential distributions. Aust. Nz. J. Stat. 41(2), 173-188 (1999)
Hanif, S.: Concomitants of order random variables. Ph.D. Thesis, National College of Business Admin-
istration & Economics, Labore (2007)

Huang, J.S., Kotz, S.: Correlation structure in iterated Farlie-Gumbel-Morgenstern distributions.
Biometrika 71(3), 633-636 (1984). https://doi.org/10.2307/2336577

Huang, J.S., Kotz, S.: Modifications of the Farlie-Gumbel-Morgenstern distributions. A tough hill to
climb. Metrika 49, 135-145 (1999)

Kerridge, D.F.: Inaccuracy and inference. J. Roy. Statist. Soc. Ser. B 23, 184—194 (1961). https://doi.
org/10.1111/§.2517-6161.1961.tb00404.x

Kundu, D., Pradhan, B.: Bayesian inference and life testing plans for generalized exponential distri-
bution. Sci. China Ser. A Math. 52, 1373-1388 (2009)

Lin, G.D., Huang, J.S.: Maximum correlation for the generalized Sarmanov bivariate distributions. J.
Stat. Plan. Inf. 141, 2738-2749 (2011)

McGilchrist, C.A., Aisbett, C.W.: Regression with frailty in survival analysis. Biometrics 47, 461-466
(1991). https://doi.org/10.2307/2532138

Morgenstern, D.: Einfache Beispiele Zweidimensionaler Verteilungen. Mitt. Math. Stat. 8, 234-235
(1956)

Nelsen, R.B.: An Introduction to Copulas, 2nd edn. Springer-Verlag, New York (2006)

@ Springer


https://doi.org/10.2989/16073606.2020.1729271
https://doi.org/10.2989/16073606.2020.1729271
https://doi.org/10.1080/08898480.2020.1767926
https://doi.org/10.2991/jsta.d.190822.001
https://doi.org/10.3390/math8112020
https://www.researchgate.net/publication/332109204
https://doi.org/10.2307/2336577
https://doi.org/10.1111/j.2517-6161.1961.tb00404.x
https://doi.org/10.1111/j.2517-6161.1961.tb00404.x
https://doi.org/10.2307/2532138

Sarmanov Family of Bivariate Distributions... S83

42. Sarmanov, 1.0.: Generalized normal correlation and two dimensional Fréchet classes. Soviet Math.
Dokl. 7, 596-599 (1966) (English translation; Russian original in Dokl. Akad. Nauk. SSSR168 (1966)
32-35)

43. Sarmanov, 1.O.: New forms of correlation relationships between positive quantities applied in hydrol-
ogy. In: Mathematical Models in Hydrology Symposium, IAHS Publication No. 100, International
Association of Hydrological Sciences, pp. 104-109 (1974)

44, Tahmasebi, S., Jafari, A.A.: Fisher information number for concomitants of generalized order statistics
in Morgenstern family. J. Inf. Math. Sci. 5(1), 15-20 (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

@ Springer



	Sarmanov Family of Bivariate Distributions: Statistical Properties—Concomitants of Order Statistics—Information Measures
	Abstract
	1 Introduction
	2 Some Distributional Characterizations of the Sarmanov Family
	3 Concomitants of OSs Based on the Sarmanov Family
	3.1 Marginal Distributions of Concomitants of OSs
	3.2 Some Recurrence Relations
	3.3 Joint Distribution of Bivariate Concomitants of OSs Based on SAR(α)

	4 Shannon Entropy, Inaccuracy Measures, and FIN
	4.1 Some Theoretical Relations
	4.2 Shannon Entropy, Inaccuracy Measure, and FIN Based on the Sarmanov Family

	5 Application of Real Data
	6 Conclusion
	Acknowledgements
	References




