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Abstract
In this paper, we study a class of Finsler metrics called Finsler warped product metrics.
We prove that every Finsler warped product metric is of isotropic E-curvature if and
only if it is of isotropic S-curvature.Moreover, we prove that if themetric is of Douglas
type and has isotropic S-curvature, then it must be Randers metric or Berwald metric.
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1 Introduction

Finsler geometry is just Riemannian geometry without the quadratic restriction on
its metrics [6]. For a Finsler metric F = F(u, v), its geodesics curves are given by
the system of differential equations c̈A + 2GA(c, ċ) = 0, where the local functions
GA = GA(u, v) are called the spray coefficients. F is called a Berwald metric if GA

are quadratic in v ∈ TuM for any u ∈ M .
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974 M. Gabrani et al.

Z. Shen, while studying volume comparison in Riemann–Finsler geometry, intro-
duced the S-curvature, which is one of the most important non-Riemannian quantities
in Finsler geometry, [20]. A Finsler metric F is said to be of isotropic S-curvature if

S = (n + 1)κ(u)F,

for some scalar function κ = κ(u).
The Randers metric, which is the solution of Zermelo’s navigation problem [1],

has the form F = α + β, where α is a Riemannian metric and β is a 1-form with
||β||α < 1. In [3], X. Cheng and Z. Shen investigated Randers metrics of scalar
flag curvature and isotropic S-curvature. For more research on Finsler metrics with
S-curvature and isotropic S-curvature, one can see [21,22,26].

The E-curvature is another the most important non-Riemannian quantity which has
the following relation with the S-curvature [4]:

EAB = 1

2
SvAvB .

Moreover, F is of isotropic E-curvature if there is a scalar function κ = κ(u) on an
n-dimensional manifold M such that

E = n + 1

2
κF−1h,

where h is the angular metric defined by hAB := FFvAvB . It has been known that
if a Finsler metric F is of isotropic S-curvature, then it is an isotropic E-curvature.
However, the converse is not true in general. Recently, many authors have studied this
problem for some special Finsler metrics [5,8,12,17,22].

In this paper, we mainly study warped product metrics which have been introduced
by Chen–Shen–Zhao using the concept of the warped product structure on an n-
dimensional manifold M := I × M̆ , where I is an interval of R and M̆ is an (n −
1)-dimensional manifold equipped with a Riemannian metric, [7]. The Finsler warped
product metric F can be expressed in the following form:

F(u, v) = ᾰ(ŭ, v̆)φ

(
u1,

v1

ᾰ(ŭ, v̆)

)
, (1)

where u = (u1, ŭ), v = v1 ∂
∂u1

+ v̆ and φ is a suitable function defined on a domain

of R2. According to [7, Lemma 3.1], this class of Finsler metrics includes spherically
symmetric Finsler metrics.

Below are three important examples:

(1) Funk warped product Let Bn denote the unit open ball in Rn . The metric

F =
√|y|2 − (|x |2|y|2 − 〈x, y〉2) + 〈x, y〉

1 − |x |2 , y ∈ TxB
n ∼= R

n,
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is a Randers metric, called the Funk metric on Bn . Its warped product form can be
expressed in the following

F = ᾰ+

√
s2 + r2(1 − r2) + sr

1 − r2
,

where r = u1, s = v1

ᾰ+ and ᾰ+ is the standard Euclidean metric on the unit sphere

Sn−1.
(2) Berwald warped product Define

F :=
[√|y|2 − (|x |2|y|2 − 〈x, y〉2) + 〈x, y〉

]2
(1 − |x |2)2√|y|2 − (|x |2|y|2 − 〈x, y〉2) ,

where y ∈ TxBn ∼= R
n , [24]. We call F the Berwald’s metric. Its warped product

form is

F = ᾰ+

[√
s2 + r2(1 − r2) + rs

]2
(1 − r2)2

√
s2 + r2(1 − r2)

.

(3) Bryant warped product Denote

A =
[
|y|2 cos θ + (|x |2|y|2 − 〈x, y〉2)

]2 +
(
|y|2 sin θ

)2
,

B = |y|2 cos θ + (|x |2|y|2 − 〈x, y〉2),
C = 〈x, y〉 sin θ,

D = |x |4 + 2|x |2 cos θ + 1.

For an angle θ with 0 ≤ θ < π , the Bryant’s metric is defined by

F =
√√

A + B

2D
+ C2

D2 + C

D
,

on the whole region R
n . Putting

Ā =
[
(r2 + s2) cos θ + r4

]2 +
[
(r2 + s2) sin θ

]2
,

B̄ = (r2 + s2) cos θ + r4,

C̄ = rs sin θ,

D̄ = r4 + 2r2 cos θ + 1,
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976 M. Gabrani et al.

the warped product form is

F = ᾰ+

⎛
⎝
√√

Ā + B̄

2D̄
+ C̄2

D̄2
+ C̄

D̄

⎞
⎠ .

In [7], B. Chen, Z. Shen, and L. Zhao have obtained the formula of the flag curvature
and Ricci curvature of Finsler warped product metrics and characterized these metrics
to be Einstein. H. Liu and X. Mo have gave a local characterization of the metrics with
vanishing Douglas curvature [14]. Then, H. Liu, X. Mo, and H. Zhang have found
equations that characterize the metrics of constant flag curvature and have constructed
explicitly many new warped product Douglas metrics of constant Ricci [15]. In [10],
M. Gabrani, B. Rezaei, and E.S. Sevim have obtained a differential equation which
characterizes a Finsler warped product metric with isotropic E-curvature. Moreover,
they have characterized the Landsberg Finsler warped product metrics [11]. For more
progress on the warped and doubly warped product structure in Finsler geometry, see
[2,13,18,19,25].

Throughout this paper, our index conventions are as follows:

1 ≤ A ≤ B ≤ . . . ≤ n, 2 ≤ i ≤ j ≤ . . . ≤ n.

Theorem 1 Let F = ᾰφ(r , s), r = u1, s = v1

ᾰ
be a warped product metric. Then, F

is of isotropic S-curvature if and only if it is of isotropic E-curvature.

It is known that any spherically symmetric metric is a Finsler warped product metric,
[7]. One of the examples of Finsler warped product metrics is given as follows, [16]:

F(u, v) = ᾰ+
[√

(r2 + s2) f (r) + k2r2 f (r)2s2 + kr f (r)s

]
,

where r = u1, s = v1

ᾰ+ and ᾰ+ is the standardEuclideanmetric on the unit sphere Sn−1.
One can be easily seen that the metric has isotropic S-curvature, S = (n + 1)cF , with

c = k
4

2 f (r)+r f
′
(r)

[1+k2r2 f (r)] f (r) , where k is a constant. Hence, the example satisfies Theorem 1.

Theorem 2 Let F = ᾰφ(r , s) be a Douglas warped product metric, where r = u1

and s = v1

ᾰ
. If F has isotropic S-curvature with respect to the volume form dV , then

either

1. F is a Randers warped product (Riemann warped product included), or
2. F is a Berwald warped product which can be formulated by

F = ᾰΥ [s2e4(
∫

ξ(r)dr)], (2)

where Υ is any differentiable function.
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It is known that if F is Riemannian or Berwaldian, then F is a Douglas metric and
has a vanishing S-curvature. Also, if the Randers warped product metrics satisfy (32)
and (33), then it is obviously seen that it is a Douglas metric of isotropic S-curvature
with respect to the volume form dV .

Corollary 1 Let F = ᾰφ(r , s) be a Douglas Finsler warped product metric, where

r = u1 and s = v1

ᾰ
. If F has vanishing S-curvature with respect to the volume form

dV , then F must be Berwaldian.

2 Preliminaries

LetGA be the geodesic coefficients of a Finslermetric F on an n-dimensionalmanifold
M , which are defined by

GA := 1

4
gAB{[F2]uCvBvC − [F2]uB },

where gAB(u, v) = [ 1
2 F

2
]
vAvB and (gAB) = (gAB)−1.

Lemma 1 The spray coefficients GA of a warped product metric F = ᾰφ(r , s) are
given by [7]

G1 = Φᾰ2, Gi = Ği + Ψ ᾰ2l̆ i , (3)

where l̆i = vi

ᾰ
and

⎧⎪⎨
⎪⎩

Φ = s2(ωrωss−ωsωrs )−2ω(ωr−sωrs )

2(2ωωss−ω2
s )

,

Ψ = s(ωrωss−ωsωrs )+ωsωr
2(2ωωss−ω2

s )
,

(4)

where ω = φ2. Φ and Ψ can be rewritten as follows:

Φ = s Ψ + A, (5)

Ψ = sφr

2φ
− φs

φ
A, (6)

where

A := sφrs − φr

2φss
. (7)

The Berwald curvature B = B A
C DEdu

C ⊗ duD ⊗ duE ⊗ ∂
∂uA of a Finsler metric

F is defined by

B A
C DE := ∂3GA

∂vC∂vD∂vE
.
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F is called a Berwald metric if B = 0. Furthermore, F is said to be of isotropic
Berwald curvature if its Berwald curvature B A

C DE satisfies

B A
C DE = τ(u)(FvCvDδAE + FvCvE δAD + FvDvE δAC + FvCvDvE vA),

where τ(u) is a scalar function. H. Liu and X. Mo have characterized the Finsler
warped product metrics to be Berwaldian. They have obtained the following lemma:

Lemma 2 [14] Let F = ᾰφ(r , s) be a warped product metric, where r = u1 and

s = v1

ᾰ
. Then, F is a Berwald metric if and only if

Φ = a(r)s2 + b(r), Ψ = c(r)s, (8)

where a = a(r), b = b(r) and c = c(r) are differentiable functions and Φ and Ψ are
defined in (4).

Substituting (5) into (8), we obtain

A = m(r)s2 + b(r), Ψ = c(r)s,

where m(r) = a(r) − c(r).
The E-curvature E = EABduA ⊗ duB of F is defined by

EAB := 1

2

∂2

∂vA∂vB

(
∂GC

∂vC

)
. (9)

Moreover, F is said to have isotropic E-curvature if there is a scalar function κ = κ(u)

on M such that

E = 1

2
(n + 1)κF−1h, (10)

where h is a family of bilinear forms hv = hABduA ⊗ duB , which are defined by
hAB := FFvAvB .

The well-known non-Riemannian quantity, S-curvature, is given by

S(u, v) := d

dt
[τ(c(t), ċ(t))] |t=0,

where c(t) is the geodesic with c(0) = u and ċ(0) = v, [20]. According to the given
definition, S-curvature measures the rate of change of the distortion on (TuM, Fu) in
the direction v ∈ TuM . For Berwald metrics, the S-curvature is zero, [21]. In local
coordinates, the S-curvature is defined by

S = ∂GC

∂vC
− vC

∂

∂uC
[ln σBH ] , (11)
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where dVF = σF (u)du1 ∧ · · · ∧ dun is the Busemann–Hausdorff volume form. A
Finsler metric is of isotropic S-curvature given by

S = (n + 1)cF, (12)

where c = c(u) is a scalar function on M .
Moreover,

D = DA
BCDdx

B ⊗ dxC ⊗ dxD

is a tensor on T M \ {0} which is called the Douglas tensor, where

DA
BCD : = ∂3

∂vB∂vC∂vD

(
GA − 1

n + 1

∂GC

∂vC
vA

)
. (13)

A Finsler metric F is called Douglas metric if D = 0. For a Berwald metrics, the
spray coefficients GA are quadratic in y. It follows that D = 0, (13). The Berwald
metrics are Douglas metric. H. Liu and X. Mo have proved that a warped product
Finsler metric F = ᾰφ(r , s) is of Douglas type if and only if

Φ − sΨ = ξ(r)s2 + η(r),

where ξ = ξ(r) and η = η(r) are two differential functions, [14].

3 S-Curvature of Finsler Warped Product Metrics

In this section, we study the S-curvature and isotropic S-curvature of the warped
product metrics:

The concept of the S-curvature in Finslermanifold can be determined by the volume
form dV = σ(u)du. Hence, in a local coordinate (uA, vA), the Busemann–Hausdorff
volume form dVBH = σBH (u)du given as follows:

σBH (u) = Vol(Bn(1))

Vol{(vA) ∈ Rn : F
(
u, vA ∂

∂uA

)
< 1}

,

where Vol denotes the Euclidean volume and B
n(1) is a unit ball in Rn .

For a warped product metric, we have the following lemma:

Lemma 3 Let F = ᾰφ(r , s), r = u1, s = v1

ᾰ
be a warped product metric on an

n-dimensional manifold M := I × M̆. Then, the Busemann–Hausdorff volume form
dVBH on M is obtained as follows:

dVBH = h(r)dVα, (14)
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where

h(r) =
∫ π

0 sinn−2(t)dt

rn−1
∫∞
−∞

1
φn(r ,s)ds

(15)

and

dVα = rn−1σᾰdv
1dv̆2 . . . dv̆n, σᾰ =

√
det(ăi j ). (16)

Proof Note that

∫ ∞

−∞
1

(1 + u2)
n
2
du =

∫ π

0
sinn−2(t)dt,

where u = tan t . Thus,

∫ ∞

−∞
1

(r2 + s2)
n
2
ds = 1

rn−1

∫ π

0
sinn−2(t)dt .

Let

α =
√

(v1)2 + r2ᾰ2, (17)

where ᾰ =
√∑n

i=2(v̆
i )2. Here, we have considered the special coordinate system

at (r , ŭ) ∈ M such that the Riemannian metric α is expressed in the form (17),
v = v1 ∂

∂r + ∑n
i=2 v̆i ∂

∂ ŭi
, and

α = ᾰ

√(
v1

ᾰ

)2

+ r2

= ᾰ
√
s2 + r2, (18)

where s = v1

ᾰ
. Consider a warped product metric F = ᾰφ(r , s), r = u1, s = v1

ᾰ
. The

Busemann–Hausdorff volume form dVBH = σ(r , ŭ) dv1 dv̆2 . . . dv̆n is given by

σ(r , ŭ) = Vol(Bn(1))

Vol(Ω)
,

where

Ω = {(v1, v̆2, . . . , v̆n) ∈ R
n | ᾰφ

(
v1

ᾰ
, r

)
< 1}
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and Vol(Ω) = ∫
Ω
dv1dv̆2 · · · dv̆n . Let Ω ′ := {(s, v̆2, . . . , v̆n) ∈ R

n | ᾰφ(s, r) < 1}.
Define

f : Ω
′ −→ Ω

(s, v̆i ) −→ (v1, v̆i ),

by

⎧⎨
⎩

v1 = sᾰ,

v̆i = v̆i .

Then,

Vol(Ω) =
∫

Ω

dv1dv̆2 · · · dv̆n

=
∫

Ω
′

∣∣∣∣ ∂ f

∂(s, v̆i )

∣∣∣∣ ds dv̆2 · · · dv̆n

=
∫

Ω
′ ᾰ ds dv̆2 · · · dv̆n .

Note that

∂ f

∂(s, v̆i )
=
(

ᾰ s v1
ᾰ

0 δij

)
.

Thus,

∣∣∣∣ ∂ f

∂(s, v̆i )

∣∣∣∣ = ᾰ.

Ω
′
is a family of disks. For each −∞ < s < ∞, v̆i is controlled by ᾰ < 1

φ(r ,s) .

Let Ds := {
(v̆2, . . . v̆n) ∈ R

n−1|ᾰ < 1
φ(r ,s)

}
. Then,

Vol(Ω) =
∫

Ω
′ ᾰ ds dv̆2 · · · dv̆n

=
∫ ∞

−∞

[∫
Ds

ᾰ dv̆2 · · · dv̆n
]
ds

=
∫ ∞

−∞

∫ R

0

[ ∫
Sn−2(t)

t dA
]
dt ds (where R = 1

φ(r , s)
)

=
∫ ∞

−∞

∫ R

0
tn−1Vol(Sn−2(1))dt dA

=
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=
∫ ∞

−∞
Rn

n
Vol(Sn−2(1))ds

=
∫ ∞

−∞
Vol(Sn−2(1))

n φn(r , s)
ds

= Vol(Sn−2(1))

n

∫ ∞

−∞
1

φn(r , s)
ds.

By (18), it follows that

Vol(Ω) = Vol(Sn−2(1))

n

∫ ∞

−∞
1

(s2 + r2)
n
2
ds

= Vol(Sn−2(1))

n

1

rn−1

∫ π

0
sinn−2(t)dt .

Then,

dVα = Vol(Bn(1))

Vol(Ω)
dv1dv̆2 · · · dv̆n

= rn−1 Vol(Bn(1))n

Vol(Sn−2(1))
∫ π

0 sinn−2(t)dt
dv1dv̆2 · · · dv̆n .

Note that

Vol(Bn(1)) =
∫ 1

0
Vol(Sn−1(t))dt

= 1

n
Vol(Sn−1(1))

= 1

n

∫ π

0
sinn−2(t)dt .Vol(Sn−2(1)).

Then, dVα = rn−1dv1dv̆2 · · · dv̆n . Go back to F = ᾰφ(r , s), we obtain

dVBH = Vol(Bn(1))

Vol(Ω)
dv1dv̆2 · · · dv̆n

= Vol(Bn(1))n

Vol(Sn−2(1))
.

1∫∞
−∞

1
φn(r ,s)ds

dv1dv̆2 · · · dv̆n

=
∫ π

0 sinn−2(t)dt∫∞
−∞

1
φn(r ,s)ds

dv1dv̆2 · · · dv̆n

=
∫ π

0 sinn−2(t)dt

rn−1
∫∞
−∞

1
φn(r ,s)ds

dVα

= h(r)dVα.
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In the above formula, dVα is given in a special coordinate system. Thus for a general
base, we have

dVα = rn−1σᾰdv
1dv̆2 · · · dv̆n .

�
Now, we prove the following propositions:

Proposition 1 Let F = ᾰφ(r , s), r = u1, s = v1

ᾰ
be a warped product metric. Then,

the S-curvature of F with respect to the volume form dV is given by

S = ᾰ [(n + 1)Ψ + As + sg(r)] , (19)

where g(r) := − f
′
(r)

f (r) and Ψ and A are defined by (6) and (7), respectively.

Proof By (3), we have

∂G1

∂v1
= Φs ᾰ,

∂Gm

∂vm
= ∂Ğm

∂vm
+ (nΨ − sΨs)ᾰ. (20)

By Lemma 3, dV = h(r)σαdu = rn−1h(r)σᾰdu = f (r)σᾰdu. Thus we have

vA ∂

∂uA
[ln σ(u)] = v1

∂

∂r
[ln f (r) + ln σᾰ] + vm

∂

∂um
[ln f (r) + ln σᾰ]

= sᾰ
f

′
(r)

f (r)
+ vm

∂

∂um
(ln σᾰ). (21)

Plugging (20) and (21) into (11) yields

S = ᾰ

[
Φs + (nΨ − sΨs) − s

f
′
(r)

f (r)

]
. (22)

By (5), it is easy to see that (22) is equivalent to (19). �
Proposition 2 Let F = ᾰφ(r , s), r = u1, s = v1

ᾰ
be a warped product metric. Then,

F is of isotropic S-curvature if and only if

(n + 1)Ψ + As + sg(r) = (n + 1)cφ, (23)

where c = c(u) and g(r) := − f
′
(r)

f (r) .

Proof By (12) and (19), we complete the proof. �
By using (6) and (7), one can see that (23) is equivalent to the following equation

φ(φ − sφs)rφsss + [(n + 1)φs(φ − sφs)r + sφφrss]φss

+
[
(n + 1)(sφr − 2cφ2) + 2sg(r)φ

]
φ2
ss = 0.
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4 E-Curvature of Warped Product Metrics

In this section, we characterize warped product metrics with isotropic E-curvature.
Throughout this section and the next section, we always assume that the dimension is
greater than two.

The following identities are obvious for a warped product metric F = ᾰφ(r , s):

ᾰv1 = 0, sv1 = 1
ᾰ
, sv j = − sl̆ j

ᾰ
, ᾰ2

v j = 2ᾰl̆ j , l̆m l̆m = 1, (24)

where l̆ j := ᾰv j .
The E-curvature of a warped product Finsler metric is computed in [10], and it is

given at below:

E =EABdu
A ⊗ duB

=E11du
1 ⊗ du1 + E1 jdu

1 ⊗ du j + Ei1du
i ⊗ du1 + Ei jdu

i ⊗ du j , (25)

where

E11 = 1

2

[
∂

∂v1∂v1

(
∂G1

∂v1

)
+ ∂

∂v1∂v1

(
∂Gm

∂vm

)]

= 1

2ᾰ
[(n − 2)Ψss − sΨsss + Φsss] ,

E1 j = 1

2

[
∂

∂v1∂v j

(
∂G1

∂v1

)
+ ∂

∂v1∂v j

(
∂Gm

∂vm

)]

= −s

2ᾰ
[(n − 2)Ψss − sΨsss + Φsss] l̆ j ,

Ei1 = 1

2

[
∂

∂vi∂v1

(
∂G1

∂v1

)
+ ∂

∂vi∂v1

(
∂Gm

∂vm

)]

= −s

2ᾰ
[(n − 2)Ψss − sΨsss + Φsss] l̆i ,

Ei j = 1

2

[
∂

∂vi∂v j

(
∂G1

∂v1

)
+ ∂

∂vi∂v j

(
∂Gm

∂vm

)]

= 1

2ᾰ

{
s2 [(n − 2)Ψss − sΨsss + Φsss] l̆i l̆ j

+
[
n(Ψ − sΨs) + s2Ψss + Φs − sΦss

]
h̆i j

}
,

where h̆i j := ᾰ(l̆i )v j .
We have characterized the warped product Finsler metrics of isotropic E-curvature

by the following proposition, [10]:

Proposition 3 The warped product metric F = ᾰφ(r , s) is of isotropic E-curvature
if and only if

123
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(n + 1)(Ψ − sΨs) + As − s Ass = (n + 1)κ(φ − sφs), (26)

where Ψ and A are defined by (6) and (7), respectively, and κ = κ(u) is a scalar
function on M.

5 Proof of Main Theorems

Proof of Theorem 1 Let F = ᾰφ(r , s), r = u1, s = v1

ᾰ
be a warped product metric.

Suppose that F is of isotropic S-curvature. That is, (23) holds. Differentiating (23)
with respect to the variable s, we have

(n + 1)Ψs + Ass + g(r) = (n + 1)cφs . (27)

(23)- s× (27) yields (26). Hence, F is of isotropic E-curvature.
Conversely, suppose that F is of isotropic E-curvature. Then, (26) holds. Let Ψ =

sΨ̄ , As = s Ās , and φ = sφ̄. Then, we have

Ψ − sΨs = −s2Ψ̄s, As − s Ass = −s2 Āss, (28)

and

φ − sφs = −s2φ̄s . (29)

Plugging (28) and (29) into (26), we obtain (for s �= 0)

(n + 1)Ψ̄s + Āss − (n + 1)κφ̄s = 0. (30)

Integrating (30) with respect to s yields

(n + 1)Ψ̄ + Ās − (n + 1)κφ̄ + γ (r) = 0,

where γ (r) is an integration constant. Thus,

(n + 1)Ψ + As − (n + 1)κφ + sγ (r) = 0.

Take κ(u) = c(u), γ (r) = g(r), we obtain (23). Therefore, F is of isotropic S-
curvature. �

To prove Theorem 2, we first prove the following proposition:

Proposition 4 Let F = ᾰφ(r , s) be a Finsler warped product metric, where r = u1

and s = v1

ᾰ
. If F is a Douglas metric and has isotropic E-curvature, then either

1. F is a Randers warped product (Riemann warped product included), or
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2. F is a Berwald warped product which can be formulated by

F = ᾰΥ [s2e4(
∫

ξ(r)dr)], (31)

where Υ is any differentiable function.

To prove Proposition 4, we need the following lemma:

Lemma 4 [11] Let F = ᾰφ(r , s) be a Douglas warped product metric, where r = u1

and s = v1

ᾰ
. Then, F has isotropic E-curvature if and only if

Ψ = κ(u)φ + sd(r), (32)

A = ξ(r)s2 + η(r), (33)

where Ψ and A are defined by (6) and (7), respectively.

Proof Let F = ᾰφ(r , s) be a Douglas Finsler warped product metric with isotropic
E-curvature. By [14, Lemma 3.3] and (5), F has vanishing Douglas curvature if and
only if

A = ξ(r)s2 + η(r). (34)

By Proposition 3, F is of isotropic E-curvature if and only if

(n + 1)(Ψ − sΨs) + As − s Ass = (n + 1)κ(φ − sφs). (35)

Plugging (34) into (35), we get

Ψ − sΨs = κ(φ − sφs). (36)

Thus, there exists a C∞ function d = d(r) such that

Ψ = κφ + sd(r). (37)

Conversely, suppose that (34) and (37) hold. By (34) and (37), (35) holds. Hence,
we obtain that F is a Douglas metric with isotropic E-curvature. �
Proof of Proposition 4 Suppose that (32) and (33) hold. Using (6) and (32), it yields

sφr

2φ
− φs

φ
A = κφ + sd(r).

Plugging (33) into the above equation, it yields

2[ξ(r)s2 + η(r)]φs − sφr + 2sd(r)φ + 2κφ2 = 0. (38)
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Differentiating (38) with respect to the variable s, we get

2[ξ(r)s2 + η(r)]φss − sφrs − φr + 2d(r)φ + 2s[2ξ(r) + d(r)]φs

+ 4κφφs = 0. (39)

On the other hand, by (7) and (33), we have

ξ(r)s2 + η(r) = sφrs − φr

2φss
. (40)

From (40), it follows that

2[ξ(r)s2 + η(r)]φss − sφrs + φr = 0. (41)

By (39)–(41), we have

s[2ξ(r) + d(r)]φs − φr + d(r)φ + 2κφφs = 0. (42)

By (42)×s–(38), it follows that

[d(r)s2 + 2κsφ − 2η(r)]φs = d(r)sφ + 2κφ2. (43)

Hence, (43) can be written as follows:

[
(ds2 − 2η)

(
1

φ2

)]
s
+
[
4κs

(
1

φ

)]
s

= 0. (44)

(1) If ds2 − 2η �= 0, then the solution of (44) is given by [9, Theorem 4.2]

φ = 2κs + √
(4κ2 + σd(r))s2 − ση(r)

σ
.

It follows that

F = 2κv1 + √
(4κ2 + σd(r))(v1)2 − ση(r)ᾰ2

σ
. (45)

We define the metric α = √
(4κ2 + σd(r))(v1)2 − ση(r)ᾰ2/σ and 1-form β =

2κv1

σ
on M := I × M̆ . Therefore, F is a Randers warped product metric. In this

case, when κ = 0, then themetric F in (45) becomes aRiemannianwarped product
metric.

(2) If ds2 − 2η = 0 and κ �= 0, then integrating the equation (44) concludes that

4κs

(
1

φ

)
+ t(r) = 0,
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where t(r) is a positive smooth function. We omit this, since the corresponding
warped product metric is a singular Kropina metric.

(3) If ds2 − 2η = 0 and κ = 0, note that φ > 0 and s �= 0. By (43), we have

d(r) = 0, d(r)s2 − 2η(r) = 0. (46)

By (46), it follows that

d(r) = 0, η(r) = 0. (47)

Plugging (47) into (42), it yields

2sξ(r)φs − φr = 0. (48)

In this case, we only solve (48). The characteristic equation of (48) is

dr

−1
= ds

2sξ(r)
,

which is equivalent to

ds

dr
= −2sξ(r).

Hence, the solution of (48) is

φ = Υ [s2e4(
∫

ξ(r)dr)],

where Υ (.) is a differentiable function [23, Lemma 4.1]. �
Proof of Theorem 2 Theorem 1 and Proposition 4 yield the proof of Theorem 2. �
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