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Abstract
A subgroup Nσ (G) of a finite group G is the σ -nilpotent norm of G if Nσ (G) is
the intersection of the normalizers of the σ -nilpotent residuals of all subgroups of G.
Let N 0

σ (G) = 1 and define N i+1
σ (G)/N i

σ (G) = Nσ (G/N i
σ (G)) for i = 0, 1, 2, ....

By N∞
σ (G) denote the terminal term of the ascending series and say that N∞

σ (G)

is the σ -nilpotent hypernorm of G. We study the influence of the σ -nilpotent norm
and σ -nilpotent hypernorm of G on the structure of a finite group G. In particular,
we proved that G = N∞

σ (G) if and only if GNσ is nilpotent, where GNσ is the σ -
nilpotent residual of G, that is, the intersection of all normal subgroups N of G with
σ -nilpotent quotient G/N .
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1 Introduction

Throughout this paper, all groups are finite and G always denotes a finite group. The
notation and terminology used in this paper are standard as in [8,12].

Baer in [1] considered the intersection of normalizers of all subgroups of G, which
is called the norm of G, and denoted by N (G). Much investigation has focused on
using the concepts of the norm to determine the structure of groups (see, for example,
[1–4,22]).

Recall that a class of groups F is called a formation if F is closed under taking
homomorphic images and subdirect products. A formation F is said to be saturated if
G ∈ F whenever G/�(G) ∈ F. If F is a non-empty formation, then the F-residual of
G, denoted by GF, is the smallest normal subgroup N of G with G/N ∈ F. Li and
Shen in [21] considered D(G), where D(G) is the intersection of the normalizers of
derived subgroups of all subgroups of G. Shen et al. in [24] introduced S(G), which is
the intersection of the normalizers of nilpotent residuals of all subgroups of G. Recall
that a group G is called p-decomposable if there exists a subgroup H of G such
that G = P × H for the Sylow p-subgroup P of G. In 2020, Fu, Shen and Yan [9]
introducedNDp (G), which is the intersection of the normalizers of p-decomposable
residuals of all subgroups of G.

In recent years, a new theory of σ -groups has been established by Skiba and Guo
(See [13,14,25–27]).

In fact, following Shemetkov [23], σ = {σi |i ∈ I } is some partition of all primes P,
that is, P = ⋃

i∈I σi and σi ∩σ j = ∅ for all i �= j . We write σ(G) = {σi |σi ∩π(G) �=
∅}.

Following [25,26], G is said to be: σ -primary if |σ(G)| ≤ 1; σ -soluble if every
chief factor of G is σ -primary; σ -nilpotent if G = G1 ×· · ·×Gn for some σ -primary
groups G1, · · · ,Gn . Clearly, a σ -nilpotent group is σ -soluble. We use Sσ and Nσ

to denote the class of all σ -soluble groups and the class of all σ -nilpotent groups,
respectively. If G /∈ Nσ but every proper subgroup of G belongs to Nσ , then G is
called an Nσ -critical or a minimal non-σ -nilpotent group.

Remark 1.1 When σ = σ 1 = {{2}, {3}, · · · } (we use here the notation in [26]), then
σ -soluble groups and σ -nilpotent groups are just soluble groups and nilpotent groups
respectively, and anNσ 1 -critical group G (that is, G is not nilpotent but every proper
subgroup of G is nilpotent) is a

Schmidt group. Let σ = {{p}, p′}, then σ -soluble groups and σ -nilpotent groups
are just p-soluble groups and p-decomposable groups, respectively. For the set π =
{p1, . . . , pn} of primes, we deal with the partition σ = σ 1π = {{p1}, . . . , {pn}, π ′}
of P [26]. Then G is: σ 1π -soluble if and only if G is π -soluble; σ 1π -nilpotent if and
only if G is π -special [7], that is, G = Op1(G) × · · · × Opn (G) × Oπ ′(G).
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This new theory of σ -groups is actually the development and popularization of
the famous Sylow theorem, the Hall theorem of the soluble groups and the Chunihin
theorem of π -soluble groups. A series of studies have been caused (See, for example,
[13,15,18,25,26,30–32]).

In 2021, Hu et al. [18] introduced the notion of σ -nilpotent norm as follows:

Definition 1.2 ([18, Definition 1.2]) A subgroupNσ (G) of G is called the σ -nilpotent
norm of G ifNσ (G) is the intersection of the normalizers of the σ -nilpotent residuals
of all subgroups of G, that is,

Nσ (G) =
⋂

H≤G

NG(HNσ ).

Now let N 0
σ (G) = 1 and define N i+1

σ (G)/N i
σ (G) = Nσ (G/N i

σ (G)) for i =
0, 1, 2, . . .. Then, there exists a series of normal subgroups of G:

1 = N 0
σ (G) ≤ N 1

σ (G) ≤ N 2
σ (G) ≤ · · · ≤ N n

σ (G) = N n+1
σ (G) = · · · .

Denote byN∞
σ (G) the terminal term of this ascending series and say thatN∞

σ (G)

is the σ -nilpotent hypernorm of G.

Remark 1.3 The σ -nilpotent normNσ (G) of G covers many possible definitions. For
example, in one case when σ = σ 1 = {{2}, {3}, . . .}, the σ -nilpotent norm Nσ (G) is
S(G), that is, the intersection of the normalizers of nilpotent residuals of all subgroups
in G.

In the case when σ = {{p}, p′}, the σ -nilpotent norm Nσ (G) is NDp (G), that is,
the intersection of the normalizers of p-decomposable residuals of all subgroups of
G.

In the other case when σ = σ 1π = {{p1}, . . . , {pn}, π ′}, the σ -nilpotent norm is
the π -special norm, that is, the intersection of the normalizers of π -special residuals
of all subgroups of G.

In [18], the authors studied the relationship of the σ -nilpotent length with the σ -
nilpotent norm of G, and get some important results. In this paper, we continue to
study the influence of the σ -nilpotent norm and σ -nilpotent hypernorm of G on the
structure of G.

For any σ -nilpotent group G, it is easy to see that Nσ (G) = N∞
σ (G) = G. If

σ = {{2}, {2}′} and G = S4, the symmetry group of degree four. Then Nσ (G) =
N∞

σ (G) = 1.
Motivated by the above observations, the following question naturally arise:

Question 1.4 What is the structure of G under the condition that N∞
σ (G) = G?

We use FNNσ
to denote the class of all finite group G with GNσ nilpotent.

In this paper, we give the affirmative answer to this above problem and get the
following theorem:

Theorem 1.5 Let G be a finite group. Then, the following statements are equivalent:
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(i) G ∈ FNNσ
;

(ii) G/N∞
σ (G) ∈ FNNσ

;
(iii) G = N∞

σ (G);
(iv) Nσ (G/N ) > 1 for any proper normal subgroup N of G.

For a formation X, G is called an X-group if G ∈ X.

Remark 1.6 It follows from the Theorem 1.5 that G is an FNNσ
-group if and only if

N∞
σ (G) = G.

In [24], Shen, Shi and Qian introduced the definition of S-groups:

Definition 1.7 A group G is called an S-group if G = S(G), that is, the nilpotent
residuals of all subgroups of G are normal.

The authors in [24] discussed some characters and the structure of S-groups.
Recently, the S-groups are also studied by Guo and Gong, see [10,16].

Here, we generalize the definition of S-groups and give the following definition:

Definition 1.8 AgroupG is called an Nσ -group ifG = Nσ (G), that is, the σ -nilpotent
residuals of all subgroups of G are normal.

In this paper, we would also study the properties and structure of Nσ -groups.
The paper is organized as follows. In Sect. 2, we prove some basic properties of

the subgroups Nσ (G) and N∞
σ (G). In Sect.. 3, we give the structure of G under the

condition thatN∞
σ (G) = G and prove Theorem 1.5. In Sect. 4, we study the properties

and structure of Nσ -groups.

2 Preliminaries

In this section, we give some basic properties of the subgroups Nσ (G) and N∞
σ (G).

Lemma 2.1 (See [18, Proposition 2.5] and [6, Lemma 2.4])

(1) If M ≤ G, then M ∩ Nσ (G) ≤ Nσ (M) and so M ∩ N∞
σ (G) ≤ N∞

σ (M).

(2) If N � G, then Nσ (G)N/N ≤ Nσ (G/N ) and so N∞
σ (G)N/N ≤ N∞

σ (G/N ).
(3) If N � G and N ≤ N∞

σ (G), then N∞
σ (G/N ) = N∞

σ (G)/N .

Lemma 2.2 (1) The class Nσ of all σ -nilpotent groups is closed under taking direct
products, homomorphic images and subgroups. Moreover, if H is a normal sub-
group of G and H/H ∩ �(G) is σ -nilpotent, then H is σ -nilpotent. [25, Lemma
2.5]

(2) The classSσ of all σ -soluble groups is closed under taking direct products, homo-
morphic images and subgroups. Moreover, any extension of the σ -soluble group
by a σ -soluble group is a σ -soluble group as well. [28, Lemma 2.1]

Remark 2.3 From the above Lemma 2.2(1), we know that Nσ is a subgroup closed
saturated formation.
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Recall that �(G) is the intersection of all maximal subgroups of G and F(G) is
the Fitting subgroup of G, that is the maximal normal nilpotent subgroup of G.

Lemma 2.4 (See [23, Ch. V, Theorem 26.1]) If G is a Schmidt group, then G = P�Q,
where P = GN = G ′ is a Sylow p-subgroup of G and Q = 〈x〉 is a cyclic Sylow
q-subgroup of G with 〈xq〉 ≤ Z(G) ∩ �(G). Hence QG = G.

Lemma 2.5 (See [5, Theorem 1.2]) If G is anNσ -critical group, then G is a Schmidt
group.

Proposition 2.6 If G = Nσ (G), then GNσ is nilpotent.

Proof Suppose it is false and let G be a counterexample of minimal order. Then:

(1) For every proper subgroup H of G, HNσ is nilpotent and so HNσ ≤ F(G).
For every proper subgroup H ofG, H = H ∩Nσ (G) ≤ Nσ (H) by the hypothesis
and Lemma 2.1(1) and so H = Nσ (H). Hence, H satisfies the hypothesis of the
proposition. The choice of G implies that HNσ is nilpotent. From the definition of
Nσ (G), HNσ is normal in G = Nσ (G). Hence HNσ ≤ F(G). Therefore Claim
(1) holds.

(2) �(G) = 1
If �(G) �= 1, then G/�(G) = Nσ (G)�(G)/�(G) ≤ Nσ (G/�(G)) by Lemma
2.1(2). So G/�(G) satisfies the hypothesis of the proposition. The choice of
G implies that (G/�(G))Nσ = GNσ �(G)/�(G) ∼= GNσ /GNσ ∩ �(G) is
nilpotent. Then GNσ is nilpotent, a contradiction. Therefore Claim (2) holds.

(3) F(G) > 1.
Assume that F(G) = 1. Then HNσ = 1 for every proper subgroup H of G by
Claim (1). This shows that every proper subgroup of G is σ -nilpotent. Therefore
G is either a σ -nilpotent group or an Nσ -critical group. If G is a σ -nilpotent
group, then GNσ = 1, a contradiction. Assume that G is an Nσ -critical group.
Then by Lemma 2.5, G is a Schmidt group. It follows from Lemma 2.4 that
GN = GNσ ≤ G ′ < G. Hence GNσ is nilpotent. This contradiction shows that
Claim (3) holds.

(4) The finial contradiction.

By Claim (3), there exists a minimal normal subgroup N ofG such that N ≤ F(G).
Then N is an elementary abelian group. By Claim (2), there exists amaximal subgroup
M ofG such thatG = NM and N∩M = 1. SinceG/NMNσ = MNMNσ /NMNσ �
M/MNσ ∈ Nσ ,GNσ ≤ NMNσ . ByClaim (1),MNσ ≤ F(G). HenceGNσ ≤ F(G).
The final contradiction completes the proof. 
�
Proposition 2.7 For any group G, the subgroup N∞

σ (G) of G is σ -soluble.

Proof In view of Lemma 2.2(2), we only need to show thatNσ (G) is σ -soluble. Write
X = Nσ (G). Let M be a maximal subgroup of X . If MNσ > 1, then MNσ is normal
in X . By Lemmas 2.1(1) and 2.1(2) and induction, X/MNσ and MNσ are σ -soluble.
Therefore X is σ -soluble by Lemma 2.2(2). If MNσ = 1 for all maximal subgroups of
X , then X is either a σ -nilpotent group or anNσ -critical group. Therefore by Lemmas
2.4 and 2.5, X is σ -soluble. The proof is completed. 
�
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Theorem 2.8 Suppose that G has no σ -primary Schmit subgroups. Then GNσ ∩
Nσ (G) = 1 if and only if Z(GNσ ) = 1.

Proof Assume that GNσ ∩Nσ (G) = 1. By [9, Lemma 2.1] and Lemma 2.2, we have
CG(GNσ ) ≤ Nσ (G). It follows that Z(GNσ ) = CG(GNσ ) ∩ GNσ ≤ Nσ (G) ∩
GNσ = 1. Hence, the necessity holds.

Next we prove the sufficiency, that is, if Z(GNσ ) = 1, then GNσ ∩ Nσ (G) = 1.
Suppose that Z(GNσ ) = 1 and GNσ ∩ Nσ (G) > 1. Hence there exists a minimal

normal subgroup N of G such that N ≤ GNσ ∩ Nσ (G). Since Nσ (G) is σ -soluble
by Proposition 2.7, N is a σi -group for some i . Set C = CG(N ).

We show that the factor G/C is a σ -nilpotent group. Suppose it is false. Then,
there exists a minimal non-σ -nilpotent subgroup K/C of G/C , that is, K/C is not
σ -nilpotent but all of whose proper subgroups are σ -nilpotent. Choose a subgroup L of
K such that K = CL and C ∩ L ≤ �(L). Then by Remark 2.3, L/�(L) is a minimal
non-σ -nilpotent subgroup.ByLemmas2.4 and2.5, L/�(L) = (Q/�(L))(P/�(L)),
where Q/�(L) is a normal Sylow q-subgroup of L/�(L) and P/�(L) is a cyclic
Sylow p-subgroup of L/�(L). Since L/�(L) is not σ -nilpotent, clearly p and q
belong to different partitions, that is, p ∈ σi and q ∈ σ j , where σi∩σ j = ∅. ByLemma
2.4, we also know that (L/�(L))Nσ = LNσ �(L)/�(L) is a q-subgroup, so LNσ is
nilpotent. Take the Sylow q-subgroup Q0 of LNσ . Then Q0 is characterize in LNσ . By
definition ofNσ (G),Nσ (G) normalizers LNσ . HenceNσ (G) normalizers Q0. If N ∩
Q0 = 1, then Q0 ≤ C∩L ≤ �(L). It follows that (L/�(L))Nσ = 1. Hence L/�(L)

is σ -nilpotent, a contradiction. Assume N ∩ Q0 �= 1. It follows from N is a minimal
normal subgroup ofG and N∩Q0 is a normal q-subgroup of N that N is an elementary
abelianq-subgroupofG. Nowwe show thatG/C is p-nilpotent for every prime p �= q.
Assume that it is false, then there exists a minimal non-p-nilpotent subgroup H/C of
G/C . Choose a subgroup M of H such that H = CM and C ∩ M ≤ �(M). Then
M/�(M) is a minimal-non-p-nilpotent subgroup. In the light of a theorem of Ito [19,
Chapert IV, Theorem 5.4], M/�(M) = (P∗/�(M))(R/�(M)) is a Schmit group
of order pmrn , where P∗/�(M) is a normal Sylow p-subgroup of M/�(M) and
R/�(M) is a cyclic Sylow r -subgroup of M/�(M), r �= p is a prime, m, n ≥ 1. It is
clear that p and r belong to different partitions. In fact, if p, r ∈ σ j for some j . Then
M/�(M) is a σ -primary Schmit group. Since M/�(M) is a σ j -group, M is a σ j -
group. Clearly M is not nilpotent, so there exists a Schmit subgroup S of M . Hence, S
is a σ -primary Schmit group of G, which contradicts the hypothesis. Therefore, p and
r belong to different partitions. Then (M/�(M))Nσ = (M/�(M))N = P∗/�(M).
Now asMNσ �(M)/�(M) = (M/�(M))Nσ = (M/�(M))N = MN�(M)/�(M)

is a p-subgroup, MNσ is nilpotent. Take the Sylow p-subgroup P0 of MNσ . Then P0
is characterize in MNσ . By definition of Nσ (G), N normalizes MNσ , and so N
normalizes P0. Since N ∩ P0 = 1, we have that P0 ≤ C ∩ M ≤ �(M). It follows
that (M/�(M))N = 1. Hence M/�(M) is nilpotent, a contradiction. Therefore
G/C is p-nilpotent for every prime p �= q. We now show that G/C is q-closed. Let
H(p)/C be the normal Hall p′-subgroup ofG/C for every prime pwith p �= q. Write
T /C = ⋂

p �=q H(p)/C . It is clear that T /C is a normal Sylow q-subgroup of G/C .
Therefore G/C is q-closed. It follows that G/T is a q ′-group. Then by [23, Chapter
III, Lemma 11.2], there exists a q ′-subgroup W of G such that G = TW . Since
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[N ,WNσ ] ⊆ N ∩ WNσ = 1, WNσ ≤ C . It follows that G/T is σ -nilpotent. Thus
GNσ ≤ T . Take Q1 is a Sylow q-subgroup of T containing N . Then N ∩ Z(Q1) �= 1.
Hence, there exists an element x such that 1 �= x ∈ N ∩ Z(Q1). Now C ≤ CG(x) and
Q1 ≤ CG(x). Since T = CQ1, we have that T ≤ CG(x). Hence GNσ ≤ T ≤ CG(x)
and x ∈ CG(GNσ ) ∩ N ≤ CG(GNσ ) ∩ GNσ = Z(GNσ ), contrary to Z(GNσ ) = 1.
This contradiction shows that G/C is a σ -nilpotent group.

Now G/C is σ -nilpotent, that is, (G/C)Nσ = 1. Hence, GNσ ≤ C = CG(N ).
Consequently N ≤ CG(GNσ ) ∩ GNσ = Z(GNσ ), contrary to Z(GNσ ) = 1. The
proof is completed. 
�
Remark 2.9 We do not know whether the result of Theorem 2.8 is still true if we
remove the hypothesis that G has no σ -primary Schmit subgroups. Note also that
when σ = σ 1 = {{2}, {3}, · · · }, then clearly G has no σ -primary Schmit subgroups
and so the hypothesis of Theorem 2.8 natural holds. Hence our Theorem 2.8 covers
the Theorem 2.5 in [24].

3 The Proof of Theorem 1.5

LetM andH be non-empty formations, then theGaschütz productM◦H ofM andH is
defined as follows:G ∈ M◦H if and only ifGH ∈ M. In particular,FNNσ

= N◦Nσ

is the class of finite groups G with GNσ nilpotent.
In order to proveTheorem1.5,we first need to prove the following two propositions.

Proposition 3.1 (1) FNNσ
is a formation;

(2) FNNσ
is subgroup closed, that is , if G ∈ FNNσ

and H ≤ G, then H ∈ FNNσ
.

(3) G ∈ FNNσ
if and only if G/�(G) ∈ FNNσ

.

Proof (1) It follows that [8, IV, Theorem 1.8(a)].
(2) It is well known that the class N of all nilpotent groups is subgroup closed. By

Lemma 2.2, we also know thatNσ is subgroup closed. Nowwe only need to prove
the more general result: If two formations M and H are subgroup closed, then
M ◦ H is subgroup closed. In fact, if G ∈ M ◦ H and H ≤ G, then GH ∈ M.
Since H is subgroup closed and G/GH ∈ H, we have that HGH/GH ∈ H. By
the isomorphism HGH/GH � H/H ∩ GH, we see that H/H ∩ GH ∈ H, and so
HH ≤ GH ∈ M. But as M is subgroup closed, we obtain that HH ∈ M. Hence
H ∈ M ◦ H.

(3) It follows from [11, Theorems 3.1.11 and 3.1.20].

�

Remark 3.2 The Proposition 3.1 shows that FNNσ
is a subgroup closed saturated

formation.

Proposition 3.3 The following statements are equivalent:

(1) G ∈ FNNσ

(2) G/Nσ (G) ∈ FNNσ
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Proof (1) �⇒ (2):
It follows from Proposition 3.1(1).
(2) �⇒ (1):
Assume that this is false and let G be a counterexample of minimal order. We

proceed via the following steps.

(1) For any proper subgroup L of G, LNσ is nilpotent.
Since G/Nσ (G) ∈ FNNσ

, we have that LNσ (G)/Nσ (G) ∈ FNNσ
by Proposi-

tion 3.1(2). It follows that LNσ (G)/Nσ (G) ∼= L/(Nσ (G)∩ L) that L/(Nσ (G)∩
L) ∈ FNNσ

. By Lemma 2.1(1), Nσ (G) ∩ L ≤ Nσ (L). So L/Nσ (L) ∈ FNNσ
.

Hence L ∈ FNNσ
by the minimal choice of G.

(2) For any nontrivial normal subgroup K of G, (G/K )Nσ is nilpotent.
Since G/Nσ (G)K ∼= (G/Nσ (G))/(Nσ (G)K/Nσ (G)) and G/Nσ (G) ∈ FNNσ

,
we have that G/Nσ (G)K ∈ FNNσ

. By Lemma 2.1(2), Nσ (G)K/K ≤
Nσ (G/K ).This shows thatG/K satisfies the hypothesis of the proposition. There-
fore (G/K )Nσ is nilpotent by the choice of G.

(3) �(G) = 1.
If �(G) �= 1, then (G/�(G))Nσ = GNσ �(G)/�(G) is nilpotent by Claim (2).
So GNσ is nilpotent, that is, G ∈ FNNσ

, a contradiction. Therefore �(G) = 1.
(4) The minimal normal subgroup of G is unique.

Assume N is a minimal normal subgroup of G. By Claim (2), (G/N )Nσ =
GNσ N/N is nilpotent. If N � GNσ , then N ∩GNσ = 1. From the isomorphism
GNσ N/N � GNσ , we have GNσ is nilpotent, a contradiction. Hence, any mini-
mal normal subgroup ofG is contained inGNσ . If there exist two differentminimal
normal subgroups of G, says N1, N2. Then N1 ∩ N2 = 1 and GNσ /N1,GNσ /N2
are both nilpotent. So we haveGNσ is nilpotent, a contradiction. Thus the minimal
normal subgroup of G is unique.

(5) The finial contradiction.

Let N be the unique minimal normal subgroup of G. Clearly, Nσ (G) > 1. Then,
N ≤ Nσ (G). If N is solvable, then N is an elementary abelian group. Since�(G) = 1
byClaim (3), there exists amaximal subgroupM ofG such thatG = NM and N∩M =
1. Then GNσ ≤ NMNσ . By Claim (1), MNσ is nilpotent. Now as N ≤ Nσ (G)

and Nσ (G) normalizes MNσ , we have that MNσ is normal in G. The minimality
of N implies that N ∩ MNσ = 1 and so NMNσ = N × MNσ . Since N is an
elementary abelian group and MNσ is nilpotent, we conclude that GNσ is nilpotent.
The contradiction shows that N is not soluble, and so N is a direct product of copies
of a nonabelian simple group. Since N is the unique minimal normal subgroup of G,
we have CG(N ) = 1. Let H be any proper subgroup of G. By Claim (1), HNσ is
nilpotent. Therefore HNσ ∩ N = 1. Since N ≤ Nσ (G) andNσ (G) normalizes HNσ ,
N normalizes HNσ . Hence HNσ ≤ CG(N ) = 1 and so HNσ = 1 for any proper
subgroup H of G. It follows that G is either a σ -nilpotent group or an Nσ -critical
group. IfG is a σ -nilpotent group, thenGNσ = 1, and soG ∈ FNNσ

, a contradiction.
If G is an Nσ -critical group, then GNσ ≤ GN is nilpotent by Lemmas 2.5 and 2.4, a
contradiction also. The proposition is proved. 
�

The Proof of Theorem 1.5.
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Proof (i) �⇒ (i i): It follows from Proposition 3.1(1).
(i i) �⇒ (i i i): Firstly, we prove a fact that if X > 1 is an FNNσ

-group, then
Nσ (X) > 1. In fact, if X ∈ FNNσ

, then XNσ is nilpotent, and so CX (XNσ ) > 1. But
CX (XNσ ) ≤ Nσ (X) by Remark 2.3 and [9, Lemma 2.1], so we have Nσ (X) > 1.
Using the fact and the noting that Nσ (G/N∞

σ (G)) = 1, we get G = N∞
σ (G).

(i i i) �⇒ (i): By Lemma 2.1(3), N∞
σ (G/Nσ (G)) = N∞

σ (G)/Nσ (G). Then by
induction, G/Nσ (G) ∈ FNNσ

. It follows from Proposition 3.3 that G ∈ FNNσ
.

(i) �⇒ (iv): Using the fact which is proved in (i i) �⇒ (i i i), it is obvious.
(iv) �⇒ (i i i): By definition, N i+1

σ (G)/N i
σ (G) = Nσ (G/N i

σ (G)) for i =
0, 1, 2, . . .. By the hypothesis, Nσ (G/N i

σ (G)) > 1 if N i
σ (G) < G, so N i+1

σ (G) >

N i
σ (G) for anyN i

σ (G) < G. Hence, the terminal termN∞
σ (G) of the ascending series

must be G. 
�
Corollary 3.4 If H is an FNNσ

-subgroup of G, then N∞
σ (G)H is an FNNσ

-group.
Consequently, N∞

σ (G) is contained in every maximal FNNσ
-subgroup of G.

Proof Let M = N∞
σ (G)H . By Lemma 2.1(1), we have N∞

σ (G) ≤ N∞
σ (M). Hence

M/N∞
σ (M) ≤ N∞

σ (M)H/N∞
σ (M) ∼= H/(H ∩ N∞

σ (M)). Since H ∈ FNNσ
,

M/N∞
σ (M) ∈ FNNσ

by Proposition 3.1. It follows from Theorem 1.5 that M ∈
FNNσ

. In particular, we take H is any maximal FNNσ
-subgroup of G. Then M =

N∞
σ (G)H = H , and so N∞

σ (G) ≤ H . Therefore N∞
σ (G) is contained in every

maximal FNNσ
-subgroup of G. 
�

Following [12], we use I ntX(G) to denotes the intersection of all X-maximal sub-
groups of G, where X is a class of finite groups.

Remark 3.5 The above Corollary 3.4 shows that N∞
σ (G) ≤ I ntFNNσ

(G). But we do
not know whether I ntFNNσ

(G) ≤ N∞
σ (G) is true.

4 The Properties and Structures of N�-groups

In this section, we discuss the class of Nσ -groups.
Recall that a group G is an Nσ -group if G = Nσ (G), that is, the σ -nilpotent

residual of every subgroup ofG is normal inG; a group G is an S-group ifG = S(G),
that is, the nilpotent residual of every subgroup ofG is normal inG. Firstly we discuss
the relationship between Nσ -groups and S-groups.

The following example shows that Nσ -groups and S-groups are different.

Example 4.1 Let G = A5 be the alternating group with degree 5 and σ = {σ1, σ2},
whereσ1 = {2, 3, 5} andσ2 = {2, 3, 5}′. Clearly,G is aσ -nilpotent, so every subgroup
of G is σ -nilpotent by Lemma 2.2(1). Hence G is an Nσ -group. However, G is not an
S-group. In fact, A4

N �= 1 is not normal in G.

Now we give the following proposition to show Nσ -groups and S-groups are same
under certain conditions.

Recall (see [25,26,29]) that a setH of subgroups of G is said to be a complete Hall
σ -set of G if every non-identity member of H is a Hall σi -subgroup of G for some
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σi and H contains exactly one Hall σi -subgroup for every σi ∈ σ(G). G is said to
be: σ -full if G possesses a complete Hall σ -set; a σ -full group of Sylow type if every
subgroup of G is a Dσi -group for all σi ∈ σ(G).

Proposition 4.2 Let G be a σ -full group of Sylow type and H = {W1, . . . ,Wt } be a
complete Hall σ -set of G such that Wi is a nilpotent σi -subgroup for all i = 1, . . . , t .
Then G is an Nσ -group if and only if G is an S-group.

Proof Let H be any subgroup of G. It is clear that HNσ ≤ HN. Now we show
HN ≤ HNσ . Since H/HNσ ∈ Nσ , we have that H/HNσ = H1/HNσ ×H2/HNσ ×
. . . Ht/HNσ ,where Hi/HNσ is a Hall σi -subgroup of H/HNσ for all i = 1, 2, . . . , t .
By the hypothesis, we see that Hi/HNσ is nilpotent. Hence H/HNσ is nilpotent, that
is, H/HNσ ∈ N. Therefore HN ≤ HNσ . It follows that HN = HNσ . If G is an
Nσ -group, then HN = HNσ is normal in G for every subgroup H of G. Hence G is
an S-group. If G is an S-group, then HNσ = HN is normal in G for every subgroup
H of G. It follows that G is an Nσ -group. Therefore, the proof is completed. 
�

Next we give some characters of Nσ -groups and some judging theorems for a group
to be an Nσ -group.

Note that for any normal subgroup N of G, (G/N )Nσ = GNσ N/N (see [11,
Lemma 2.1.3]). Hence the following facts are clear fromDefinition 1.8, Lemma 2.2(1),
Lemmas 2.4 and 2.5:

Proposition 4.3 (i) The subgroups of an Nσ -group are Nσ -groups;
(ii) The quotient groups of an Nσ -group are Nσ -groups;
(iii) If G is a σ -nilpotent group or a minimal non-σ -nilpotent group, then G is an

Nσ -group.

Lemma 4.4 G is a σ -nilpotent group if and only if there is a normal nilpotent subgroup
N of G such that G/N ′ is a σ -nilpotent group.

Proof The necessity follows from Lemma 2.2(1). We now show the sufficiency. Since
N is nilpotent, then N ′ ≤ �(G). Then as G/N ′ is a σ -nilpotent group, we have that
G/�(G) is σ -nilpotent by Lemma 2.2(1). Hence G is a σ -nilpotent group by Remark
2.3. The lemma is proved. 
�
Remark 4.5 Through the proof process of the above Lemma 4.4, we can see that the
Lemma 4.4 is also valid when the class of σ -nilpotent groups is replaced by any
saturated formation. Hence Lemma 4.4 covers a famous result of Hall (see [17, page
2]).

From Lemmas 4.4, 2.2 and Proposition 2.6, we directly obtain the following:

Theorem 4.6 G is a σ -nilpotent group if and only if G is an Nσ -group and G/(GNσ )′
is a σ -nilpotent group.

Following Definition 3.10 in [20], let Gn+1 = [Gn,G], if a group G satisfies
Gc+1 = 1, then we say that G is nilpotent of class ≤ c; the least such number c is
called the nilpotency class of G.
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Theorem 4.7 If G/(GNσ )′ is anNσ -critical group and GNσ is of nilpotency class 2,
then G is an Nσ -group.

Proof Assume that the theorem is false and let G be a counterexample of min-
imal order. Then there exists M < G such that MNσ is not normal in G.
Consider NG(MNσ ). As GNσ is nilpotent of class 2, (GNσ )′ ≤ Z(GNσ ). Since
M/M ∩ GNσ � MGNσ /GNσ ≤ G/GNσ ∈ Nσ and Nσ is subgroup closed
by Lemma 2.2(1), MNσ ≤ GNσ . Then G > NG(MNσ ) ≥ M(GNσ )′. Since
G/(GNσ )′ is anNσ -critical group, M(GNσ )′/(GNσ )′ is σ -nilpotent. It follows from
M(GNσ )′/(GNσ )′ � M/M ∩ (GNσ )′ ∈ Nσ that MNσ ≤ M ∩ (GNσ )′ ≤ Z(GNσ ).

Hence GNσ ≤ NG(MNσ ), and so MGNσ ≤ NG(MNσ ) < G. Then MGNσ /(GNσ )′
is σ -nilpotent as G/(GNσ )′ is anNσ -critical group. Hence by Lemma 4.4, MGNσ is
σ -nilpotent. It follows from Lemma 2.2(1) that M is σ -nilpotent and so MNσ = 1 is
normal in G. The contradiction completes the proof. 
�

Byusing the samemethod of the Proof of Theorem4.7,we can also get the following
general result.

Theorem 4.8 If G/(GNσ )n is anNσ -critical group and GNσ is of nilpotency class n,
where n is an integer and n ≥ 2, then G is an Nσ -group.

Proof Assume that the theorem is false and let G be a counterexample of minimal
order. Then there is M < G such that MNσ is not normal in G. Consider NG(MNσ ).
If GNσ is nilpotent of class n, then (GNσ )n ≤ Z(GNσ ). Clearly MNσ ≤ GNσ ,
so G > NG(MNσ ) ≥ M(GNσ )n . Since G/(GNσ )n is an Nσ -critical group,
M(GNσ )n/(GNσ )n is σ -nilpotent. It follows from M(GNσ )n/(GNσ )n � M/M ∩
(GNσ )n ∈ Nσ that MNσ ≤ M ∩ (GNσ )n ≤ Z(GNσ ). Hence GNσ ≤ NG(MNσ ),

and so MGNσ ≤ NG(MNσ ) < G. Therefore MGNσ /(GNσ )n is σ -nilpotent as
G/(GNσ )n is an Nσ -critical group. Since (GNσ )n ≤ (GNσ )′, MGNσ /(GNσ )′ is σ -
nilpotent by Lemma2.2. Hence by Lemma 4.4, MGNσ is σ -nilpotent. Consequently
M is σ -nilpotent, and so MNσ = 1 is normal in G. The contradiction completes the
proof. 
�
Remark 4.9 It is clear that Theorem 4.5 and 4.6 in [24] are corollaries of our Theorem
4.8.
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