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Abstract
We consider some versions of a game when two players Nora and Wanda in some
order are choosing the coefficients of a degree d polynomial. The aim of Nora is to get
a polynomial which has no roots in some field or, more generally, is irreducible over
that field or, even more generally, has the largest possible Galois group Sd, while the
aim Wanda is the opposite. We show that in order to obtain an irreducible polynomial
for Nora it suffices to have the last move. However, to ensure that the splitting field
of the resulting polynomial with integer coefficients has Galois group Sd Nora needs
to have at least three moves for each even d ≥ 4. For d = 4 we show that Nora can
always get the Galois group S4 if Nora starts and they play alternately.

Keywords Roots of polynomials · Hilbert’s irreducibility theorem · Galois group
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1 Introduction

In this paper we study some versions of a game proposed by Gasarch, Washington and
Zbarsky in [9]. Given a positive integer d ≥ 2 and two sets R and S, two players Nora
and Wanda in some predetermined order are selecting the coefficients of a degree d
polynomial

g(x) = ad x
d + · · · + a1x + a0
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by choosing an index j ∈ {0, 1, . . . , d} which was not chosen before and assigning to
the coefficient a j any value from R with restriction a0 �= 0 and ad �= 0. The aim of
Nora (“no root”) is to ensure that the resulting polynomial g has no root in S, while
the aim of Wanda (“wants root”) is to ensure that the resulting polynomial has a root
in S. Unlike as in [9], we do not assume that the players make their moves alternately
but in some predetermined order which is known to both of them in advance.

If R is an integral domain and S is the field of fractions of R, then, by Lemma 1 in
[9],

Theorem 1 Wanda wins if she has the last move.

The proof is elementary. On the other hand, if R is a subring of a finite extension
K of Q and S is the field of fractions of R (so that S ⊆ K ), then Nora wins if she
has the last move. The proof of the corresponding result [9, Theorem 4] is nontrivial.
As an ingredient it contains a so-called S-unit theorem [7,8,15], which itself is based
on Schmidt’s subspace theorem. Below, in Theorem 2 we will give a new proof of
this result. Although it is not elementary (finding an elementary proof is left as an
open problem in [9]), our proof is almost immediate. We use Hilbert’s irreducibility
theorem which was not used either in [9] or in a subsequent paper [16]. This approach
implies a stronger conclusion asserting that the resulting polynomial not only does not
have a root in the number field K but is also irreducible over K .

Theorem 2 If Nora and Wanda in some order are choosing the coefficients of a degree
d ≥ 2 polynomial in a number field K , with Nora’s move being last, then Nora can
always choose the last coefficient in N so that the resulting polynomial is irreducible
over K .

Proof Let j ∈ {0, 1, . . . , d} be the last index to be chosen by the last move of Nora.
Suppose f (x) = ∑d

i=0, i �= j ai x
i , where ai ∈ K for each i ∈ {0, 1, . . . , d} \ { j}. Here,

ad �= 0 if j �= d and a0 �= 0 if j �= 0. Then, the polynomial in two variables

F(x, y) = f (x) + yx j ∈ K [x, y]

is linear in y, and so is irreducible over K , since f (x) and x j are coprime. So, by
Hilbert’s irreducibility theorem (see [14, p. 298]), there are infinitely many t ∈ N for
which the polynomial F(x, t) = f (x) + t x j is irreducible over K . Nora can choose
any of those t . ��

Recently, Sharma and Singhal in [16] studied some other questions raised in [9]. If
K is an infinite extension of Q, then the result as in Theorem 2 does not necessarily

hold. So the questions with K being Q
solv

(the compositum of all finite extensions of

Qwith solvable Galois group) as in [9] or K beingQ
ab
(the maximal abelian extension

of Q) as in [16] cannot be treated in the same manner as above.
In this paper we will prove the following:

Theorem 3 If Nora and Wanda in some order are choosing the coefficients of a degree
d ≥ 4 polynomial in Z, then Nora can play so that the splitting field of the resulting
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Two Players Choosing the Coefficients of a Polynomial 795

polynomial has the Galois group Sd if she has at least four moves including at least
one of the first two moves and both of the last two moves. On the other hand, if Nora
has only two moves, then Wanda can achieve the opposite goal for each even d ≥ 4.

It is well known that the full symmetric group Sd is not abelian for d ≥ 3 and not
solvable for d ≥ 5. Hence, Theorems 2 and 3 imply the following:

Corollary 4 Nora wins if she has

(i) The last move in the game (R, K ), where d ≥ 2, K is a number field and R is a
subring of K ;

(ii) At least four moves including at least one of the first two moves and both of the last

two moves in the game (R, S) = (Z,Q
ab

), where d ≥ 4, and (R, S) = (Z,Q
solv

),
where d ≥ 5;

Note that for d ∈ {2, 3} Nora can get the polynomial with Galois group Sd if she
plays last by choosing the last coefficient in Z so that the discriminant of the resulting
polynomial is not a square in Z. For d = 4 she cannot attain this goal even if she
has the last three last moves, since Wanda having the first two moves can choose the
first two coefficients zeros a1 = a3 = 0. Then, by Lemma 9, the Galois group of the
splitting field of the resulting polynomial will be of order at most 8, so it is not S4.
By the same lemma, for each d ≥ 4 Wanda can attain the same goal by restricting the
order of Galois group to at most (p − 1)pd/p(d/p)! < d! (where p is the smallest
prime divisor of d) if she has the first d(1− 1/p) moves by choosing ak = 0 for each
k not divisible by p.

It seems very likely that for each d ≥ 4 in a standard version of a game when Nora
and Wanda make their moves alternately in Z with Nora’s move being last Nora can
always play so that the Galois group of the resulting polynomial is Sd . We will prove
this for d = 4.

Theorem 5 If Nora and Wanda are choosing the coefficients of a degree 4 polynomial
in Z alternately with Nora first, then Nora can always play so that the splitting field
of the resulting polynomial has the Galois group S4.

In the next sectionwegive someauxiliary results that come fromvarious sources and
then prove Theorems 3 and 5 in Sects. 3 and 4, respectively. Some further observations
are given in Sect. 5.

2 Auxiliary Results

We first state the main result of Hering [10] as a lemma:

Lemma 6 Let d ≥ 2, j, k ∈ {0, 1, . . . , d − 1}, j �= k, q ∈ {1, . . . , d}, and let

f (x) =
d∑

i=0, i �= j

ai x
i ∈ Q[x]
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796 A. Dubickas

be a polynomial satisfying ad = 1, ad−q �= 0, ad−i = 0 for each i ∈ {1, . . . , q − 1} \
{ j, k}, and a0 �= 0 if j, k �= 0. If

gcd(d, d − q, j, k) = 1, (1)

then for all but at most finitely many rational numbers ak the splitting field of the
polynomial f (x) + t x j ∈ Q[x, t] has Galois group Sd over the field Q(t).

We also need some statement related to an old result of van der Waerden [17]
asserting that “almost all” polynomials of degree d have Galois group Sd . See, e.g.,
[4] for some precise estimates on the number of monic integer polynomials with
bounded coefficients and prescribed Galois group when d ∈ {3, 4} and [5] for some
further progress on this problem and more references. In particular, the next lemma
follows from [3, Theorem 1]:

Lemma 7 Suppose F(x, t) ∈ Z[x, t] of degree d in x is irreducible over Q(t) and its
splitting field over Q(t) has Galois group Sd . Then, for each ε > 0 the number of
t0 ∈ Z∩[−H , H ] for which the splitting field of F(x, t0) has Galois group other than
Sd is bounded above by cH1/2+ε, where c is a positive constant that depends only on
ε and the coefficients of F.

Recall that a polynomial f of degree d is called reciprocal if it satisfies the identity
f (x) = ±xd f (1/x). From [18] we borrow the following observation:

Lemma 8 Let f ∈ Z[x] be a degree d ≥ 4 reciprocal polynomial. Then, the order of
the Galois group of the splitting field of the polynomial f is at most 2d/2(d/2)!.

We next prove the following simple lemma:

Lemma 9 Let f ∈ Z[x] be a degree d ≥ 4 polynomial which is expressible in the
form g(xm) for some g ∈ Z[x] and some integer m ≥ 2. Then, the order of the Galois
group of the splitting field of f is at most ϕ(m)md/m(d/m)!, where ϕ is the Euler
function.

Proof It is clear that m|d. Set s = d/m. Let K = Q(β1, . . . , βs) be the splitting
field of g(x), whose roots are β1, . . . , βs . The splitting field of f is contained in
L = Q(β

1/m
1 , . . . , β

1/m
s , e2π i/m). Since K ⊆ L , the degree of β

1/m
i over L is at most

m for i = 1, . . . , s, and e2π i/m is of degree ϕ(m) over Q (and so of degree at most
ϕ(m) over K ), we obtain

[L : Q] = [L : K ][K : Q] ≤ ϕ(m)mss!,

which gives the required bound. ��
Next, we recall a version of Hilbert’s irreducibility theorem (see [14, p. 298]):

Lemma 10 Let F(x, y) ∈ Q[x, y] be an irreducible over Q polynomial. Then, there
is an infinite arithmetic progression of positive integers A such that for each y0 ∈ A
the polynomial F(x, y0) ∈ Q[x] is irreducible over Q.
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Two Players Choosing the Coefficients of a Polynomial 797

The following result will be used in the proof of Theorem 5 (see, for instance, the
paper of Davenport, Lewis and Schinzel [6] for a more general result):

Lemma 11 Let k ≥ 2 be an integer and let f ∈ Z[x] be a polynomial such that for
each x ∈ N the number f (x) is a kth power of an integer. Then, there exists h ∈ Z[x]
such that f (x) = h(x)k .

This lemma implies the following corollary:

Corollary 12 If f ∈ Z[x] is a polynomial of odd degree, then f (x) is not a perfect
square for infinitely many x ∈ N.

Finally, by a result of Kappe and Warren [13], we have the following:

Lemma 13 Let

f (x) = x4 + ax3 + bx2 + cx + d ∈ Q[x]

be a quartic irreducible polynomial with discriminant �( f ) and splitting field F.
Then, Gal(F/Q) = S4 if and only if its cubic resolvent

r f (x) = x3 − bx2 + (ac − 4d)x − (a2d − 4bd + c2)

is irreducible over Q and �( f ) is not a square in Q.

In fact, the discriminants of f and r f are equal

�( f ) = �(r f ) (2)

(see, e. g., [11, p. 251]). We stress that there are several definitions of cubic resolvents
of a quartic polynomial that define different polynomials. (It can be also a resolvent
of degree 6 as in [1].) The one we use here is from [12].

3 Proof of Theorem 3

For the first part of the theorem, we assume that Nora has four moves including at least
one of the first two and both last two moves. We first consider the case when she has
the first move and the last two moves. Then, on her first move she chooses ad−1 = 1.
On Nora’s second move she chooses ad = 1 if Wanda has not chosen ad . If Wanda
has chosen ad = a �= 0, then Nora makes her second move arbitrarily. Thus, if the
last two coefficients to be chosen by Nora are a j and ak , then we must have j �= k
and j, k /∈ {d − 1, d}. Hence, the polynomial before the last two moves of Nora is

g(x) = axd + xd−1 + a j x
j + akx

k + f (x),

where f (x) = ∑
i∈S ai xi with S = {0, 1, . . . , d} \ { j, k, d − 1, d}.

123



798 A. Dubickas

Note that condition (1) of Lemma 6 for monic g(x)/a ∈ Q[x] is satisfied, because
q = 1. Then, by Lemma 6, Nora can select ak ∈ N (being outside some finite set of
rational numbers) so that the splitting field of the polynomial

G(x, t) = xd + xd−1/a + t x j/a + akx
k/a + f (x)/a ∈ Q[x, t]

has Galois group Sd over the field Q(t). Then, so is the Galois group of aG(x, t) ∈
Z[x, t] overQ(t). Hence, by Lemma 7, there exists t0 ∈ N such that the Galois group
of G(x, t0) is Sd , and the aim of Nora is achieved by selecting ak = t0.

Now, let us consider the case when Nora has the second move (but the first has
Wanda) and the last two moves. If Wanda has not chosen ad−1 on her first move, then
Nora takes ad−1 = 1 and uses exactly the same strategy as that above. Otherwise, on
her first move Nora selects a1 = 1. With her second move she can choose a0 = 1 if
a0 was not chosen before by Wanda. Otherwise, if a0 is already chosen by Wanda,
say as a �= 0, then Nora makes her second move arbitrarily. This time, the polynomial
before the last two moves of Nora is

g(x) = a + x + a j x
j + akx

k + f (x),

where f (x) = ∑
i∈S ai xi with S = {0, 1, . . . , d}\ {0, 1, j, k}. Consider its reciprocal

polynomial

g∗(x) = xdg(1/x) = axd + xd−1 + a j x
d− j + akx

d−k + xd f (1/x).

By the argument as above, Nora can choose a j , ak ∈ N so that the Galois group of
g∗(x) is Sd . If the roots of g∗ are β1, . . . , βd , then the roots of g are β−1

1 , . . . , β−1
d .

From

Q(β1, . . . , βd) = Q(β−1
1 , . . . , β−1

d )

we conclude that the Galois group of g is Sd , as required.
For the second part of the theorem we assume, for a contradiction, that some two

moves of Nora are sufficient to obtain the polynomial g with Galois group Sd .
Firstly, by Theorem 1, one of those two moves must be the last one. Suppose that

the other one is, say, �th move, where � ∈ {1, . . . , d}. If � > d/2, then using the first
d/2 moves Wanda can select ak = 0 for each odd k. Hence, no matter how the two
players will play, the splitting field of the resulting polynomial g(x) = h(x2), where
h ∈ Z[x] is of degree d/2, will be of order at most 2d/2(d/2)! by Lemma 9 with
m = 2. Since 2d/2(d/2)! < d! for d ≥ 4, this shows that the Galois group of g is not
Sd .

Assume that � ≤ d/2. We will consider two cases depending on the parity of �. For
� odd Wanda sets ak = 0 for each k in the set

{1, 3, . . . , � − 2} ∪ {d − (� − 2), . . . , d − 3, d − 1}.
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Two Players Choosing the Coefficients of a Polynomial 799

This set is empty for � = 1; otherwise, it contains � − 1 distinct elements. Now, in
case if Nora takes the coefficient ak with k ∈ {0, d/2, d}, then Wanda can select all
zeros for ak with k �= 0, d, and leave the last coefficient for Nora either a0 or ad .
The resulting polynomial will be of the form g(x) = ad xd + ad/2xd/2 + a0, where
ada0 �= 0 (but possibly ad/2 = 0). By Lemma 9 with m = d/2, the Galois group of g
is of order at most

ϕ(d/2)(d/2)22! = ϕ(d/2)d2/2 < d3/4 < d!

for d ≥ 4, and we conclude as above. If Nora sets ak = t for k /∈ {0, d/2, d}, then
Wanda can select ad−k = t , ad = a0 = 1, choose other coefficients zeros and leave
ad/2 to be determined by Nora. The resulting polynomial will be reciprocal, so, by
Lemma 8, its Galois group will be of order at most 2d/2(d/2)! < d!.

Finally, suppose that � is even. Then, Wanda can select ad = 1 and ak = 0 for each
k in the set

{1, 3, . . . , � − 3} ∪ {d − (� − 3), . . . , d − 3, d − 1}.

This set is empty for � = 2; otherwise, it contains � − 2 distinct elements. This time,
if Nora takes the coefficient ak with k ∈ {0, d/2}, then Wanda can set all zeros for the
remaining coefficients ak with k �= 0, d/2 and leave the last coefficient for Nora a0 or
ad/2. The Galois group of the resulting polynomial g(x) = xd +ad/2xd/2 +a0 will be
of order at most 2d/2(d/2)!2 by Lemma 9. If Nora takes ak = t for some k /∈ {0, d/2},
then Wanda can select ad−k = t , a0 = 1, choose zeros for other coefficients and leave
ad/2 to be determined by Nora. The polynomial

xd + t xd−k + ad/2x
d/2 + t xk + 1

is reciprocal no matter which value Wanda assigns to ad/2, so the Galois group of this
polynomial will be of order at most 2d/2(d/2)! by Lemma 8. This completes the proof
of the second claim of the theorem.

4 Proof of Theorem 5

The strategy of Nora can be described as follows. She starts with, say, a3 = 1. Then,
with her second move she sets a1 = 0 if a1 is not yet chosen by Wanda and a2 = −a1
otherwise, where a1 = u was chosen by Wanda in her first move. Let t be the last
coefficient to be chosen by Nora’s final move, and let u, v ∈ Z be the coefficients
chosen by Wanda. Then, there are five possibilities:

(i) g(x) = ux4 + x3 + vx2 + t ,
(ii) g(x) = ux4 + x3 + t x2 + v,
(iii) g(x) = t x4 + x3 + ux2 + v,
(iv) g(x) = vx4 + x3 − ux2 + ux + t ,
(v) g(x) = t x4 + x3 − ux2 + ux + v.
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800 A. Dubickas

In each case we will show that Nora can choose t ∈ Z so that the corresponding
polynomial g is irreducible over Q and has Galois group S4.

In case (i), by Lemma 13, the cubic resolvent of the monic polynomial

f (x) = g(x)/u = x4 + x3/u + vx2/u + t/u ∈ Q[x],

where u �= 0, is equal to

r f (x) = x3 − vx2/u − 4t x/u − (1 − 4uv)t/u3. (3)

By Lemma 10, there is an arithmetic progression of positive integers A = p1y + q1,
where p1, q1 ∈ N and y = 1, 2, 3, . . . , such that for each t = p1y + q1, y ∈ N, the
polynomial g(x) as in (i) is irreducible over Q. We will show that for some of those
y ∈ N the polynomial r f as in (3) is irreducible over Q. Write r f in the form

r f (x) = x2(x − v/u) − (p1y + q1)(4x/u + (1 − 4uv)/u3).

It is irreducible as a polynomial in two variables x, y, unless the polynomials x2(x −
v/u) and 4x/u+ (1−4uv)/u3 have a common root. The second polynomial vanishes
at x0 = v/u − 1/(4u2) �= 0, while neither x nor x − v/u vanish at x = x0. Thus,
x2(x − v/u) and 4x/u + (1 − 4uv)/u3 are coprime, and hence r f as a polynomial
in two variables x, y is irreducible over Q. By Lemma 10 again, there are p2, q2 ∈ N

such that for each y = p2z + q2, where z ∈ N, the polynomial r f is irreducible over
Q. Setting p = p1 p2 and q = p1q2 + q1, we obtain

t = p1y + q1 = p1(p2z + q2) + q1 = pz + q

and so (3) for t = pz + q, namely,

r f (x) = x3 − vx2/u − 4(pz + q)x/u − (1 − 4uv)(pz + q)/u3, (4)

is irreducible over Q for each z ∈ N.
It is well known that the discriminant of a monic cubic polynomial

f (x) = x3 + Ax2 + Bx + C

equals

�( f ) = A2B2 − 4B3 − 4A3C − 27C2 + 18ABC . (5)

Hence, the discriminant�(r f ) for r f as in (4)multiplied by u6 is a cubic polynomial in
zwith integer coefficients and the leading coefficient 44u3 p3 �= 0. So, byCorollary 12,
for infinitely many z ∈ N the number u6�(r f ) is not a perfect square. Now, Nora can
choose any of those z. To see that this completes the proof of the theorem in case (i),
we observe that then, by (2), �( f ) is not a square in Q, and so the splitting field of
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Two Players Choosing the Coefficients of a Polynomial 801

f over Q (and hence that of g considered in (i)) has Galois group S4 according to
Lemma 13.

In the remaining cases (ii)-(v) the proof is similar although there are some details
that should be treated differently (especially in case (ii)). For this reason, when the
situation is similar, we sometimes give less details, in particular, for the part leading
from (3) to (4) and for the final part of the proof. We stress that the most important
ingredient in the strategy of Nora is to have the terms with t in the analogues of (3)
we consider so that r f is linear in terms of the variable y in each of the cases, and the
irreducibility of r f as a two variable polynomial can be confirmed easily.

In case (ii), by Lemma 13, the cubic resolvent of the monic polynomial

f (x) = g(x)/u = x4 + x3/u + t x2/u + v/u ∈ Q[x],

where u �= 0, is

r f (x) = x3 − t x2/u − 4vx/u − (1 − 4ut)v/u3

= x3 − 4vx/u − v/u3 − t(x2/u − 4v/u2).

As above we choose p1, q1 ∈ N so that for t = p1y + q1 the polynomial f (x) is
irreducible for each y ∈ N. Note that r f as a polynomial in x, y, where t = p1y + q1,
is irreducible, unless x(x2 − 4v/u)− v/u3 and x2 − 4v/u have a common root. Since
v �= 0, this is not the case, so r f as a polynomial in x, y is irreducible in Q. Hence,
by Lemma 10, as in (4), there are p, q ∈ N such that for t = p + qz, where z ∈ N,
the polynomial

r f (x) = x3 − (pz + q)x2/u − 4vx/u − (1 − 4u(pz + q))v/u3 (6)

is irreducible over Q for each z ∈ N.
This time, by (5) and (6), the discriminant of r f multiplied by u6 and written as a

polynomial in pz + q equals

u6�(r f ) = 16uv(pz + q)4 + · · · + 44(uv)3 − 27v2,

where the terms for (pz + q)3, (pz + q)2, pz + q are integers. If this is a square for
each z ∈ N, then, by Lemma 11,

u6�(r f ) = h(z)2 = h((pz + q)/p − q/p)2

identically for some quadratic h ∈ Z[z]. In particular, this implies that uv is a perfect
square, say, uv = w2 withw ∈ Z\ {0}. Furthermore, inserting z = −q/p we see that

44(uv)3 − 27v2 = v2(44u3v − 27) = v2(162u2w2 − 27) = h(−q/p)2
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is a perfect square as well. Then, (16uw)2 − 27 = (16|uw|)2 − 27 must be a perfect
square. However, this is not the case in view of

(16|uw|)2 − (16|uw| − 1)2 ≥ 162 − 152 = 31 > 27.

Consequently, for some z ∈ N the discriminant �( f ) = �(r f ) is not a square in Q.
This completes the proof for g as in (ii) the same manner as before.

Now, we turn to the case (iii). It more convenient to consider the reciprocal poly-
nomial g∗(x) = vx4 + ux2 + x + t which has the same splitting field as g. Then, by
Lemma 13, the cubic resolvent of

f (x) = g∗(x)/v = x4 + ux2/v + x/v + t/v

is

r f (x) = x3 − ux2/v − 4t x/v − (1 − 4ut)/v2

= x3 − ux2/v − 1/v2 − 4t(x/v − u/v2).

The polynomials x3 −ux2/v −1/v2 = x2(x −u/v)−1/v2 and x −u/v are coprime,
so arguing as above we conclude that for some p, q ∈ N the polynomial

r f (x) = x3 − ux2/v − 4(pz + q)x/v − (1 − 4(pz + q)t)/v2

is irreducible overQ for each z ∈ N. As in case (i), the discriminant v6�(r f ) is a cubic
polynomial in z with integer coefficients and the leading coefficient 44v3 p3 �= 0. So,
by Corollary 12, for infinitely many z ∈ N the number v6�(r f ) is not a perfect square.
This completes the proof of the theorem in the case (iii) by Lemma 13.

In case (iv) for

f (x) = g(x)/v = x4 + x3/v − ux2/v + ux/v + t/v

we obtain

r f (x) = x3 + ux2/v + (u/v2 − 4t/v)x − (t/v3 + 4ut/v2 + u2/v2)

= x3 + ux2/v + ux/v2 − u2/v2 − t(4x/v + 1/v3 + 4u/v2).

The polynomials x3 + ux2/v + ux/v2 − u2/v2 and x + u/v + 1/(4v2) have the same
root only if the polynomial

x2(x + u/v) + ux/v2 − u2/v2

vanishes at x0 = −u/v − 1/(4v2). This happens if and only if

− x20
4v2

+ ux0
v2

− u2

v2
= − (x0 − 2u)2

4v2
= 0,
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that is, x0 = 2u = −u/v − 1/(4v2). Consequently, 8uv2 = −4uv − 1, which
is impossible by different parity of both sides. Therefore, by the same argument as
above, it follows that there are p, q ∈ N such that the polynomial

r f (x) = x3 + ux2/v + (u/v2 − 4(pz + q)/v)x − (u2v + (pz + q)(4uv + 1))/v3

is irreducible over Q for each z ∈ N. This time, as v6�(r f ) is a cubic polynomial in
z with integer coefficients and nonzero leading coefficient, we conclude in the same
fashion as before.

Finally, in case (v)we consider the reciprocal polynomial again. The cubic resolvent
of

f (x) = g∗(x)/v = x4 + ux3/v − ux2/v + x/v + t/v,

is

r f (x) = x3 + ux2/v + (u − 4tv)x/v2 − (tu(u + 4v) + v)/v3

= x3 + ux2/v + ux/v2 − 1/v2 − t(4x/v + u(u + 4v)/v3).

The polynomials x3 + ux2/v + ux/v2 − 1/v2 and 4x + u(u + 4v)/v2 have the same
root only if

x2(x + u/v) + ux/v2 − 1/v2

vanishes at x0 = −u/v − u2/(4v2). This happens if and only if

− x20u
2

4v2
+ ux0

v2
− 1

v2
= − (ux0 − 2)2

4v2
= 0,

that is, ux0 = 2. This is impossible for u = 0. For u �= 0 we obtain 2 = ux0 =
−u2/v −u3/(4v2). Consequently, 8v2 +4vu2 +u3 = 0. However, this is also impos-
sible, because the discriminant of this quadratic equation is v equals

16u4 − 32u3 = 16u2(u2 − 2u) = 16u2((u − 1)2 − 1),

which is not a square in Z for u �= 0, since (u− 1)2 − 1 is not a square. Consequently,
there exist p, q ∈ N for which the polynomial

r f (x) = x3 + ux2/v + (u − 4v(pz + q))x/v2 − ((pz + q)u(u + 4v) + v)/v3

is irreducible over Q for each z ∈ N. Again, as v6�(r f ) is a cubic polynomial in z
with integer coefficients and nonzero leading coefficient, we conclude the argument
for (v) as before.
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5 Concluding Remarks

In Theorem 5, since d = 4 is even, Nora has three moves the first, the third and the
last one, while Wanda’s two moves are the second and the fourth. By Theorems 1
and 3, to get the Galois group S4 Nora needs at least three moves, including the last
move and at least one of the first two moves. So, except for the case 1, 3, 5 (as in
Theorem 5), other possible three moves of Nora satisfying this condition are 2, 3, 5
or 1, 4, 5 or 2, 4, 5 or 1, 2, 5. Using a strategy similar to that of Nora described in
the proof of Theorem 5, one can derive that Nora also wins if she has the moves as
described above. For instance, if her moves are 1, 2, 5, then Nora can set a3 = 1 and
a1 = 0. Then, no matter which moves 3, 4 of Wanda are, before the last move Nora
will be in one the situations described in (i), (ii) or (iii). Other cases can be treated
similarly.

However, not every (even a quite ‘random’ choice) of Nora leads to her win. For
example, if she has moves 1,2,5 and sets a3 = a, a2 = b, then Wanda can always
choose a1 and a0 so that the splitting field of the resulting polynomial has Galois group
of order at most 8 no matter which will be the final coefficient determined by Nora.
Indeed, if a = 0, then Wanda can set a1 = 0 and the resulting Galois group will be of
order at most 8 by Lemma 9. If a �= 0, then Wanda can choose

a1 = 2�(b − a�) and a0 = �2(b − a�), (7)

where � is an integer not in set {0, b/a}. Then, a1a0 �= 0 and Nora has the polynomial

t x4 + ax3 + bx2 + a1x + a0

before her lastmove.After her last choice of t �= 0, the splitting field of this polynomial
is the same as that of

f (x) = x4 + a1x
3/a0 + bx2/a0 + ax/a0 + t/a0 ∈ Q[x].

If f is reducible over Q, then the Galois group of its splitting field is of order at most
6. If it is irreducible, then, by Lemma 13, the cubic resolvent of f equals

r f (x) = x3 − bx2

a0
+ (a1a − 4a0t)x

a20
− a21 t − 4a0bt + a0a2

a30
. (8)

Inserting x = 2a/a1 into r f , we find that

r f (2a/a1) = 8a3

a31
− 4a2b

a21a0
+ 2a(a1a − 4a0t)

a1a20
− a21 t − 4a0bt + a0a2

a30

= (8aa20 − 4a1a0b + a31)
( a2

a31a
2
0

− t

a1a30

)
.
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By (7), we derive that

a21 − 4a0b = (b − a�)(4�2(b − a�) − 4�2b) = −4a�3(b − a�) = −8aa20
a1

,

and hence
8aa20 − 4a1a0b + a31 = 0.

Consequently, r f (2a/a1) = 0, which implies that the polynomial (8) is reducible over
Q. Therefore, by the main result of [13] (see also [2] for a recent detailed exposition),
the Galois group of the splitting field of f is C4 (cyclic group of order 4), V4 (the
Klein 4-group of order 4) or D4 (dihedral group of order 8). In any case its order is at
most 8 no matter which t ∈ Z \ {0} was chosen by Nora.
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