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Abstract
Let G be a simple graph with no isolated edges. The neighbor-distinguishing edge
coloring of G is a proper edge coloring of G such that any pair of adjacent vertices
have different sets consisting of colors assigned on their incident edges. The neighbor-
distinguishing index of G, denoted by χ ′

a(G), is the minimum number of colors in
such an edge coloring of G. In this paper, we show that if G is a connected planar
graph with maximum degree � ≥ 14, then � ≤ χ ′

a(G) ≤ � + 1, and χ ′
a(G) =

� + 1 if and only if G contains a pair of adjacent vertices of maximum degree. This
improves a result in [W. Wang, D. Huang, A characterization on the adjacent vertex
distinguishing index of planar graphs with large maximum degree, SIAM J. Discrete
Math. 29(2015), 2412–2431], which says that every connected planar graph G with
� ≥ 16 has � ≤ χ ′

a(G) ≤ � + 1, and χ ′
a(G) = � + 1 if and only if G contains a

pair of adjacent vertices of maximum degree.
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1 Introduction

Graphs considered in this paper are finite and simple. A graph G is called planar if
G can be drawn in the plane without any two of its edges crossing. A graph G that is
already drawn in the plane in this manner is a plane graph. LetG be a plane graph with
vertex set V (G), edge set E(G), face set F(G), minimum degree δ(G), and maximum
degree �(G) (for short, �). Let |G| = |V (G)| and ‖G‖ = |E(G)| denote the order
and size of the graph G, respectively. For positive integers p, q with p ≤ q, let [p, q]
denote the set of integers {p, p + 1, . . . , q}.

A proper edge k-coloring of a graphG is a mapping φ from E(G) to [1, k] such that
any two adjacent edges are assigned distinct colors. The chromatic index χ ′(G) ofG is
the smallest k such thatG has a proper edge k-coloring. For a proper edge k-coloring φ

ofG and v ∈ V (G), denote byCφ(v) = {φ(uv)|uv ∈ E(G)} the set of colors of edges
incident with v. The proper edge k-coloring φ is called neighbor-distinguishing (or
φ is an NDE-k-coloring) if Cφ(u) �= Cφ(v) for each edge uv ∈ E(G). Two adjacent
vertices u and v are said to be conflict ifCφ(u) = Cφ(v). The neighbor-distinguishing
index χ ′

a(G) of G is the smallest k such that G has an NDE-k-coloring.
A graph G is called normal if it contains no isolated edges. If G has an NDE-

coloring, then G is normal. It holds trivially that χ ′
a(G) ≥ χ ′(G) ≥ � for any

graph G. Moreover, if G contains two adjacent vertices of maximum degree, then
χ ′
a(G) ≥ � + 1. Zhang, Liu and Wang [11] introduced the NDE-coloring of graphs

and proposed the following conjecture:

Conjecture 1 If G is a connected graph with |G| ≥ 3 and G �= C5, then χ ′
a(G) ≤

� + 2.

Balister et al. [2] affirmed Conjecture 1 for bipartite graphs and subcubic graphs.
Akbari et al. [1] proved that χ ′

a(G) ≤ 3� for any graph G. This result is gradually
improved to that χ ′

a(G) ≤ 2.5� + 5 in [10], to that χ ′
a(G) ≤ 2.5� in [9], and to that

χ ′
a(G) ≤ 2� + 2 in [7]. Using probabilistic method, Hatami [4] showed that every

graph G with sufficiently large � has χ ′
a(G) ≤ � + 300. Recently, Joret and Lochet

[6] improved this result by replacing 300 with 19. Suppose that G be a planar graph.
Bonamy et al. [3] showed that if � ≥ 12, then χ ′

a(G) ≤ �+1. Furthermore, in 2015,
Wang and Huang [8] showed that (1) if � ≥ 15, then χ ′

a(G) ≤ � + 1; and (2) if
� ≥ 16, then χ ′

a(G) = � + 1 if and only if G contains a pair of adjacent vertices of
maximum degree.

This paper focuses on improving the result of Wang and Huang [8]. Namely, we
will show the following:

Theorem 1 Let G be a planar graph with � ≥ 14. Then � ≤ χ ′
a(G) ≤ � + 1; and

χ ′
a(G) = � + 1 if and only if G contains a pair of adjacent vertices of maximum

degree.

2 Notation

Let G be a plane graph and H ⊆ G. If the boundary vertices of a face f of H are
u1, u2, . . . , uk in a cyclic ordering, then we write f = [u1u2 · · · uk]. For x ∈ V (H)∪
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F(H), let dH (x) denote the degree of x in H . A vertex of degree k (at least k, at most k,
respectively) in H is called a k-vertex (k+-vertex, k−-vertex, respectively). Similarly,
we can define k-face, k+-face and k−-face. For a vertex v ∈ V (H), let NH (v) denote
the set of neighbors of v in H . Let NH

k (v) denote the set of k-vertices adjacent to v in
H , and set dH

k (v) = |NH
k (v)|. Set NH

i1,i2,...,ik
(v) = NH

i1
(v) ∪ NH

i2
(v) ∪ . . . ∪ NH

ik
(v).

Similarly, we can define NH
k+(v), NH

k−(v), dH
k+(v) and dH

k−(v). For a face f ∈ F(H), let
dH
k ( f ) (dH

k+( f ), dH
k−( f ), respectively) denote the number of k-vertices (k+-vertices,

k−-vertices, respectively) incidentwith f in H . If no confusion is caused in the context,
we omit the letter G in dG(v), dGk (v), dGk+(v), dGk−(v), dGk ( f ), dGk+( f ) and dGk−( f ).

A 3-cycle in the plane graph H is special if it has one 2-vertex, and bad if it has two
3-vertices. A 4-cycle in H is special if it has two 2-vertices. A 3-face in H is special
or bad if its boundary forms a special or bad 3-cycle. A 4-face in H is special if its
boundary forms a special 4-cycle. A vertex v of H is called small if dH (v) ∈ [1, 5].

Given a graph G, denote by ni (G) the number of i-vertices in V (G) for i ∈
[1,�(G)]. We say that G is smaller than a graph H if (‖G‖, nt (G), nt−1(G), . . .,
n1(G)) precedes (‖H‖, nt (H), nt−1(H), . . ., n1(H)) regarding the standard lexico-
graphic order, where t = max{�(G), �(H)}. A graph is called minimal regarding a
given property P if no smaller graph meets the property P .

Suppose that φ is an NDE-k-coloring of the graph G and uv ∈ E(G). If dG(u) �=
dG(v), then Cφ(u) �= Cφ(v). An edge uv is said to be legally colored if its color is
different from that of its adjacent edges in E(G) and no pair of new conflict vertices
are produced.

3 Proof of Theorem 1

It suffices to show that χ ′
a(G) = � + 1 if and only if G contains adjacent �-vertices.

The necessity is clear by the foregoing discussion. To prove sufficiency, it is enough
to show that if G is a planar graph with � ≥ 14 and without adjacent �-vertices,
then χ ′

a(G) ≤ �. Assume that this is not true. Let G be a minimal counterexample of
Theorem 1, that is,G has noNDE-�-coloring, while any other planar graph H smaller
than G admits an NDE-�-coloring. Obviously, G is connected. Since G contains no
adjacent �-vertices, it is easy to derive that no 1-vertex is adjacent to a �-vertex. Let
C = [1,�] denote a set of � colors. Then |C | ≥ 14.

3.1 Structural Properties of G

In all of the figures of this section, black bullets represent vertices which have no
incident edges in E(G) other than those shown, but white bullets represent vertices
which might be adjacent to other vertices in V (G) not in the configuration. A cut
vertex v is called nontrivial if there exist at least two components of G − v with order
at least 2. We denote simply {1, 2, 3, 4, 5, 6, 14} by {1− 6, 14}; {1, 3, 4, 5, 6, 13, 14}
by {1, 3 − 6, 13, 14}; etc.
Claim 1 G does not contain any nontrivial cut vertex.
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Claim 2 There is no edge uv ∈ E(G) with d(u) = 1 and d(v) ≤ 7.

Claim 3 If v is a k-vertex with k ∈ [2, 5], then d5−(v) = dk(v) ≤ 1.

Claim 4 There is no edge uv ∈ E(G) with d(u) = d(v) = 2.

Claim 1 is given in [8]. Claims 2–4 are established in [5].

Claim 5 Let v ∈ V (G).

(1) If d1(v) ≥ k ∈ [1, 4], then ds(v) = 0 for s ∈ [2, k + 1].
(2) If d(v) ≤ � − 1, then d2(v) ≤ 1.
(3) v is not incident with any special 4-cycle.
(4) If v is incident with a special 3-cycle, then d2(v) = 1.

Proof (1) Assume that ds(v) ≥ 1 for s ∈ [2, k + 1] ⊆ [2, 5]. Let v1, v2, . . . , vk+1
be the neighbors of v such that d(vi ) = 1 for i ∈ [1, k] and d(vk+1) = s. Let
N (vk+1) = {u1, u2, . . . , us−1, v}, as depicted in Fig. 1a. By Claim 3, we consider
two cases below:
Case1 ds(vk+1) = 0. We split vk+1 into one 1-vertex x1 and one (s − 1)-vertex
x2 such that x1 is adjacent to v and x2 is adjacent to u1, u2, . . . , us−1, yielding
a smaller graph H . Then ‖H‖ = ‖G‖, ns(H) < ns(G), ns−1(H) > ns−1(G)

and n1(H) > n1(G). By the minimality of G, H has an NDE-�-coloring ϕ with
ϕ(vvi ) = i for i ∈ [1, k]. Note that ϕ(vx1) /∈ [1, k]. Sticking x1 and x2, we restore
the graph G. If ϕ(vx1) /∈ Cϕ(x2), then ϕ is an NDE-�-coloring of G. Otherwise,
we exchange the colors of vx1 and vv j for j ∈ [1, k]\(Cϕ(x2)\{ϕ(vx1)}) to obtain
an NDE-�-coloring of G, which is a contradiction.
Case2 ds(vk+1) = 1, i.e., d(us−1) = d(vk+1) = s. Then s ∈ [3, 5] by Claim
4. Let H = G − vk+1us−1. Then ‖H‖ < ‖G‖, ns(H) < ns(G) and ns−1(H) >

ns−1(G). By the minimality of G, H has an NDE-�-coloring ϕ with ϕ(vvi ) = i
for i ∈ [1, k]. Note that ϕ(vvk+1) /∈ [1, k]. If Cϕ(us−1) �= Cϕ(vk+1), then we
color vk+1us−1 properly. Otherwise, we exchange the colors of vvt and vvk+1 for
t ∈ [1, k]\(Cϕ(vk+1)\{ϕ(vvk+1)}) and color vk+1us−1 properly. So we always
get an NDE-�-coloring of G, which is a contradiction.

(2) Assume that d2(v) ≥ 2. Let v1, v2 be the neighbors of v with d(v1) = d(v2) = 2.
We consider the following three cases.
Case1 Each vi (i = 1, 2) is not incident with a 3-face and v, v1, v2 are not
incident with a 4-face (see Fig. 1b). Let N (v1) = {v,w} and N (v2) = {v, u}. We
get a smaller graph H by contracting vv1 and vv2. By the minimality of G, H has
an NDE-�-coloring ϕ with ϕ(vw) = 1 and ϕ(vu) = 2. Reversely we subdivide
vw, vu with v1, v2 respectively. By coloring vv1 and v2u with 2, vv2 and v1w with
1, we get an NDE-�-coloring of G, which is a contradiction.
Case2 v, v1, v2 are incident with a 4-face [vv1uv2] (see Fig. 1c). We get a smaller
graph H by splitting each vi (i = 1, 2) into two 1-vertices xi and yi such that xi
is adjacent to v and yi is adjacent to u. By the minimality of G, H has an NDE-
�-coloring ϕ. Next, we can stick xi and yi together for i = 1, 2, and exchange the
colors of vx1 and vx2 if necessary. This gives an NDE-�-coloring of G, which is
a contradiction.
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(a) (b) (c) (d)

Fig. 1 Configurations used in the proof of Claim 5

Case3 Some vi , say v2, is incident with some 3-face [vv2v3] (see Fig. 1d). Let
N (v1) = {v, u}. We get a smaller graph H by splitting v1 into two 1-vertices x1
and y1 such that x1 is adjacent to v and y1 is adjacent to u. By the minimality
of G, H has an NDE-�-coloring ϕ. Sticking x1 and y1, we restore the graph G.
If ϕ(vx1) �= ϕ(uy1), then ϕ is an NDE-�-coloring of G. Otherwise, ϕ(vx1) =
ϕ(uy1). If ϕ(v2v3) �= ϕ(vx1), then we exchange the colors of vx1 and vv2. If
ϕ(v2v3) = ϕ(vx1), then we recolor v2v3 and vx1 with ϕ(vv3), vv3 with ϕ(v2v3).
So we always get an NDE-�-coloring of G, which is a contradiction.
In view of the proof of Cases 2 and 3 in the statement (2), we can prove the
statements (3) and (4). 
�

Claim 6 There is no edge uv ∈ E(G) such that 6 ≤ d(v) ≤ 7 and d(u) ≤ 5.

Proof Assume that G contains an edge uv with 6 ≤ d(v) = k ≤ 7 and d(u) = s ≤ 5.
Let N (v) = {v1, v2, . . . , vk−1, u} and N (u) = {u1, u2, . . . , us−1, v}. By Claim 3, u
has at most one conflict vertex, say u1 (if it exists). Let H = G − uv, which has an
NDE-�-coloring ϕ such that ϕ(vvi ) = i for i ∈ [1, k − 1] and ϕ(uu j ) = a j for
j ∈ [1, s − 1].
Without loss of generality, assume that k = 7 and s = 5 (for other cases, we have

an easier proof). Let a j ∈ [1, 10] for j ∈ [1, 4]. Suppose that uv cannot be legally
colored. That is,Cϕ(vi ) = {1−6, i+10} for i ∈ [1, 4] orCϕ(u1) = {a1, a2, a3, a4, 14}
and Cϕ(vi ) = {1 − 6, i + 10} for i ∈ [1, 3].

Case1 Cϕ(vi ) = {1− 6, i + 10} for i ∈ [1, 4]. For each i ∈ [1, 4], we recolor vvi
with a color bi ∈ [7, 14]\{i + 10} such that vi does not conflict with its neighbors,
and color uv with a color in [11, 14]\{bi , i + 10}.

If Cϕ(u1) /∈ {{a1, a2, a3, a4, t} | t ∈ [11, 14]}, then we have at least 2 × 4 = 8
differentways to recolor or color some edges incidentwith v. So assume thatCϕ(u1) =
{a1, a2, a3, a4, 11}. Notice that uv can be colored with a color in [12, 14]\{bi , i +10}.
Then there are at least 1×4 = 4 different ways to recolor or color some edges incident
with v. Since v has at most two conflict vertices other than v1, v2, v3, v4, ϕ can be
extended to G, which is a contradiction.

Case2 Cϕ(u1) = {a1, a2, a3, a4, 14} and Cϕ(vi ) = {1 − 6, i + 10} for i ∈ [1, 3].
For each i ∈ [1, 3], we recolor vvi with a color bi ∈ [7, 14]\{i +10} such that vi does
not conflict with its neighbors, and color uv with a color in [11, 13]\{bi , i + 10}.

If there exists a color bi /∈ [11, 13] for i ∈ [1, 3], then we have at least four different
ways to recolor or color some edges incident with v. So assume that bi ∈ [11, 13]
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682 W. Wang et al.

for all i ∈ [1, 3]. We claim that there exists bs �= bt for s, t ∈ [1, 3]. Otherwise,
b1 = b2 = b3 ∈ [11, 13], contradicting the choice of bi . Say b1 �= b2. Next, we
recolor vv1 with b1, vv2 with b2, and color uv with [11, 13]\{b1, b2}. Then we have
at least 3+ 1 = 4 different ways to recolor or color some edges incident with v. Since
v has at most three conflict vertices other than v1, v2, v3, we can extend ϕ to G, which
is a contradiction. 
�

In the following discussion, if v is a l-vertex of G, then we denote by v1, v2, . . . , vl
the neighbors of v with d(v1) ≤ d(v2) ≤ · · · ≤ d(vl).

Claim 7 Let v be a k-vertex of G with k = 8 or 9.

(1) If d4−(v) ≥ 1, then d5−(v) ≤ k − 7.
(2) v is not in a bad 3-cycle.

Proof (1) Assume that ds−(v) ≥ k − 6. Let d(v1) = s ≤ 4, d(vp) ≤ 5 for p ∈
[2, k − 6], and N (v1) = {u1, u2, . . . , us−1, v}. Then G − vv1 has an NDE-�-
coloring ϕ with ϕ(vvi ) = i − 1 for i ∈ [2, k]. By Claim 3, we consider the
following two cases.
Case1 ds(v1) = 0. Then v1 has no conflict vertices. Without loss of generality,
assume that ϕ(v1u j ) = a j ∈ [1, k+ j−1] ⊆ [1, k+2] for j ∈ [1, s−1]. First, we
can color vv1 with any color in [k+3, 14]. Second, for each i ∈ [2, k−6], vi has at
most one conflict vertex by Claim 3. Recolor vvi with a color bi ∈ [k, 14]\Cϕ(vi )

such that vi does not conflict with its neighbors, and color vv1 with a color in
[k + 3, 14]\{bi }. So there are at least (14− k − 2)+ (14− k − 3)× (k − 6− 1) =
−k2 + 17k − 65 = 7 different ways to recolor or color some edges incident with
v. As v has at most k − (k − 6) = 6 conflict vertices, ϕ can be extended to G,
which is a contradiction.
Case2 ds(v1) = 1, i.e., d(us−1) = d(v1) = s. By Claims 3 and 6, each vertex
in (N (v1) ∪ N (us−1))\{v1, us−1} is an 8+-vertex. Recolor v1us−1 with a color
in [1, k − 1]\(Cϕ(v1) ∪ Cϕ(us−1)). Let a ∈ Cϕ(us−1)\Cϕ(v1). Note that if vv1
can be colored with some color in [k, 14]\{a, ϕ(v1u1), . . . , ϕ(v1us−2)}, then us−1
and v1 do not conflict with each other. Without loss of generality, assume that
{a, ϕ(v1u1), . . . , ϕ(v1us−2)} ⊆ [1, k + 2]. Analogous to the analysis of Case 1, ϕ
can be extended to G, which is a contradiction.

(2) Assume that v is in a bad 3-cycle. If d(v) = 8, then d5−(v) ≤ 1 by (1). Otherwise,
d(v) = 9. Let d(v1) = d(v2) = 3 and v1v2 ∈ E(G). Then G − v1v2 has an NDE-
�-coloring ϕ with ϕ(vvi ) = i for i ∈ [1, 9]. If Cϕ(v1) �= Cϕ(v2), then we color
v1v2 properly to get an NDE-�-coloring of G. Suppose that Cϕ(v1) = Cϕ(v2) =
{1, 2}. Notice that if vv1 or vv2 can be recolored, then we can establish an NDE-
�-coloring of G by coloring v1v2 properly. Then vv1 or vv2 can be recolored with
any color in [10, 14]. So there are at least 2 × 5 = 10 different ways to recolor
some edges incident with v. As v has at most seven conflict vertices, we can extend
ϕ to G, which is a contradiction. 
�

Claim 8 Let v be a 10-vertex of G.

(1) If d4−(v) = m and dk−(v) ≥ 1, then d6+(v) ≥ (5 − k)m + 1 for k ∈ [1, 4].
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(2) v is not in a bad 3-cycle.

Proof (1) Assume that d6+(v) ≤ (5 − k)m. Let d(v1) = k ≤ 4, d(vp) ≤ 4 for
p ∈ [2,m], and N (v1) = {u1, u2, . . . , uk−1, v}. Then G − vv1 has an NDE-�-
coloring ϕ with ϕ(vvi ) = i − 1 for i ∈ [2, 10]. By Claim 3, we consider the
following two cases.
Case1 dk(v1) = 0. Then v1 has no conflict vertices. Without loss of generality,
assume that ϕ(v1u j ) = a j ∈ [1, 9+ j] ⊆ [1, 8+k] for j ∈ [1, k−1]. First, we can
color vv1 with any color in [9+ k, 14]. Second, for each i ∈ [2,m], vi has at most
one conflict vertex by Claim 3. Recolor vvi with a color bi ∈ [10, 14]\Cϕ(vi )

such that vi does not conflict with its neighbors, and color vv1 with a color in
[9 + k, 14]\{bi }. So we have at least (6 − k) + (m − 1)(5 − k) = (5 − k)m + 1
different ways to recolor or color some edges incident with v. As v has at most
(5 − k)m conflict vertices, ϕ can be extended to G, which is a contradiction.
Case2 dk(v1) = 1, i.e., d(uk−1) = d(v1) = k. By Claims 3 and 6, each vertex
in (N (v1) ∪ N (uk−1))\{v1, uk−1} is an 8+-vertex. Recolor v1uk−1 with a color
in [1, 9]\(Cϕ(v1) ∪ Cϕ(uk−1)). Let a ∈ Cϕ(uk−1)\Cϕ(v1). Note that if vv1 can
be colored with some color in [10, 14]\{a, ϕ(v1u1), . . ., ϕ(v1uk−2)}, then uk−1
and v1 do not conflict with each other. Without loss of generality, assume that
{a, ϕ(v1u1), . . . , ϕ(v1uk−2)} ⊆ [1, 8 + k]. Analogous to the analysis of Case 1,
ϕ can be extended to G, which is a contradiction.

(2) Assume that v is in a bad 3-cycle. Let d(v1) = d(v2) = 3 and v1v2 ∈ E(G).
Then G − v1v2 has an NDE-�-coloring ϕ with ϕ(vvi ) = i for i ∈ [1, 10]. If
Cϕ(v1) �= Cϕ(v2), then we color v1v2 properly to get an NDE-�-coloring of G.
Suppose thatCϕ(v1) = Cϕ(v2) = {1, 2}. Notice that if vv1 or vv2 can be recolored,
then we can establish an NDE-�-coloring of G by coloring v1v2 properly. First,
we can recolor vv1 or vv2 with any color in [11, 14]. Second, we recolor vv1 with
11, vv2 with 12. So we have at least 2× 4+ 1 = 9 different ways to recolor some
edges incident with v. While v has at most eight conflict vertices, we can extend
ϕ to G, deriving a contradiction. 
�

Claim 9 Let v be an 11-vertex of G.

(1) If d4−(v) = m and dk−(v) ≥ 1, then d6+(v) ≥ (4 − k)m + 1 for k ∈ [1, 3].
(2) If v is in a bad 3-cycle, then d6+(v) ≥ 9.

Proof (1) Assume that d6+(v) ≤ (4 − k)m. Let d(v1) = k ≤ 3, d(vp) ≤ 4 for
p ∈ [2,m], and N (v1) = {u1, u2, . . . , uk−1, v}. Then G − vv1 has an NDE-�-
coloring ϕ with ϕ(vvi ) = i − 1 for i ∈ [2, 11]. 
�
Remark 1 If d(v2) ≤ 3, or d(v2) = 4 and d4(v2) = 0, then we can recolor vv2 with
a color b2 ∈ [11, 14]\Cϕ(v2) such that v2 does not conflict with its neighbors. If
d(v2) = 4 and d4(v2) = 1, say, x2 ∈ N (v2) with d(x2) = d(v2) = 4, then we recolor
v2x2 with a color in [1, 10]\(Cϕ(v2)∪Cϕ(x2)). Letα2 ∈ Cϕ(x2)\Cϕ(v2). Thenwe can
recolor vv2 with a color b2 ∈ [11, 14]\((Cϕ(v2)\{ϕ(v2x2), ϕ(vv2)}) ∪ {α2}). Hence,
there exists a color b2 ∈ [11, 14] such that if vv2 is recolored with b2, then v2 does
not conflict with its neighbors.
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Now, by Claim 3, we have to consider the following two cases.
Case1 dk(v1) = 0. Then v1 has no conflict vertices. Without loss of generality,

assume that ϕ(v1u j ) = a j ∈ [1, 10 + j] ⊆ [1, 9 + k] for j ∈ [1, k − 1]. First, we
can color vv1 with any color in [10 + k, 14]. Second, for each i ∈ [2,m], vi has at
most one conflict vertex by Claim 3. As in Remark 1, we can recolor vvi with a color
bi ∈ [11, 14] such that vi does not conflict with its neighbors, and color vv1 with a
color in [10+k, 14]\{bi }. So there are at least (5−k)+(m−1)(4−k) = (4−k)m+1
different ways to recolor or color some edges incident with v. As v has atmost (4−k)m
conflict vertices, ϕ can be extended to G, which is a contradiction.

Case2 dk(v1) = 1, i.e., d(uk−1) = d(v1) = k. By Claims 3 and 6, each
vertex in (N (v1) ∪ N (uk−1))\{v1, uk−1} is an 8+-vertex. Recolor v1uk−1 with a
color in [1, 10]\(Cϕ(v1) ∪ Cϕ(uk−1)). Let a ∈ Cϕ(uk−1)\Cϕ(v1). Note that if
vv1 can be colored with some color in [11, 14]\{a, ϕ(v1u1), . . ., ϕ(v1uk−2)}, then
uk−1 and v1 do not conflict with each other. Without loss of generality, assume that
{a, ϕ(v1u1), . . . , ϕ(v1uk−2)} ⊆ [1, 9+ k]. Analogous to the analysis of Case 1, ϕ can
be extended to G, which is a contradiction.

(2) Assume that d6+(v) ≤ 8. Let d(v1) = d(v2) = 3 and v1v2 ∈ E(G). Then
G − v1v2 has an NDE-�-coloring ϕ with ϕ(vvi ) = i for i ∈ [1, 11]. If Cϕ(v1) �=
Cϕ(v2), then we color v1v2 properly to get an NDE-�-coloring of G. Suppose that
Cϕ(v1) = Cϕ(v2) = {1, 2}. Notice that if vv1 or vv2 can be recolored, then we can
establish an NDE-�-coloring of G by coloring v1v2 properly. First, we can recolor
vv1 or vv2 with any color in [12, 14]. Second, we recolor vv1 with 12, vv2 with 13 or
14. Third, we recolor vv1 with 13, vv2 with 14. So we have at least 2× 3+ 2+ 1 = 9
different ways to recolor some edges incident with v. As v has at most eight conflict
vertices, we can extend ϕ to G, which is a contradiction. 
�
Claim 10 Let v be a 12-vertex of G.

(1) If d1(v) ≥ 1 and d3−(v) ≥ 2, then d6+(v) ≥ 2d4−(v) + 1.
(2) If d2−(v) ≥ 1, then d6+(v) ≥ d3−(v) + 1.
(3) If v is in a bad 3-cycle, then d6+(v) ≥ 5.
(4) If v is in a special 3-cycle and d3−(v) ≥ 2, then d6+(v) ≥ 5.

Proof (1) Assume that d6+(v) ≤ 2d4−(v). Let d(v1) = 1 and d(v2) ≤ 3. Then
G − vv1 has an NDE-�-coloring ϕ with ϕ(vvi ) = i − 1 for i ∈ [2, 12].
First, we can color vv1 with any color in [12, 14]. Second, v2 has at most one
conflict vertex by Claim 3. Analogous to the analysis of Remark 1 in Claim 9(1),
we can recolor vv2 with a color b2 ∈ [12, 14] such that v2 does not conflict with its
neighbors, and color vv1 with any color in [12, 14]\{b2}. Third, for each vi with
d(vi ) ≤ 4 and i ≥ 3, vi has at most one conflict vertex by Claim 3. By Remark 1
in Claim 9(1), we can recolor vvi with a color bi ∈ {1, 12− 14} such that vi does
not conflict with its neighbors. If bi ∈ [12, 14], then we color vv1 with any color in
[12, 14]\{bi }. If bi = 1, then we recolor vv2 with b2 ∈ [12, 14] and color vv1 with
any color in [12, 14]\{b2}. So at least 3+ 2(d4−(v) − 1) = 2d4−(v) + 1 different
ways can be used to recolor or color some edges incident with v. As v has at most
2d4−(v) conflict vertices, ϕ can be extended to G, which is a contradiction.

(2) Assume that d6+(v) ≤ d3−(v). Let d(v1) ≤ 2 and x be the neighbor of v1 other
than v (if it exists). Then G − vv1 has an NDE-�-coloring ϕ with ϕ(vvi ) = i − 1
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for i ∈ [2, 12]. Suppose that ϕ(v1x) ∈ [1, 12], if x exists.
First, v1 has no conflict vertex by Claim 4. Then we can color vv1 with any color in
{13, 14}. Second, for each vi with d(vi ) ≤ 3 and i ≥ 2, vi has at most one conflict
vertex by Claim 3. As for Remark 1 in Claim 9(1), we can recolor vvi with a
color bi ∈ [12, 14] such that vi does not conflict with its neighbors, and color vv1
with a color in {13, 14}\{bi }. So we have at least 2 + (d3−(v) − 1) = d3−(v) + 1
different ways to recolor or color some edges incident with v. As v has at most
d3−(v) conflict vertices, ϕ can be extended to G, which is a contradiction.

(3) Assume that d6+(v) ≤ 4. Let d(v1) = d(v2) = 3 and v1v2 ∈ E(G). Then
G − v1v2 has an NDE-�-coloring ϕ with ϕ(vvi ) = i for i ∈ [1, 12]. If Cϕ(v1) �=
Cϕ(v2), then we color v1v2 properly to get an NDE-�-coloring of G. Suppose
that Cϕ(v1) = Cϕ(v2) = {1, 2}. Notice that if vv1 or vv2 can be recolored, then
we can establish an NDE-�-coloring of G by coloring v1v2 properly. First, vv1
or vv2 can be recolored with any color in {13, 14}. Second, we recolor vv1 with
13, vv2 with 14. So we have at least 2× 2+ 1 = 5 different ways to recolor some
edges incident with v. While v has at most four conflict vertices, we can extend ϕ

to G, deriving a contradiction.
(4) Assume that d6+(v) ≤ 4. Let d(v1) = 2, d(v2) ≤ 3 and vv1vxv is a special 3-cycle

with d(vx ) ≥ 8. Then G − vv1 has an NDE-�-coloring ϕ with ϕ(vvi ) = i − 1
for i ∈ [2, 12]. We consider the following two cases.
Case 1 ϕ(v1vx ) /∈ [12, 14]. First, we can color vv1 with any color in [12, 14].

Second, v2 has at most one conflict vertex by Claim 3. As for Remark 1 in Claim 9(1),
we can recolor vv2 with a color b2 ∈ [12, 14] such that v2 does not conflict with its
neighbors, and color vv1 with a color in [12, 14]\{b2}. So we have at least 3 + 2 = 5
different ways to recolor or color some edges incident with v. As v has at most four
conflict vertices, we can extend ϕ to G, which is a contradiction.

Case 2 ϕ(v1vx ) ∈ [12, 14], say ϕ(v1vx ) = 12. First, vv1 can be colored with
any color in {13, 14}. Second, v2 has at most one conflict vertex by Claim 3. As for
Remark 1 in Claim 9(1), we can recolor vv2 with a color b2 ∈ [12, 14] such that v2
does not conflict with its neighbors, and color vv1 with a color in {13, 14}\{b2}. Third,
we exchange the colors of v1vx and vvx , and color vv1 with any color in {13, 14}.
Hence, we have at least 2 + 1 + 2 = 5 different ways to recolor or color some edges
incident with v. Since v has at most four conflict vertices, we can extend ϕ toG, which
is a contradiction. 
�
Claim 11 Let v be a k-vertex of G with k ∈ [13,� − 1] and d1(v) ≥ 1. If d2−(v) ≥ s
for s ∈ [2, 4], then d6+(v) ≥ d(s+1)−(v) + 1.

Proof Assume that d6+(v) ≤ d(s+1)−(v). Let d(v1) = 1 and d(vi ) ≤ 2 for i ∈ [2, s].
Then G − vv1 has an NDE-�-coloring ϕ with ϕ(vvi ) = i − 1 for i ∈ [2, k]. If
d(vi ) = 2 for i ∈ [2, s], then d2(vi ) = 0 by Claim 4.

First, we can color vv1 with any color in {k, k+1}. Second, for each i with i ∈ [2, s],
we recolor vvi with a color bi ∈ {k, k+1}\Cϕ(vi ) and color vv1 with {k, k+1}\{bi }.
Third, for each vi with d(vi ) ≤ s + 1 ≤ 5 and i ≥ s + 1, Analogous to the analysis
of Remark 1 in Claim 9(1), we can recolor vvi with a color ci ∈ ([1, s − 1] ∪ {k, k +
1})\Cϕ(vi ) such that vi does not conflict with its neighbors. If ci ∈ [1, s − 1], say
ci = j , then we recolor vv j+1 with a color b j ∈ {k, k + 1}\Cϕ(v j+1), and color vv1
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(a) (b) (c)

Fig. 2 Configurations used in Claim 12(2)–(4)

with {k, k + 1}\{b j }. If ci ∈ {k, k + 1}, then we color vv1 with {k, k + 1}\{ci }. So
there are at least 2 + (s − 1) + (d(s+1)−(v) − s) = d(s+1)−(v) + 1 different ways
to recolor or color some edges incident with v. As v has at most d(s+1)−(v) conflict
vertices, ϕ can be extended to G, which is a contradiction. 
�
Claim 12 Let v be a k-vertex of G with k ≥ 8.

(1) v is in at most one bad 3-cycle. Further, if v is in a bad 3-cycle, then d2−(v) = 0.
(2) If v is in G1 of Fig.2a, then d3−(v) = 2.
(3) G does not contain a configuration Fig.2b.
(4) G does not contain a configuration Fig.2c.

Proof (1) First,we show thatv is in atmost onebad3-cycle.Assume thatv is in twobad
3-cycles. Let d(vi ) = 3 for i ∈ [1, 4] and v1v2, v3v4 ∈ E(G). We denote by ui the
third neighbor of vi for i ∈ [1, 4]. Then G − v1v2 has an NDE-�-coloring ϕ with
ϕ(vvi ) = i for i ∈ [1, k]. IfCϕ(v1) �= Cϕ(v2), thenwecolorv1v2 properly to get an
NDE-�-coloring ofG. Suppose thatCϕ(v1) = Cϕ(v2) = {1, 2}, i.e., ϕ(v1u1) = 2
and ϕ(v2u2) = 1. Note that ϕ(v3u3) �= 4 or ϕ(v4u4) �= 3, say ϕ(v3u3) �= 4.
Remove the color of v3v4. Recolor vv3 with a color in {1, 2}\{ϕ(v3u3)}, say 1,
vv1 with 3. Then we color v1v2, v3v4 properly to get an NDE-�-coloring of G,
which is a contradiction.
Next, we show that if v is in a bad 3-cycle, then d2−(v) = 0. Assume that d2−(v) ≥
1. Let d(v1) = d(v2) = 3, d(v3) ≤ 2 and v1v2 ∈ E(G). We denote by ui the
third neighbor of vi for i = 1, 2. Then G − v1v2 has an NDE-�-coloring ϕ with
ϕ(vvi ) = i for i ∈ [1, k]. If Cϕ(v1) �= Cϕ(v2), then we color v1v2 properly
to get an NDE-�-coloring of G. Suppose that Cϕ(v1) = Cϕ(v2) = {1, 2}, i.e.,
ϕ(v1u1) = 2 and ϕ(v2u2) = 1. Recolor vv3 with a color in {1, 2}\Cϕ(v3), say
1, and vv1 with 3. Then we color v1v2 properly to get an NDE-�-coloring of G,
which is a contradiction.

(2) Assume that d3−(v) ≥ 3, say d(v4) = 3, as shown in Fig. 2a. We use the same
symbols as in Fig. 2a. Then G − v1v2 has an NDE-�-coloring ϕ with ϕ(vvi ) = i
for i ∈ [1, k]. If Cϕ(v1) �= Cϕ(v2), then we color v1v2 properly to get an NDE-
�-coloring of G. Suppose that Cϕ(v1) = Cϕ(v2) = {1, 2}, i.e., ϕ(v1v3) = 2 and
ϕ(v2v3) = 1. As for Remark 1 inClaim 9(1), we recolor vv4 with a colorα ∈ [1, 3]
such that v4 does not conflict with its neighbors. If α ∈ [1, 2], say α = 1, then
we recolor vv1 with 4. If α = 3, then we recolor vv1 with 4, vv3 with 1, v2v3
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with 3. Then we color v1v2 properly to get an NDE-�-coloring of G, which is a
contradiction.

(3) Assume that the configuration Fig. 2b exists in G. It follows from Claims 3, 6 and
12(1) that d(v4) ≥ 8. Then G − v1v2 has an NDE-�-coloring ϕ with ϕ(vvi ) = i
for i ∈ [1, k]. If Cϕ(v1) �= Cϕ(v2), then we color v1v2 properly to get an NDE-
�-coloring of G. Suppose that Cϕ(v1) = Cϕ(v2) = {1, 2}, i.e., ϕ(v1u1) = 2 and
ϕ(v2u2) = 1. By Claim 3, we consider the following two cases.
Case 1 d3(v3) = 0. If |{1, 2} ∩Cϕ(v3)| ≤ 1, say 1 /∈ Cϕ(v3), then we recolor vv3
with 1, vv1 with 3. Otherwise, {1, 2} ⊆ Cϕ(v3), sayϕ(v3v4) = 1 andϕ(v3u3) = 2.
We recolor vv1 and v3v4 with 4, vv4 with 1. Then we color v1v2 properly to get
an NDE-�-coloring of G, which is a contradiction.
Case 2 d3(v3) = 1, i.e., d(u3) = d(v3) = 3. By Claims 2, 3 and 6, each vertex in
N (u3)\{v3} is an 8+-vertex. Remove the color of v3u3. Let α ∈ Cϕ(u3)\Cϕ(v3).
If |{1, 2} ∩ {ϕ(v3v4), α}| ≤ 1, say 1 /∈ {ϕ(v3v4), α}, then we recolor vv3 with 1,
vv1 with 3. Otherwise, {ϕ(v3v4), α} = {1, 2}, say ϕ(v3v4) = 1 and α = 2. We
recolor vv1 and v3v4 with 4, vv4 with 1. Then we color v1v2, v3u3 properly to get
an NDE-�-coloring of G, which is a contradiction.

(4) Assume that the configuration Fig. 2c exists in G. Then G − v1v2 has an NDE-�-
coloring ϕ with ϕ(vvi ) = i for i ∈ [1, k]. If Cϕ(v1) �= Cϕ(v2), then we color v1v2
properly to get anNDE-�-coloring ofG. Suppose thatCϕ(v1) = Cϕ(v2) = {1, 2},
i.e., ϕ(v1u1) = 2 and ϕ(v2u2) = 1. We deal with the following three cases by
symmetry.
Case 1 d4(v3) = 0. By Claims 2, 3 and 6, d(v4), d(v5), d(u3) ≥ 8. If |{1, 2} ∩

Cϕ(v3)| ≤ 1, say 1 /∈ Cϕ(v3), then we recolor vv3 with 1, vv1 with 3. Then we
color v1v2 properly to get an NDE-�-coloring of G. Otherwise, {1, 2} ⊆ Cϕ(v3). By
symmetry, we consider the following two possibilities.

• ϕ(v3v4) = 1 andϕ(v3v5) = 2. Let γ ∈ {4, 5}\(ϕ(v3u3)), say γ = 4.We exchange
the colors of vv4 and v3v4, and recolor vv1 with 4. Then we color v1v2 properly
to get an NDE-�-coloring of G, which is a contradiction.

• ϕ(v3v4) = 1 and ϕ(v3u3) = 2. If ϕ(v3v5) �= 4, then we exchange the colors of
vv4 and v3v4, and recolor vv1 with 4. If ϕ(v3v5) = 4, then we exchange the colors
of vv4 and v3v4, the colors of vv5 and v3v5, and recolor vv1 with 5. Then we color
v1v2 properly to get an NDE-�-coloring of G, which is a contradiction.

Case 2 d4(v3) = 1 and d(u3) = 4. By Claims 2, 3 and 6, each vertex in (N (v3) ∪
N (u3))\{v3, u3} is an 8+-vertex. Remove the color of v3u3. Let α ∈ Cϕ(u3)\Cϕ(v3).
If |{1, 2}∩{ϕ(v3v4), ϕ(v3v5), α}| ≤ 1, say 1 /∈ {ϕ(v3v4), ϕ(v3v5), α}, thenwe recolor
vv3 with 1, vv1 with 3. Then we color v1v2, v3u3 properly to get an NDE-�-coloring
of G. Otherwise, {1, 2} ⊆ {ϕ(v3v4), ϕ(v3v5), α}. By symmetry, we consider the fol-
lowing two possibilities.

• ϕ(v3v4) = 1 and ϕ(v3v5) = 2. Let γ ∈ {4, 5}\{α}, say γ = 4. We exchange the
colors of vv4 and v3v4, and recolor vv1 with 4. Then we color v1v2, v3u3 properly
to get an NDE-�-coloring of G, which is a contradiction.

• ϕ(v3v4) = 1 and α = 2. If ϕ(v3v5) �= 4, then we exchange the colors of vv4 and
v3v4, and recolor vv1 with 4. If ϕ(v3v5) = 4, then we exchange the colors of vv4
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Table 1 The relation between dG (v) and dH (v)

dG (v) 2 ≤ dG (v) ≤ 7 8 9 10 11 12 13 · · ·
dH (v) = dG (v) ≥ 7 ≥ 7 ≥ 9 ≥ 9 ≥ 9 ≥ 7 · · ·

and v3v4, the colors of vv5 and v3v5, and recolor vv1 with 5. Then we color v1v2,
v3u3 properly to get an NDE-�-coloring of G, which is a contradiction.

Case 3 d4(v3) = 1 and d(v5) = 4. By Claims 2, 3 and 6, each vertex in (N (v3)∪
N (v5))\{v3, v5} is an 8+-vertex. Remove the color of v3v5. Letβ ∈ Cϕ(v5)\Cϕ(v3). If
|{1, 2} ∩ {ϕ(v3v4), ϕ(v3u3), β}| ≤ 1, say 1 /∈ {ϕ(v3v4), ϕ(v3u3), β}, then we recolor
vv3 with 1, vv1 with 3. Then we color v1v2, v3v5 properly to get an NDE-�-coloring
of G. Otherwise, {1, 2} ⊆ {ϕ(v3v4), ϕ(v3u3), β}. By symmetry, we consider the
following two possibilities.

• ϕ(v3v4) = 1 and ϕ(v3u3) = 2. We exchange the colors of vv4 and v3v4, and
recolor vv1 with 4. Then we color v1v2, v3v5 properly to get an NDE-�-coloring
of G, which is a contradiction.

• 1 ∈ {ϕ(v3v4), ϕ(v3u3)} and β = 2. If 5 /∈ Cϕ(v3) or Cϕ(v5)\(ϕ(v3v5)) �= {1, 2,
5}, then we recolor vv3 with 2, vv2 with 3. If 5 ∈ Cϕ(v3) andCϕ(v5)\(ϕ(v3v5)) =
{1, 2, 5}, then we recolor vv5 with 3, vv3 with 2, vv2 with 5. Then we color v1v2,
v3v5 properly to get an NDE-�-coloring of G, which is a contradiction.


�

3.2 Discharging Analysis on H

Let H be the graph obtained from G by removing all 1-vertices. Note that dH (v) =
dG(v)−dG1 (v). By Claims 2, 7–11, we give the relationship between dG(v) and dH (v)

in Table 1. It follows that δ(H) ≥ 2. By Claim 1, H is 2-connected. Some structural
properties of H are collected as follows.

Claim 13 Let v be a vertex of H. Then the following statements hold.

(0) If 2 ≤ dH (v) ≤ 6, then dG(v) = dH (v).
(1) If dH (v) = 2, then dH

5−(v) = 0.
(2) If dH (v) = k for k ∈ [3, 5], then dH

5−(v) = dH
k (v) ≤ 1.

(3) If dH (v) = 6, 7, then dH
5−(v) = 0.

(4) Let dH (v) = 8. If dH
4−(v) ≥ 1, then dH

5−(v) ≤ 1.
(5) Let dH (v) = 9. Then v is not in a bad 3-cycle. If dH

4−(v) ≥ 1, then dH
5−(v) ≤ 2.

(6) Let dH (v) = 10. Then v is not in a bad 3-cycle. If dH
3−(v) ≥ 1, then dH

6+(v) ≥
2dH

4−(v) + 1. If dH
4−(v) ≥ 1, then dH

6+(v) ≥ dH
4−(v) + 1.

(7) Let dH (v) = 11. If dH
3−(v) ≥ 1, then dH

6+(v) ≥ dH
4−(v)+ 1. If v is in a bad 3-cycle,

then dH
6+(v) ≥ 9.

(8) Let dH (v) = 12. If dH
2 (v) ≥ 1, then dH

6+(v) ≥ dH
3−(v) + 1. If v is in a bad 3-cycle,

then dH
6+(v) ≥ 5. If v is in a special 3-cycle and dH

3−(v) ≥ 2, then dH
6+(v) ≥ 5.
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Proof (0) holds clearly by Table 1. Both (1) and (2) hold by Claims 3, 4, 13(0).
(3) It holds trivially if dG(v) = dH (v). If dG(v) > dH (v), by Table 1, then dG(v) = 8,

9 or dG(v) ≥ 13. If dG(v) = 8, then dG1 (v) = 1. By Claim 7(1), dG5−(v) = 1,
further to say that dH

5−(v) = dG5−(v) − dG1 (v) = 0. If dG(v) = 9, then dG1 (v) = 2.
By Claim 7(1), dG5−(v) ≤ 2, further to say that dH

5−(v) = dG5−(v) − dG1 (v) ≤
2 − 2 = 0. If dG(v) ≥ 13, then dG1 (v) ≥ 6. By Claim 5(1), dGs (v) = 0 for
s ∈ [2, 5], further to say that dH

5−(v) = 0.
(4) It holds trivially if dG(v) = dH (v). If dG(v) > dH (v), by Table 1, then dG(v) = 9

or dG(v) ≥ 13. If dG(v) = 9, then dG1 (v) = 1. By Claim 7(1), dG5−(v) ≤ 2, further
to say that dH

5−(v) = dG5−(v) − dG1 (v) ≤ 1. If dG(v) ≥ 13, then dG1 (v) ≥ 5. By
Claim 5(1), dGs (v) = 0 for s ∈ [2, 5], further to say that dH

5−(v) = 0.
(5) It holds trivially if dG(v) = dH (v). If dG(v) = 10, then dG1 (v) = 1. ByClaim8(1),

dH
6+(v) = dG6+(v) ≥ 4dG4−(v)+1 = 4dH

4−(v)+5, further to say that dH
4−(v) = 0. If

dG(v) = 11, then dG1 (v) = 2. By Claim 9(1), dH
6+(v) = dG6+(v) ≥ 3dG4−(v) + 1 =

3dH
4−(v) + 7, further to say that dH

4−(v) = 0. If dG(v) ≥ 12, then dG1 (v) ≥ 3. By
Claim 5(1), dGs (v) = 0 for s ∈ [2, 4], further to say that dH

4−(v) = 0.
(6) It holds trivially if dG(v) = dH (v). If dG(v) = 11, then dG1 (v) = 1. ByClaim9(1),

dH
6+(v) = dG6+(v) ≥ 3dG4−(v)+ 1 = 3dH

4−(v)+ 4, further to say that dH
4−(v) ≤ 1. If

dG(v) = 12, then dG1 (v) = 2. By Claim 10(1), dH
6+(v) = dG6+(v) ≥ 2dG4−(v)+1 =

2dH
4−(v) + 5, further to say that dH

4−(v) ≤ 1. If dG(v) ≥ 13, then dG1 (v) ≥ 3. By
Claim 5(1), dGs (v) = 0 for s ∈ [2, 4], further to say that dH

4−(v) = 0.
(7) It holds trivially if dG(v) = dH (v). If dG(v) = 12, then dG1 (v) = 1. By Claim

12(1), v is not in a bad 3-cycle. If dH
3−(v) ≥ 1, implying dG3−(v) ≥ 2, by Claim

10(1), then dH
6+(v) = dG6+(v) ≥ 2dG4−(v) + 1 ≥ 2dH

4−(v) + 3. If dG(v) ≥ 13,
then dG1 (v) ≥ 2. By Claim 5(1), dGs (v) = 0 for s ∈ [2, 3], further to say that
dH
3−(v) = 0.

(8) It holds trivially if dG(v) = dH (v). If dG(v) ≥ 13, then dG1 (v) ≥ 1. By Claim
12(1), v is not in a bad 3-cycle. By Claim 5(1), dG2 (v) = 0, further to say that
dH
2 (v) = 0. 
�

Using Euler’s formula |V (H)| − |E(H)| + |F(H)| = 2, we can deduce

∑

v∈V (H)

(dH (v) − 6) +
∑

f ∈F(H)

(2dH ( f ) − 6) = −12.

We first define the weight function w on H by w(x) = dH (x) − 6 if x ∈ V (H)

and w(x) = 2dH (x) − 6 if x ∈ F(H). Next, we design some discharging rules and
redistribute weights accordingly. Once the discharging is finished, the resultant weight
functionw′ is produced, so that the sumof allweights is kept fixedwhen thedischarging
is in process. However, we can show that w′(x) ≥ 0 for all x ∈ V (H) ∪ F(H). This
leads to the following contradiction:

0 ≤
∑

x∈V (H)∪F(H)

w′(x) =
∑

x∈V (H)∪F(H)

w(x) = −12 < 0,
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and hence demonstrates the nonexistence of such a counterexample.
The discharging rules are defined as follows:

(R1) Every 4-face f gives 2 to its incident 2-vertex if dH
2 ( f ) = 1; otherwise, it gives

1 to each incident small vertex.
(R2) Every 5+-face f gives 2 to each incident 2-vertices, and

ω( f )−2dH
2 ( f )

dH
3 ( f )+dH

4 ( f )+dH
5 ( f )

to

each incident small vertex of degree at least 3.
For a small vertex u, let β(u) denote the total sum of charges transferred into
u after (R1)-(R2) were carried out.

(R3) Let v be an 8+-vertex adjacent to a small k-vertex u. If dH
k (u) = 1, then v gives

max{ 6−dH (u)−β(u)
dH (u)−1 , 0} to u; if dH

k (u) = 0, then v gives max{ 6−dH (u)−β(u)
dH (u)

, 0}
to u.

For x, y ∈ V (H) ∪ F(H), let τ(x → y) denote the charge transferred from x to y
according to the above rules.

Observation 1 (Wang and Huang [8]) Let f be a face of H and v be a small vertex
incident with f .

(1) Every face f is incident with at most � 2dH ( f )
3 � small vertices.

(2) Let dH ( f ) = 5. If dH
2 ( f ) ≥ 1, then τ( f → v) ≥ 1. Otherwise, τ( f → v) ≥ 4

3 .
(3) Let dH ( f ) = 6. If dH

2 ( f ) ≥ 1, then τ( f → v) ≥ 2. Otherwise, τ( f → v) ≥ 3
2 .

(4) Let dH ( f ) ≥ 7. Then τ( f → v) ≥ 2.

Observation 2 Let v be an 8+-vertex of H, u be a small vertex adjacent to v, and G1
be the configuration of Fig.2a.

(1) Let dH (u) = 2. If v is in a special 3-face, then τ(v → u) ≤ 1. Otherwise,
τ(v → u) = 0.

(2) Let dH (u) = 3. If v is in G1, then τ(v → u) ≤ 3
2 . Otherwise, τ(v → u) ≤ 1.

(3) If dH (u) = 4, then τ(v → u) ≤ 2
3 .

(4) If dH (u) = 5, then τ(v → u) ≤ 1
4 .

(5) If v is in a bad 3-face and u is not in this bad 3-face, then τ(v → u) ≤ 1
2 .

(6) If v is in G1 and u is not in G1, then τ(v → u) ≤ 1
3 .

Proof Both (3) and (4) hold clearly by Observation 1 and (R3).

(1) If v is in a special 3-face, then dH
2 (v) = 1 by Claim 5(4). Then the faces incident

with u are this special 3-face and a 4+-face. By (R1) and (R2), β(u) ≥ 2. Hence,
τ(v → u) ≤ 6−2−2

2 = 1. Otherwise, the faces incident with u are all 4+-faces.
By (R1) and (R2), β(u) ≥ 4. Hence, τ(v → u) ≤ 6−2−4

2 = 0.

(2) If dH
3 (u) = 0, then τ(v → u) = 6−3−β(u)

3 ≤ 1. Suppose that dH
3 (u) = 1. Let v,

w1,w2 be the neighbors of u in the clockwise order with dH (w1) = 3. Let fuvw1 be
the face with uv and uw1 as boundary edges. Similarly, we can define fw1uw2 and
fvuw2 . If fuvw1 or fw1uw2 is a 4

+-face, by (R1) and Observation 1, then β(u) ≥ 1.
Hence, τ(v → u) ≤ 6−3−1

3−1 = 1. Suppose that dH ( fuvw1) = dH ( fw1uw2) = 3.

Then v is in a bad 3-face vuw1v. By Claim 12(1), dH
2 (v) = 0. If fvuw2 is a 4-face

with dH
2 ( fvuw2) = 0, or a 5+-face, by (R1) and Observation 1, then β(u) ≥ 1.
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Hence, τ(v → u) ≤ 6−3−1
3−1 = 1. Suppose that dH ( fvuw2) = 3. Then u is incident

with three 3-faces, i.e., v is in G1, and τ(v → u) = 6−3−0
3−1 = 3

2 .
(5) If v is in a bad 3-face, then dH

2 (v) = 0 by Claim 12(1). Then dH (u) = 3, 4, 5.
If dH (u) = 3, then vu is not incident with a 3-face by Claim 12(3). By (R1) and
Observation 1, β(u) ≥ 2. Hence, τ(v → u) ≤ 6−3−2

3−1 = 1
2 . If dH (u) = 4, then

one of the faces incident with vu is at least a 4+-face by Claim 12(4). By (R1) and
Observation 1, β(u) ≥ 1. Hence, τ(v → u) ≤ 6−4−1

4−1 = 1
3 < 1

2 . If dH (u) = 5,

then τ(v → u) ≤ 1
4 < 1

2 by Observation 2(4).
(6) If v is in G1, then dH

3−(v) = 2 by Claim 12(2). Then dH (u) = 4, 5. If dH (u) = 4,
then one of the faces incident with vu is at least a 4+-face by Claim 12(4). By (R1)
and Observation 1, β(u) ≥ 1. Hence, τ(v → u) ≤ 6−4−1

4−1 = 1
3 . If dH (u) = 5,

then τ(v → u) ≤ 1
4 < 1

3 by Observation 2(4). 
�
Observation 3 Suppose that v ∈ V (H) is an 8+-vertex which is not in any bad 3-face.
Let vi , vi+1, vi+2, . . . , vi+s, vi+s+1 be s+2 consecutive neighbors of v. If dH (vi+ j ) ∈
[3, 5] for j ∈ [1, s] and s ≥ 2, then

s∑
j=1

τ(v → vi+ j ) ≤ s
3 + 1. In particular,

(1) If neither vi+1 nor vi+s is in a bad 3-face, then
s∑

j=1
τ(v → vi+ j ) ≤ s

3 + 2
3 .

(2) If exactly one of vi+1 and vi+s is in a bad 3-face, then
s∑

j=1
τ(v → vi+ j ) ≤ s

3 + 5
6 .

(3) If s = 2 and dH (vi ), dH (vi+3) /∈ [3, 5], then τ(v → vi+1) + τ(v → vi+2) ≤ 3
2 .

Proof Let ft be the face with vvt and vvt+1 as boundary edges for t ∈ [i, i + s].
Let j ∈ [i + 2, i + s − 1] and dH (v j ) = k. If dH

k (v j ) = 0, then f j−1 and f j
incident with vv j are either 4-faces without 2-vertices or 5+-faces. Hence, τ(v →
v j ) ≤ 6−k−2

k ≤ 1
3 by (R1) and Observation 1. If k ≥ 4 and dH

k (v j ) = 1, then
dH
5−(v j ) = dH

k (v j ) = 1 by Claim 13(2). Then one of f j−1 and f j is at least a 4+-
face. Hence, τ(v → v j ) ≤ 6−k−1

k−1 ≤ 1
3 by (R1) and Observation 1. If k = 3 and

dH
3 (v j ) = 1, then one of f j−1 and f j is a 4+-face and the other is a 5+-face. Hence,

τ(v → v j ) ≤ 6−3−1− 4
3

3−1 = 1
3 by (R1) and Observation 1.

Let j ∈ {i + 1, i + s}, say j = i + 1. If dH (v j ) ≥ 4, then τ(v → v j ) ≤ 2
3 by

Observation 2(3)–(4). If dH (v j ) = 3 and dH
3 (v j ) = 0, then dH

5−(v j ) = dH
3 (v j ) = 0

by Claim 13(2). Hence, dH ( f j ) ≥ 4 and τ(v → v j ) ≤ 6−3−1
3 = 2

3 by (R1) and
Observation 1. Suppose that dH (v j ) = 3 and dH

3 (v j ) = 1. Let v, w1, w2 be the
neighbors of v j in the clockwise order. If dH (w1) = 3, then dH ( f j−1) ≥ 4. By Claim
13(1)–(3), dH (w2) ≥ 8 and dH ( f j ) ≥ 4. Hence, τ(v → v j ) ≤ 6−3−2

3−1 = 1
2 by (R1)

andObservation 1. If dH (w2) = 3, thendH
5−(w2) = dH

3 (w2) = 1byClaim13(2). Then

f j is either a 5-face without 2-vertices or a 6+-face. Hence, τ(v → v j ) ≤ 6−3− 4
3

3−1 = 5
6

by (R1) and Observation 1. Specially, suppose that v j is not in a bad 3-face. For
l ∈ {1, 2} with dH (wl) = 3, the faces incident with v jwl are all 4+-faces. Hence,
τ(v → v j ) ≤ 6−3−2

3−1 = 1
2 by (R1) and Observation 1.
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Consequently,
s∑

j=1
τ(v → vi+ j ) ≤ 2 · 5

6 + 1
3 (s − 2) = s

3 + 1. In particular,

(1) If neither vi+1 nor vi+s is in a bad 3-face, then
s∑

j=1
τ(v → vi+ j ) ≤ 2· 23+ 1

3 (s−2) =
s
3 + 2

3 .

(2) If exactly one of vi+1 and vi+s is in a bad 3-face, then
s∑

j=1
τ(v → vi+ j ) ≤

2
3 + 5

6 + 1
3 (s − 2) = s

3 + 5
6 .

(3) If neither vi+1 nor vi+2 is in a bad 3-face, then τ(v → vi+1) + τ(v → vi+2) ≤
4
3 < 3

2 by (1). If exactly one of vi+1 and vi+2 is in a bad 3-face, then τ(v →
vi+1)+ τ(v → vi+2) ≤ 3

2 by (2). Suppose that vi+1 and vi+2 are all incident with
bad 3-faces. Then dH (vi+1) = dH (vi+2) = 3 and dH

3 (vi+1) = dH
3 (vi+2) = 1.

Let v, x1, x2 be the neighbors of vi+1 in the clockwise order. Let v, y1, y2 be
the neighbors of vi+2 in the clockwise order. If dH (x1) = 3, then fi is either
a 4-face without 2-vertices or a 5+-face. By Claim 13(1)-(3), dH (x2) ≥ 8 and
dH ( fi+1) ≥ 4. Hence, τ(v → vi+1) + τ(v → vi+2) ≤ 6−3−2

3−1 + 6−3−1
3−1 = 3

2 by

(R1) and Observation 1. If dH (y2) = 3, then τ(v → vi+1)+τ(v → vi+2) ≤ 3
2 by

symmetry. If dH (x2) = dH (y1) = 3, then fi+1 is either a 6-face without 2-vertices

or a 7+-face. Hence, τ(v → vi+1) + τ(v → vi+2) ≤ 6−3− 3
2

3−1 + 6−3− 3
2

3−1 = 3
2 by

(R1) and Observation 1. 
�
Let f ∈ F(H). If dH ( f ) = 3, then ω′( f ) = ω( f ) = 2×3−6 = 0. If dH ( f ) = 4,

then by (R1), f gives at most 2 to all its incident small vertices. Hence, ω′( f ) ≥
ω( f ) − 2 = 2 × 4 − 6 − 2 = 0. If dH ( f ) ≥ 5, then by (R2),

ω′( f ) ≥ ω( f ) − 2dH
2 ( f ) − ω( f ) − 2dH

2 ( f )

dH
3 ( f ) + dH

4 ( f ) + dH
5 ( f )

(dH
3 ( f )

+dH
4 ( f ) + dH

5 ( f )) = 0.

Let v ∈ V (H) be a k-vertex. Then k ≥ 2. Let v0, v1, . . . , vk−1 denote the neighbors
of v in the clockwise order. For 0 ≤ i ≤ k−1, we use fi to denote the incident face of
v in H with vvi and vvi+1 as boundary edges, where all indices are taken as modulo
k. If 6 ≤ k ≤ 7, then ω′(v) = ω(v) = k − 6 ≥ 0 by (R3) and Claim 13(3).

Case 1 2 ≤ k ≤ 5. If dH
k (v) = 1, then dH

7−(v) = 1 by Claim 13(1)-(3). Hence, by

(R1)-(R3),ω′(v) ≥ k−6+β(v)+(k−1) 6−k−β(v)
k−1 = 0. If dH

k (v) = 0, then dH
7−(v) = 0

by Claim 13(1)-(3). Hence, by (R1)-(R3), ω′(v) ≥ k − 6 + β(v) + k · 6−k−β(v)
k = 0.

Case 2 k = 8. Then ω(v) = 2. If dH
4−(v) ≥ 1, then dH

5−(v) ≤ 1 by Claim 13(4).
Then v is not in a bad 3-face. Hence, ω′(v) ≥ 2−dH

5−(v) ≥ 2−1 = 1 by Observation
2(1)-(3). If dH

4−(v) = 0, then ω′(v) ≥ 2 − 1
4d

H
5 (v) ≥ 2 − 1

4 × 8 = 0 by Observation
2(4).

Case 3 k = 9. Then ω(v) = 3 and v is not in a bad 3-face by Claim 13(5). If
dH
4−(v) ≥ 1, then dH

5−(v) ≤ 2 byClaim13(5).Hence,ω′(v) ≥ 3−dH
5−(v) ≥ 3−1×2 =
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1 by Observation 2(1)-(4). If dH
4−(v) = 0, then ω′(v) ≥ 3− 1

4d
H
5 (v) ≥ 3− 1

4 × 9 = 3
4

by Observation 2(4).
Case 4 k = 10. Then ω(v) = 4 and v is not in a bad 3-face by Claim 13(6). If

dH
3−(v) ≥ 1, thendH

6+(v) ≥ 2dH
4−(v)+1byClaim13(6),which implies thatdH

4−(v) ≤ 3.
Hence, ω′(v) ≥ 4 − dH

4−(v) − 1
4 (10 − dH

4−(v) − dH
6+(v)) ≥ 7

4 − 1
4d

H
4−(v) ≥ 1 by

Observation 2(1)-(4). If dH
3−(v) = 0 and dH

4 (v) ≥ 1, then dH
6+(v) ≥ dH

4 (v) + 1 by
Claim 13(6), which implies that dH

4 (v) ≤ 4. Hence, ω′(v) ≥ 4 − 2
3d

H
4 (v) − 1

4 (10 −
dH
4 (v) − dH

6+(v)) ≥ 7
4 − 1

6d
H
4 (v) ≥ 13

12 by Observation 2(3)-(4). If dH
4−(v) = 0, then

ω′(v) ≥ 4 − 1
4d

H
5 (v) ≥ 4 − 1

4 × 10 = 3
2 by Observation 2(4).

Case 5 k = 11. Then ω(v) = 5. If v is in a bad 3-face, then dH
6+(v) ≥ 9 by Claim

13(7). Hence, ω′(v) ≥ 5 − 3
2 × 2 = 2 by Observation 2. Otherwise, v is not in a bad

3-face.
Case 5.1 dH

3−(v) ≥ 1. By Claim 13(7), dH
6+(v) ≥ dH

4−(v) + 1, which implies that

dH
4−(v) ≤ 5.Hence,ω′(v) ≥ 5−dH

4−(v)− 1
4 (11−dH

4−(v)−dH
6+(v)) ≥ 5

2− 1
2d

H
4−(v) ≥ 0

by Observation 2(1)-(4).
Case 5.2 dH

3−(v) = 0. Let p = dH
6+(v), vi1 , vi2 , . . . , vi p be 6+-vertices with

0 = i1 < i2 < · · · < i p, and n j = |{l|i j + 1 ≤ l ≤ i j+1 − 1, 4 ≤ dH (vl) ≤ 5}|
for j ∈ [1, p]. Then i p+1 − 1 = 10 and

p∑
j=1

n j = 11 − p. If p ≥ 4, then ω′(v) ≥
5− 2

3 (11− p) = 2
3 p− 7

3 ≥ 1
3 by Observation 2(3)–(4). Assume that p ≤ 3. Note that

every vertex in NH (v)\{vi1 , vi2 , . . . , vi p } is not in a bad 3-face. By Observations 2

and 3,
i j+1−1∑
l=i j+1

τ(v → vl) ≤ n j
3 + 2

3 for j ∈ [1, p]. Hence, ω′(v) ≥ 5−
p∑

j=1
(
n j
3 + 2

3 ) =
4−p
3 ≥ 1

3 .

Case 6 k = 12. Thenω(v) = 6 and dH
2 (v) ≤ 1 byClaim 5(2). If v is in a bad 3-face,

then dH
6+(v) ≥ 5 by Claim 13(8). Hence, ω′(v) ≥ 6− 3

2 × 2− 1
2 (12− 2− dH

6+(v)) =
1
2d

H
6+(v) − 2 ≥ 1

2 by Observation 2. So assume that v is not in a bad 3-face.
Case 6.1 dH

2 (v) = 1. By Claim 13(8), dH
6+(v) ≥ dH

3−(v) + 1. Then ω′(v) ≥
6 − dH

3−(v) − 2
3 (12 − dH

3−(v) − dH
6+(v)) = 2

3d
H
6+(v) − 1

3d
H
3−(v) − 2 by Observation

2. If dH
6+(v) ≥ 5, then ω′(v) ≥ 1

3d
H
6+(v) − 5

3 ≥ 0. If dH
3−(v) ≥ 4, then ω′(v) ≥

1
3d

H
3−(v) − 4

3 ≥ 0. Assume that dH
3−(v) ≤ 3 and dH

6+(v) ≤ 4. Let p = dH
6+(v) and

vi1 , vi2 , . . . , vi p be 6
+-vertices with 0 = i1 < i2 < · · · < i p.

Suppose that v is in a special 3-face. If 2 ≤ dH
3−(v) ≤ 3, then dH

6+(v) ≥ 5 by
Claim 13(8). Otherwise, dH

3−(v) = 1. Let vi p+1 be a 2-vertex, n j = |{l|i j + 1 ≤ l ≤
i j+1−1, 4 ≤ dH (vl) ≤ 5}| for j ∈ [1, p−1], and n p = |{l|i p+2 ≤ l ≤ i p+1−1, 4 ≤
dH (vl) ≤ 5}|. Then i p+1 − 1 = 11 and

p∑
j=1

n j = 11 − p. By Observations 2 and 3,

i j+1−1∑
l=i j+1

τ(v → vl) ≤ n j
3 + 2

3 for j ∈ [1, p − 1], and
i p+1−1∑
l=i p+2

τ(v → vl) ≤ n p
3 + 2

3 .

Hence, ω′(v) ≥ 6 − 1 −
p∑

j=1
(
n j
3 + 2

3 ) = 4−p
3 ≥ 0.

123



694 W. Wang et al.

Suppose that v is not in a special 3-face. Let vi p+1 be a 2-vertex and n j = |{l|i j+1 ≤
l ≤ i j+1 − 1, 3 ≤ dH (vl) ≤ 5}| for j ∈ [1, p + 1]. Then i p+2 − 1 = 11 and
p+1∑
j=1

n j = 11 − p. If dH
3−(v) = 1, then each vertex in NH (v)\{vi1, vi2 , . . . , vi p+1} is a

4-vertex or a 5-vertex. ByObservations 2 and 3,ω′(v) ≥ 6−
p+1∑
j=1

(
n j
3 + 2

3 ) = 5−p
3 ≥ 1

3 .

If dH
3−(v) = 2, then there is s ∈ [1, p+1] such that a 3-vertex is in {vis+1, . . . , vis+1−1}.

By Observations 2 and 3, ω′(v) ≥ 6 − ( ns3 + 5
6 ) −

j �=s∑
j∈[1,p+1]

(
n j
3 + 2

3 ) = 9−2p
6 ≥

1
6 . Suppose that dH

3−(v) = 3. If there is s ∈ [1, p + 1] such that two 3-vertices
are in {vis+1, . . . , vis+1−1}, by Observations 2 and 3, then ω′(v) ≥ 6 − ( ns3 + 1) −

j �=s∑
j∈[1,p+1]

(
n j
3 + 2

3 ) = 4−p
3 ≥ 0. Otherwise, there are s, t ∈ [1, p + 1] such that

two 3-vertices are in {vis+1, . . . , vis+1−1} and {vit+1, . . . , vit+1−1}, respectively. By
Observations 2 and 3,ω′(v) ≥ 6−( ns3 + 5

6 )−( nt3 + 5
6 )−

j �=s,t∑
j∈[1,p+1]

(
n j
3 + 2

3 ) = 4−p
3 ≥ 0.

Case 6.2 dH
2 (v) = 0. Let p = dH

6+(v), vi1 , vi2 , . . . , vi p be 6+-vertices with 0 =
i1 < i2 < · · · < i p, and n j = |{l|i j + 1 ≤ l ≤ i j+1 − 1, 3 ≤ dH (vl) ≤ 5}| for
j ∈ [1, p]. Then i p+1−1 = 11 and

p∑
j=1

n j = 12− p. If p ≥ 6, thenω′(v) ≥ 6−(12−

p) = p−6 ≥ 0 byObservation 2. If p ≤ 3, thenω′(v) ≥ 6−
p∑

j=1
(
n j
3 +1) = 6−2p

3 ≥ 0

by Observations 2 and 3.
Suppose that p = 4. If there are five consecutive vertices vi+1, vi+2, . . . , vi+5 ∈

NH
3,4,5(v), thenω′(v) ≥ 6−( 53+1)−(12−4−5) = 1

3 byObservations 2 and 3. If there

are s, t ∈ [1, 4]with ns = 4 and nt = 2, thenω′(v) ≥ 6−( 43+1)− 3
2−(12−4−6) = 1

6
by Observations 2 and 3. If there are s, t ∈ [1, 4] with ns = nt = 3, then ω′(v) ≥
6−2× ( 33 +1)− (12−4−6) = 0 by Observations 2 and 3. If there are s, t, r ∈ [1, 4]
with ns = 3 and nt = nr = 2, then ω′(v) ≥ 6− ( 33 + 1) − 2× 3

2 − (12− 4− 7) = 0
by Observations 2 and 3. Otherwise, n1 = n2 = n3 = n4 = 2. By Observations 2 and
3, ω′(v) ≥ 6 − 4 × 3

2 = 0.
Suppose that p = 5. If there are three consecutive vertices vi+1, vi+2, vi+3 ∈

NH
3,4,5(v), Observations 2 and 3 implies that ω′(v) ≥ 6− ( 33 + 1)− (12− 5− 3) = 0.

Otherwise, there are s, t ∈ [1, 5] with ns = nt = 2. By Observations 2 and 3,
ω′(v) ≥ 6 − 2 × 3

2 − (12 − 5 − 4) = 0.
Case 7 k ≥ 13. If v is in G1, then ω′(v) ≥ k − 6− 2× 3

2 − 1
3 (k − 2− dH

6+(v)) =
1
3 (2k − 25 + dH

6+(v)) ≥ 0 by Observation 2. So assume that v is not in G1.
Suppose that v is in a bad 3-face. By Claim 12(1), dH

2 (v) = 0 and v is in at most
one bad 3-face. If dH

6+(v) ≥ 1, then ω′(v) ≥ k − 6 − 2 × 1 − 1
2 (k − 2 − dH

6+(v)) =
1
2 (k − 14 + dH

6+(v)) ≥ 0 by Observation 2. Otherwise, dH
6+(v) = 0. Assume that

dH (v j ) = s ∈ [3, 5] for j ∈ [2, k − 1]. If dH
s (v j ) = 0, then f j−1 and f j are 4-
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faces without 2-vertices or 5+-faces. Hence, τ(v → v j ) ≤ 6−s−2
s ≤ 1

3 by (R1) and
Observation 1. If dH

s (v j ) = 1 and s ≥ 4, then dH
5−(v j ) = dH

s (v j ) = 1 by Claim 13(2).
Then at least one of f j−1 and f j is a 4+-face. Hence, τ(v → v j ) ≤ 6−s−1

s−1 ≤ 1
3 by (R1)

and Observation 1. If s = 3 and dH
3 (v j ) = 1, then one of f j−1 and f j is a 4+-face and

the other is a 5+-face. Hence, τ(v → v j ) ≤ 6−3−1− 4
3

3−1 = 1
3 by (R1) and Observation 1.

Therefore,
k−1∑
j=2

τ(v → v j ) ≤ k−2
3 , andω′(v) ≥ k−6−2×1− k−2

3 = 1
3 (2k−22) ≥ 4

3 .

So assume that v is not in a bad 3-face.
Case 7.1 v is in a special 3-face. By Claim 5(4), dH

2 (v) = 1. Let p = dH
6+(v),

vi1 , vi2 , . . . , vi p be 6
+-vertices with 0 = i1 < i2 < · · · < i p, and vi p+1 be a 2-vertex.

Let n j = |{l|i j + 1 ≤ l ≤ i j+1 − 1, 3 ≤ dH (vl) ≤ 5}| for j ∈ [1, p − 1], and
n p = |{l|i p + 2 ≤ l ≤ i p+1 − 1, 3 ≤ dH (vl) ≤ 5}|. Then i p+1 − 1 = k − 1 and
p∑

j=1
n j = k − p − 1. By Observations 2 and 3,

i j+1−1∑
l=i j+1

τ(v → vl) ≤ n j
3 + 1 for

j ∈ [1, p − 1], and
i p+1−1∑
l=i p+2

τ(v → vl) ≤ n p
3 + 1. If p ≤ 3, then ω′(v) ≥ k − 6 − 1 −

p∑
j=1

(
n j
3 +1) = 2k−2p−20

3 ≥ 0. If p ≥ 6, thenω′(v) ≥ k−6−1−(k−p−1) = p−6 ≥ 0

by Observation 2.
Suppose that p = 4. If there are five consecutive vertices vi+1, vi+2, . . . , vi+5 ∈

NH
3,4,5(v), then ω′(v) ≥ k − 6− 1− ( 53 + 1) − (k − 1− 4− 5) = 1

3 by Observations
2 and 3. If there are s, t ∈ [1, 4] with ns = 4 and nt = 2, then ω′(v) ≥ k − 6 − 1 −
( 43 + 1) − 3

2 − (k − 1− 4− 6) = 1
6 by Observations 2 and 3. If there are s, t ∈ [1, 4]

with ns = nt = 3, then ω′(v) ≥ k − 6 − 1 − 2 × ( 33 + 1) − (k − 1 − 4 − 6) = 0
by Observations 2 and 3. If there are s, t, r ∈ [1, 4] with ns = 3 and nt = nr = 2,
then ω′(v) ≥ k − 6− 1− ( 33 + 1) − 2× 3

2 − (k − 1− 4− 7) = 0 by Observations 2
and 3. Otherwise, n1 = n2 = n3 = n4 = 2. Then k = 13. By Observations 2 and 3,
ω′(v) ≥ 13 − 6 − 1 − 4 × 3

2 = 0.
Suppose that p = 5. If there are three consecutive vertices vi+1, vi+2, vi+3 ∈

NH
3,4,5(v), then ω′(v) ≥ k − 6− 1− ( 33 + 1) − (k − 1− 5− 3) = 0 by Observations

2 and 3. Otherwise, there are s, t ∈ [1, 5] with ns = nt = 2. By Observations 2 and
3, ω′(v) ≥ k − 6 − 1 − 2 × 3

2 − (k − 1 − 5 − 4) = 0.
Case 7.2 v is not in a special 3-face. Let q = dH

2 (v) + dH
6+(v), vi1 , vi2 , . . . , viq

be 6+-vertices or 2-vertices with 0 = i1 < i2 < · · · < iq , and n j = |{l|i j + 1 ≤
l ≤ i j+1 − 1, 3 ≤ dH (vl) ≤ 5}| for j ∈ [1, q]. Then iq+1 − 1 = k − 1 and
q∑
j=1

n j = k − q. By Observations 2 and 3,
i j+1−1∑
l=i j+1

τ(v → vl) ≤ n j
3 + 1 for j ∈ [1, q].

If q ≤ 4, then ω′(v) ≥ k − 6 −
q∑
j=1

(
n j
3 + 1) = 2k−2q−18

3 ≥ 0. If q ≥ 6, then

ω′(v) ≥ k − 6 − (k − q) = q − 6 ≥ 0 by Observation 2.
Suppose that q = 5. If there are three consecutive vertices vi+1, vi+2, vi+3 ∈

NH
3,4,5(v), then ω′(v) ≥ k − 6 − ( 33 + 1) − (k − 5 − 3) = 0 by Observations 2 and
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3. Otherwise, there are s, t ∈ [1, 5] with ns = nt = 2. By Observations 2 and 3,
ω′(v) ≥ k − 6 − 2 × 3

2 − (k − 5 − 4) = 0. 
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