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Abstract
Given a graph G and an edge e = xy in G, let nx (e) and ny(e) be the number of
vertices that have the distance to x less than that to y, and the number of vertices that
have the distance to y less than that to x , respectively. The contribution of e is defined
as |nx (e) − ny(e)|. The Mostar index of G is the sum of all edge contributions in G.
A segment in a given tree T is a path, each of whose inner vertices has degree exactly
2, and none of whose two ends has the degree 2. The segment sequence of T is the
length sequence of all segments in T . In this paper, we focus on the tree set with a
fixed segment sequence, and the tree set with a fixed size together with a fixed segment
number. We completely determine the graphs with the greatest Mostar index among
the two sets, respectively. The graphs with the least Mostar index among the second
set are also identified.
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1 Introduction

Let G be an undirected simple graph. Let VG and EG be its vertex set and edge set,
respectively. Then n(G) = |VG | and ε(G) = |EG | are its order and size, respectively.
Let u, v be in VG and e = xy be in EG . The distance between u and v is denoted by
d(u, v). Let nx (e) = {w ∈ VG |d(w, x) < d(w, y)} and ny(e) = {w ∈ VG |d(w, y) <

d(w, x)}. Then φ(e) = |nx (e) − ny(e)| is the contribution of e. The sum Mo(G) =∑
e∈EG

φ(e) is called the Mostar index of G.
TheMostar index was proposed by Došlić et al. [12], which was defined to measure

how far a graph is from distance-balanced, where a distance-balanced graph [6,11,
18,20,21] is one of Mostar index zero. In [12], the extremal unicyclic graphs and
trees respect to the Mostar index were obtained, respectively. After that, with respect
to the extremal value of the index, the bicyclic graphs [24], cacti [14], trees with
given parameters [9,15], hexagonal chains [17,25,26], tree-like benzenoid compounds
[7,10], chemical trees [8] and so on were studied. The edge version of the index was
also studied [1,5,19,23] recently. The most recent article [2] stated more modifications
and generalizations of the Mostar index.

Let T be a tree, v be in VT and d(v) be the degree of v. Then v is a d-vertex if
d(v) = d and is a d+-vertex if d(v) ≥ d. Each 1-vertex in T is called a leaf ; each
3+-vertex is called a branch vertex. A segment in T is a path, where the inner vertices
are all 2-vertices, and none of the ends is a 2-vertex. A segment is pendent if it has a
pendent edge and is non-pendent otherwise. The length sequence of all segments in
T in order from largest to smallest is called its segment sequence.

The tree set T L with a fixed segment sequence L , and the tree set T (ε, k) with a
fixed size ε and together with a fixed segment number k, have attracted more and more
researchers’ attentions, with respect to many extremal problems [3,4,22,27,28]. For a
graph set X , let Xmax and Xmin be its subsets with the greatest and the least Mostar
indices, respectively. Let Mo(Xmax) and Mo(Xmin) be the Mostar indices of graphs
in the corresponding sets. This paper completely determines T L max, T max(ε, k) and
T min(ε, k), and their Mostar indices.

First, we find T L max and their Mostar index. Let L = (l1, l2, . . . , lk) where k ≥ 3,
each li (i = 1, 2, . . ., k) is a positive integer, and li ≥ l j whenever i < j . Then, the
sum ε(L) = ∑k

i=1 li is called the size of L . The unique tree T L
S , in T L , which has

exactly one branch vertex is called a starlike tree, as shown in Fig. 1a.

Theorem 1.1 Let T be in T L , where L = (l1, l2, . . ., lk), k ≥ 3 and li ≥ l j whenever
i < j . Let ε = ε(L). Then

Mo(T ) ≤
⎧
⎨

⎩

ε(ε + 1) − 2
∑k

i=1
∑li

j=1 j, if l1 ≤ (ε + 1)/2;
∑l1

j=1 |ε + 1 − 2 j | + (ε + 1)(ε − 1) − 2
∑k

i=2
∑li

j=1 j, if l1 ≥ (ε + 1)/2 + 1,

where the equality holds if and only if T ∼= T L
S .

Second, we obtain T max(ε, k) and their Mostar index, based on Theorem 1.1. Let
3 ≤ k ≤ ε. Suppose ε = αk+β, where 0 ≤ β ≤ k−1. Let LS(ε, k) = (α, . . ., α, α+
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(a) (b)

Fig. 1 a T L
S where L = (4, 3, 3, 2, 2, 1, 1); b TS(12, 5)

(a) (b) (c) (d)

Fig. 2 a TC (8, 6); b TC (9, 7); c TC (10, 8); d TC (11, 9)

1, . . ., α +1) be a segment sequence of size ε with k integers. Let TS(ε, k) = T LS(ε,k)
S

for short. Figure 1b shows the graph TS(12, 5).

Theorem 1.2 Let T ∈ T (ε, k) (3 ≤ k ≤ ε), where ε = αk + β, with α, β being
nonnegative integers, and 0 ≤ β ≤ k − 1. Then

Mo(T ) ≤ (ε + 1)2 − (β + ε + 1)(α + 1)

where the equality holds if and only if T ∼= TS(ε, k).

Third,weobtainT min(ε, k) and theirMostar index.A tree is called a caterpillar if its
2+-vertices induce a path. Let LC (ε, k) = (ε−k+1, 1, 1, . . ., 1)be a sequence of size ε

with k integers.A tree inT LC (ε,k) is called abalanced caterpillar (denoted by TC (ε, k))
if the followings hold: (1) TC (ε, k) is a caterpillar; (2) there is exactly one 4+-vertex
when k = 2t for some integer t , and there is no 4+-vertex otherwise; (3) the numbers
ε1 and ε2 of edges in the resulted two non-empty components after deleting the longest
segment satisfy that |ε1 − ε2| ≤ 2. Figure 2a–d shows TC (8, 6), TC (9, 7), TC (10, 8)
and TC (11, 9), respectively.

Theorem 1.3 Let T be a tree in T (ε, k), where 3 ≤ k ≤ ε. Then

Mo(T ) ≥

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

� ε2

2 � + 2, if k = 3;
12, if k = 4 and ε = 4;
� ε2

2 � + 6, if k = 4 and ε ≥ 5;
� (ε+1)2

2 	 − (ε + 1) + (k−1)2

4 , if k = 4t + 1 (t ≥ 1);
� (ε+1)2

2 	 − ε + (k−1)2

4 , if k = 4t + 3 (t ≥ 1);
� (ε+1)2

2 	 − ε + (k−1)2+5
4 , if k = 2t (t ≥ 3)

where the equality holds if and only if T ∼= TC (ε, k).

In Sect. 2, we introduce the moving operations and their properties. By using these
properties, Theorems 1.1, 1.2 are proved in Sect. 3, and Theorem 1.3 is shown in Sect.
4. The last section gives some conclusion remarks.
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(a) (b)

Fig. 3 a A tree central at v∗; b a tree edge central at e∗

2 Preliminaries andMoving Operations

Let T be a tree of size ε and order n = ε + 1. T is central at v∗ if there is a vertex v∗,
such that (T − v∗) consists of components of order less than n/2. Then v∗ is called
the center. T is edge central at e∗, if there is an edge e∗ = v∗

1v
∗
2 , such that (T − e∗)

consists of two components of order exactly n/2. Then e∗ is called the edge center.
Figure 3 shows examples of the (edge) central tree. One has that every tree is either
central or edge central, as stated early in [13].

Let u, w ∈ VT , e = uu1, f = ww1 ∈ ET , and F ⊆ ET . N (v) and E(v) are
the neighbor set and incident edge set of v, respectively. Let Pu,w be the path with
ends u, w. Suppose d(w, u) < d(w, u1) and d(u, w) < d(u, w1); then, we define
Px,y = Pw,u to be the path between x and y for (x, y) = (e, f ), (w, e), (u, f ), and
let d(x, y) = |EPx,y |. For short, let P(x) be the path from x to the (edge) center if x
is a vertex or an edge, and let d(x) = |EP(x)|.

Each element in VP(v) and EP(v) is called an ancestor and an ancestor edge of
v, respectively. If v is in P(u), then each element in VPv,u and EPv,u is called a
successor and a successor edge of v, respectively. Let S(v) and ES(v) be the successor
set and successor edge set of v, respectively. Let S(e) = S(u1) where we assume
d(u) < d(u1). Let S(F) = ∪e′∈F S(e′). Let σ(v) = |S(z)| for z = v, e and F ,
respectively.

Suppose T is central at v∗. Let vi ∈ N (v∗). The graph Tvi induced by S(vi ) is
called a vi -successor subtree, and the graph Tviv

∗ induced by (S(vi ) ∪ {v∗}) is called
a vi -extended successor subtree.

Suppose T is edge central at e∗ = v∗
1v

∗
2 . For i = 1, 2, the v∗

i -extended successor
subtree Tv∗

i
is the one induced by S(v∗

i ).

Definition 1 Suppose F = {ei |ei = uui , i = 1, 2, . . ., t} ⊆ (E(u) ∩ ES(u)) and
v ∈ (VT \ S(F)). The moving operation on (F, v) is the following transformation:
first delete F , and second add the edges {vui |i = 1, 2, . . ., t}. Let T (F−, v+) be the
newly obtained graph.

Definition 2 Suppose e1 = w1w2, e2 = w3w4 are two edges other than the edge
center, such that d(wi ) < d(wi+1) for i = 1, 3. The moving operation on (e1, e2)
is the following transformation: first delete e1, e2, and second add the edges w3w2
and w1w4 (let e1 = w2w1 and e2 = w1w4, too). Let T (e1, e2) be the newly obtained
graph.

Figure 4 shows examples for the graph transformations in Definitions 1 and 2.
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(a)

(b)

Fig. 4 a Moving operation on (F, v); b moving operation on (e1, e2)

Lemma 2.1 ([9]) Let T be a tree with a being the center v∗ or edge center e∗ = v∗
1v

∗
2 .

Choose u, v ∈ VT , F ⊆ [E(u) ∩ ES(u)] such that v /∈ S(F). Let T1 = T (F−, v+).

(1) If u, v are in the same extended branch and u is not the center when T is central,
then Mo(T1) = Mo(T ) + 2σ(F)(d(u, a) − d(v, a)).

(2) Suppose T is v∗-central and u, v are in distinct branches Tv1 and Tv2 , respectively.

• If σ(v2) ≤ �n/2	 − σ(F) − 1, then Mo(T1) = Mo(T ) + 2σ(F)(d(u, v∗) −
d(v, v∗)).

• If n is even and σ(v2) = n/2 − σ(F) and d(u, v∗) = d(v, v∗), then T1 is
v∗v2-edge central and Mo(T1) = Mo(T ).

• If n is odd and σ(v2) = (n + 1)/2 − σ(F), then Mo(T1) = Mo(T ) +
2σ(F)(d(u, v∗) − d(v, v∗) + 1).

• If σ(v2) ≥ �n/2	 − σ(F) and d(u, v∗) > d(v, v∗), then Mo(T1) > Mo(T ).

(3) Suppose T is v∗
1v

∗
2 -edge central, u ∈ VTv∗

1
, v ∈ VTv∗

2

• If d(u, v∗
1) ≥ d(v, v∗

2), then Mo(T1) > Mo(T ).
• If d(u, v∗

1) = d(v, v∗
2) − 1 and T1 is v∗

2 -central, then Mo(T1) = Mo(T ).

Lemma 2.2 (1) Suppose T is a tree of order n which is central at v∗. Let v1 and v2
be two vertices adjacent to v∗. Suppose u and v are in Tv∗v1 and Tv2 , respectively.
Let F be a subset of [(E(u) ∩ ES(u)) \ {v∗v2}].
• If |Tv2 | > �n/2	 − σ(F) and d(u) ≥ d(v), then Mo(T (F−, v+)) > Mo(T ).
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• If |Tv2 | = n/2 − σ(F) and d(u) ≤ d(v) − 1, then T (F−, v+) is edge central
at v∗v2 and Mo(T (F−, v+)) < Mo(T ).

(2) Suppose T is central at v∗, which admits at least three neighbors v1, v2, v3. Let
ei = v∗ for i = 1, 2, 3. Let e4 = w1w2 be an edge in Tv1 with d(w1) < d(w2).

• Suppose |Tv2 | ≥ |Tv1 | and F ⊆ (E(v∗) \ {e1, e2}). Then Mo(T (F−, w+
1 )) <

Mo(T ).
• Suppose |Tv1 | ≤ |Tv2 | and |Tv1 | ≤ |Tv3 |. Then Mo(T (e2, e4)) < Mo(T ) and

Mo(T (e3, e4)) < Mo(T ).

(3) Suppose u and v belong to two different extended successor subtrees of T , or u is
the center. Let F be a subset of [E(u) ∩ ES(u)] such that F contains no edge of
the extended successor subtree that contains v.

• If d(v) ≥ d(u) + σ(F), then Mo(T (F−, v+)) ≤ Mo(T ).
• If d(v) ≥ d(u) + σ(F) + 1, then Mo(T (F−, v+)) < Mo(T ).

Proof Let φ(e) be the contribution of e in T .

(1) Let φ1(e) be the contribution of e in T (F−, v+). Then φ1(e) = φ(e) for each
e ∈ (ET \ EPu,v ). If |Tv2 | > �n/2	 − σ(F) and d(u) ≥ d(v), then the (edge)
center of T (F−, v+) is in Pv2,v . One has φ1(e) = φ(e) + 2σ(F) for e ∈ EPv∗,u ;
φ1(e) = |φ(e)−2σ(F)| ≥ φ(e)−2σ(F) for e ∈ EPv2,v .What ismore,φ1(v

∗v2) =
|φ(v∗v2)−2σ(F)| = |n−2σ(v2)−2σ(F)| > n−2σ(v2)−2σ(F) = φ(v∗v2)−
2σ(F) since |Tv2 | > �n/2	 − σ(F). Thus, Mo(T (F−, v+)) > Mo(T ) since
d(u) ≥ d(v) > d(v2, v). If |Tv2 | = n/2 − σ(F) and d(u) ≤ d(v) − 1, then
T (F−, v+) is edge central at v∗v2. So 0 = φ1(v

∗v2) < φ(v∗v2) and φ1(e) =
φ(e) + 2σ(F) for e ∈ EPv∗,u . Note that φ1(e) = φ(e) − 2σ(F) for e ∈ EPv2,v .
Thus, Mo(T (F−, v+)) < Mo(T ) since d(u) ≤ d(v) − 1 = d(v2, v).

(2) One has that the (edge) center of T (F−, w+
1 ), T (e2, e4) and T (e3, e4) is in Pw1,v∗ .

Let φ1(e) be the contribution of e in T (F−, w+
1 ). Let φ2(e) be the contribution

of e in T (e2, e4). Then φi (e) = φ(e) (i = 1, 2) for e ∈ (ET \ EPw1,v∗ ). For the
first item, if |Tv1 | ≤ |Tv2 |, then σT (e2) ≥ σT (e1) > σT (e4) > 0. Then for each
e ∈ EPw1,v∗ , one has φ1(e) = φ(e) − 2σT (F) or φ1(e) ≤ n − 2σT (e2) − 2 ≤
n − 2σT (e1)− 2 ≤ φ(e)− 2. So Mo(T (F−, w+

1 )) < Mo(T ). Thus, the first item
holds. For the second item, it is sufficient to show the conclusion for T (e2, e4).
For each e ∈ EPw1,v∗ , one has σT (e2,e4)(e) = σT (e)+ (σT (e2)− σT (e4)) > σT (e)
or σT (e2,e4)(e) ≥ σT (e3) + σT (e4) > σT (e). That is φ2(e) = n − 2σT (e2,e4)(e) <

n − 2σT (e) = φ(e). So Mo(T (e2, e4)) < Mo(T ). Thus, the second item also
holds.

(3) Let T1 = T (F−, v+) and φ1(e) be the contribution of e in T1.

Case 1 If d(v) ≥ d(u) + σ(F).
Let P be the path between v and the (edge) center of T . Note that the (edge) center

a1 of T1 is in P . One has φ1(e) = φ(e) for e ∈ (ET \ EPu,v ); φ1(e) = φ(e) + 2σ(F)

for e in Pu,a . Similarly, φ1(e) = φ(e) − 2σ(F) for e in Pa1,v .
Suppose T is central at v∗, u ∈ VTv∗v1

and v ∈ VTv2
where v1, v2 ∈ N (v∗). If T1 is

central at w∗, let w∗w1 be the edge in Pv∗,w∗ . Let σt = |ST (v2)\ (ST (w∗)∪VPv2,w1
)|.
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Then σt + |Pv2,w1 | < σ(F), since σT1(w1) ≤ (n − 1)/2 (because T1 is central at w∗)
and (|T | − σT (v2)) ≥ (n + 1)/2 (because T is central at v∗). Note that

φ1(w
∗w1) = n − 2σT1(w1)

= n − 2[n − σT (v2) − σT (F) + (σt + |Pv2,w1 |)]
= 2[σT (v2) + σT (F) − (σt + |Pv2,w1 |)] − n
= 2[σT (F) − (σt + |Pv2,w1 |)] − (n − 2σT (v2))

= 2[σT (F) − (σt + |Pv2,w1 |)] − φ(v∗v2).

Then, for e ∈ EPv∗,w∗ , one has

φ1(e) ≤ φ(w∗w1) + 2(σt + d(e, w∗))
= 2[σT (F) − (σt + |Pv2,w1 |)] − φ(v∗v2) + 2(σt + d(e, w∗))
= 2(σT (F) − |Pv2,w1 |) − φ(v∗v2) + 2d(e, w∗),

whereas for ē ∈ EPv∗,w∗ , one has

φ(ē) ≥ φ(v∗v2) + 2d(ē, v∗).

So for e, ē ∈ EPv∗,w∗ satisfying d(v∗, e) = d(w∗, ē), one has

φ1(e) − φ(ē) ≤ 2(σT (F) − |Pv2,w1 |) − 2φ(v∗v2)
≤ 2(σT (F) − |Pv2,w1 | − 1)
= 2(σT (F) − d(v∗, w∗)).

This gives

Mo(T1) ≤ Mo(T ) + 2d(u, v∗)σ (F)

+2d(v∗, w∗)(σ (F) − d(v∗, w∗)) − 2d(w∗, v)σ (F)

= Mo(T ) + 2d(u, v∗)σ (F) + 2d(v∗, w∗)(σ (F) − d(v∗, w∗))
−2(d(v∗, v) − d(v∗, w∗))σ (F)

≤ Mo(T ) + 2d(u, v∗)σ (F) + 2d(v∗, w∗)(σ (F) − d(v∗, w∗))
−2(d(v∗, u) + 2σ(F) − d(v∗, w∗))σ (F)

= Mo(T ) − 2(σ (F))2 + 2d(v∗, w∗)(2σ(F) − d(v∗, w∗))
= Mo(T ) − 2(σ (F) − d(v∗, w∗))2.

So Mo(T1) ≤ Mo(T ).
If T1 is edge central at w∗

1w
∗
2 where d(w∗

1, v
∗) < d(w∗

2, v
∗), let σt = |ST (v2) \

(ST (w∗
2)∪VPv2,w∗

1
)|. Then σt +|Pv2,w

∗
1
| < σ(F), since σT1(w

∗
1) = n/2 (because T1 is

edge central atw∗
1w

∗
2) and (|T |−σ(v2)) ≥ (n+2)/2. That is d(v∗, w∗

2) ≤ σ(F)−σt .
Note that φ1(e) ≤ φ(ē) + 2σt for e, ē ∈ EPv∗,w∗

2
satisfying d(v∗, e) = d(w∗, ē). So

Mo(T1) ≤ Mo(T1) + 2d(u, v∗)σ (F) + 2d(v∗, w∗
2)σt − 2d(w∗

2, v)σ (F)

≤ Mo(T1) + 2d(u, v∗)σ (F) + 2(σ (F) − σt )σt

−2(d(v∗, v) − d(v∗, w∗
2))σ (F)
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≤ Mo(T1) + 2d(u, v∗)σ (F) + 2(σ (F) − σt )σt

−2(d(u, v∗) + σ(F) − (σ (F) − σt ))σ (F)

= Mo(T1) − 2σ 2
t .

So one also has Mo(T1) ≤ Mo(T ).
Suppose T is edge central at v∗

1v
∗
2 , and u, v are in Tv∗

1
and Tv∗

2
, respectively. If T1 is

central atw∗, letw∗w1 be the edge in Pv∗,w∗ . Put σt := |ST (v∗
2)\(ST (w∗)∪VPv∗

2 ,w1
)|.

Then σt + |Pv∗
2 ,w1 | < σ(F), since (|T | − σT (v2)) ≥ n/2 (because T is edge central

at v∗
1v

∗
2) and σT1(w1) ≤ (n − 2)/2 (because T1 is central at w∗). Note that

φ1(w
∗w1) = n − 2σT1(w1)

= n − 2[ n2 − σT (F) + (σt + |Pv∗
2 ,w1 |)]

= 2[σT (F) − (σt + |Pv∗
2 ,w1 |)]

= 2[σT (F) − (σt + d(v∗
1 , w

∗) − 1)].

If e ∈ EPv∗
1 ,w∗ , then

φ1(e) ≤ φ(w∗w1) + 2(σt + d(e, w∗))
= 2[σT (F) − (σt + d(v∗

1 , w
∗) − 1)] + 2(σt + d(e, w∗))

= 2[σT (F) − (d(v∗
1 , w

∗) − 1)] + 2d(e, w∗).

If ē ∈ EPv∗
1 ,w∗ , then

φ(ē) ≥ 2d(ē, v∗
1).

If e, ē ∈ EPv∗
1 ,w∗ satisfy d(v∗, e) = d(w∗, ē), then

φ1(e) − φ(ē) ≤ 2[σT (F) − (d(v∗
1 , w

∗) − 1)].

This gives us

Mo(T1) ≤ Mo(T ) + 2d(u, v∗
1)σ (F) + 2d(v∗

1 , w
∗)[σT (F) − (d(v∗

1 , w
∗) − 1)]

−2d(w∗, v)σ (F) = Mo(T ) + 2d(u, v∗
1)σ (F) + 2d(v∗

1 , w
∗)(σT (F)

−d(v∗
1 , w

∗))
+2d(v∗

1 , w
∗) − 2(d(v∗

2 , v) − d(v∗
2 , w

∗))σ (F)

≤ Mo(T ) + 2d(u, v∗
1)σ (F) + 2d(v∗

1 , w
∗)(σT (F)

−d(v∗
1 , w

∗)) + 2d(v∗
1 , w

∗)
−2(d(v∗

1 , u) + σ(F) − d(v∗
1 , w

∗) + 1)σ (F)

= Mo(T ) − 2(σ (F))2 + 2d(v∗
1 , w

∗)(2σ(F) − d(v∗
1 , w

∗))
+2d(v∗

1 , w
∗) − 2σ(F)

= Mo(T ) − 2(σ (F) − d(v∗
1 , w

∗))(σ (F) − d(v∗
1 , w

∗) + 1).

That is Mo(T1) ≤ Mo(T ).
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If T1 is edge central at w∗
1w

∗
2 where d(v∗

1 , w
∗
1) < d(v∗

1 , w
∗
2), let σt = |ST (v∗

2) \
(ST (w∗

2) ∪ VPv∗
2 ,w∗

1
)|. Then σt + |Pv∗

2 ,w∗
1
| = σ(F), since σT1(w

∗
1) = n/2 = σT (v∗

1).

That is d(v∗
2 , w

∗
1) = σ(F) − σt − 1. If e, ē ∈ EPv∗

2 ,w∗
1
satisfy d(v∗

2 , e) = d(w∗
1, ē),

then φ1(e) ≤ φ(ē) + 2σt . So

Mo(T1) ≤ Mo(T1) + 2d(u, v∗
1)σ (F) + 2d(v∗

2 , w
∗
1)σt − 2d(w∗

2, v)σ (F)

= Mo(T1) + 2d(u, v∗
1)σ (F) + 2(σ (F) − σt − 1)σt

−2(d(v∗
2 , v) − d(v∗

2 , w
∗
2))σ (F)

≤ Mo(T1) + 2d(u, v∗)σ (F) + 2(σ (F) − σt − 1)σt
−2[d(u, v∗

1) + σ(F) − (σ (F) − σt )]σ(F)

= Mo(T1) − 2(σt + 1)σt

That is Mo(T1) ≤ Mo(T ).
This completes the proof of Case 1.

Case 2 d(v) ≥ d(u) + σ(F) + 1. By the proof in Case 1, one always has Mo(T1) ≤
Mo(T ) − 2σ(F). That is Mo(T1) < Mo(T ).

This completes our proof. ��

3 Greatest Mostar Index in T L and T (", k)

In this section, we prove Theorems 1.1 and 1.2, which determine T L max, T max(ε, k)
and their Mostar indices.

Proof of Theorem 1.1 Let T ∈ T L max where L has size ε and let n = ε + 1. Suppose
T is not a starlike tree. Then each branch vertex is in some non-pendent segment.
Case 1 T is central at v∗.

If v∗ is a branch vertex (this happens only when l1 < n/2), let Pv∗,w1 be the non-
pendent segmentwith ends v∗ andw1. Let F = (E(w1)\EPv∗,w1

). Then T (F−, (v∗)+)

is also in T L . Then Mo(T (F−, (v∗)+)) > Mo(T ) by Lemma 2.1 (i), contradicted to
T ∈ T L max.

If v∗ is a 2-vertex in some non-pendent segment Pw1,w2 . Then n is odd since T is
central, and the branch containing wi has (n − 1)/2 vertices for i = 1, 2. Without
loss of generality, suppose d(v∗, w1) ≤ d(v∗, w2). If both w1 and w2 are branch
vertices, let F = (E(w2) \ EPv∗,w2

) and Pw1,w be a segment incident to w1 where

w �= w2. Then T (F−, w+) is in T L and Mo(T (F−, w+)) > Mo(T ) by Lemma 2.1
(ii), contradicted to T ∈ T L max. So Pw1,w2 is pendent (which implies l1 > n/2
and P is the unique segment of length l1). Suppose w1 is a branch vertex without
loss of generality. By assumption, there exists a non-pendent segment Pw1,w3 . Let
F = (E(w3) \ EPw1,w3

). Then T (F−, w+
1 ) ∈ T L and Mo(T (F−, w+

1 )) > Mo(T )

by Lemma 2.1 (i), contradicted to T ∈ T L max. Thus, T is a starlike tree in this case.
Case 2 T is central at e∗ (then n is even) where e∗ is in some segment Pw1,w2 .

If both w1 and w2 are branch vertices, then l1 < n/2. Suppose d(w1, e∗) ≤
d(w2, e∗) without loss of generality. Let F = (E(w2) \ EPv∗,w2

). Then T (F−, w+
1 ) ∈

T L and Mo(T (F−, w+
1 )) > Mo(T ) by Lemma 2.1 (iii), contradicted to T ∈ T L max.
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So P is a pendent segment (which implies l1 ≥ n/2 and Pw1,w2 is the unique segment
of length l1). Suppose w1 is a branch vertex without loss of generality. By assump-
tion, there exists an non-pendent segment Pw1,w3 . Let F = (E(w3) \ EPw1,w3

). Then

T (F−, w+
1 ) ∈ T L and Mo(T (F−, w+

1 )) > Mo(T ) by Lemma 2.1 (i), contradicted
to T ∈ T L max. Thus, T is also a starlike tree of L in this case.

So one always has that T is a starlike tree of L .
On the other hand, one has Mo(T ) = ∑k

i=1
∑li

j=1 |n − 2 j |. So if l1 ≤ n/2, then

Mo(T ) = n(n − 1) − 2
k∑

i=1

li∑

j=1

j .

If l1 ≥ n/2 + 1, then

Mo(T ) =
l1∑

j=1

|n − 2 j | + n(n − 2) − 2
k∑

i=2

li∑

j=1

j .

Since n = ε + 1, one has

Mo(T ) =
⎧
⎨

⎩

ε(ε + 1) − 2
∑k

i=1
∑li

j=1 j, if l1 ≤ (ε + 1)/2;
∑l1

j=1 |ε + 1 − 2 j | + (ε + 1)(ε − 1) − 2
∑k

i=2
∑li

j=1 j, if l1 ≥ (ε + 1)/2 + 1.

This completes our proof. ��
Proof of Theorem 1.2 Suppose T ∈ T max(ε, k) (3 ≤ k ≤ ε) and n = ε + 1, where
ε = αk + β, with α, β being nonnegative integers, and 0 ≤ β ≤ k − 1. Let L =
(l1, l2, . . ., lk) be the segment sequence of T , where li ≥ l j whenever i < j . By
Theorem 1.1, one has T ∼= T L

S .
Let v be the unique branch vertex and let Pv,w1 , Pv,wk , respectively, be the segments

of lengths l1 and lk in T L
S . Assume e1 ∈ E(w1) and let T1 = T (e−

1 , w+
k ) which is also

in T (ε, k). If T is edge central at some edge e∗ in Pv,w1 , then d(e∗, e1) = (n−4)/2 ≥
d(wk, e∗) since k ≥ 3. Then Mo(T1) > Mo(T ) by Lemma 2.1 (iii), contradicted to
T ∈ T max(ε, k).

If T is central at some vertex v∗ in (VPv,w1
\ {v}), then d(v∗, e1) = (n − 5)/2 ≥

d(v∗, wk) since k ≥ 3 and each branch has exactly (n−1)/2 vertices. ThenMo(T1) >

Mo(T ) by Lemma 2.1 (ii), contracted to T ∈ T max(ε, k). So T is central at v.
If lk ≤ l1 − 2, then Mo(T1) > Mo(T ) by Lemma 2.1 (ii), contradicted to T ∈

T max(ε, k). Thus, T ∼= TS(ε, k).
On the other hand, by a direct calculation one has

Mo(TS(ε, k)) = (k − β)

α∑

i=1

(n − 2i) + β

α+1∑

i=1

(n − 2i)

= n2 − (n + β)(α + 1)
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(a) (b)

Fig. 5 a The balanced caterpillar-like tree T L
(2,2,4,1,3,1,3) where L = (4, 3, 3, 2, 2, 1, 1); b the balanced

caterpillar-like tree T L
(2,2,3,1,4,1,2,3) where L = (4, 3, 3, 2, 2, 2, 1, 1)

= (ε + 1)2 − (ε + β + 1)(α + 1).

This completes our proof. ��

4 Trees with Least Mostar Indices in T (", k)

In this section, T min(ε, k) and their Mostar index are completely determined. First,
some properties of trees in T L min are given.

Let L = (l1, l2, . . ., lk) (k ≥ 5) be a segment sequence. A tree is balanced
caterpillar-like if replacing each segment with an edge will result a balanced caterpil-
lar. Figure 5 shows examples for balanced caterpillar-like trees.

For convenience, a path or a starlike tree with 3 or 4 segments is also called
a balanced caterpillar-like tree. Let T L

C ⊆ T L be the caterpillar-like tree set. Let
T L

(li1 ,li2 ,...,lik ) ∈ T L
C with spine path P = u1u2. . .us where ut j ( j ∈ [1, �k/2� − 1] and

1 = t1 < t2 < · · · < t�k/2� = s) is a 3-vertex, us is a 3-vertex if k is odd or a 4-vertex
if k is even, such that the two pendent segments attached at ut1 have the lengths li1
and li2 , respectively, the segment connecting ut j−1 ( j ∈ [2, �k/2�]) and ut j has the
length li2 j−1 , the pendent segment attached at ut j ( j ∈ [2, �k/2� − 1]) has the length
li2 j , and the pendent segments attached at us have the length lik−r (r = 0, 1 if k is odd
or r = 0, 1, 2 if k is even). See Fig. 5a, b.

Lemma 4.1 Let T ∈ T L min with L = (l1, l2, . . ., lk), k ≥ 3 and li ≥ l j whenever
i < j .

(1) • If T is central at v∗, let Tv1v∗ be an arbitrary extended successor subtree.
Then, Tv1v∗ is isomorphic to a balanced caterpillar-like tree with v∗ being a
leaf. What is more, if there are at least five segments in Tv1v∗ , then v∗ is in
some pendent segment incident to some spine end of Tv1v∗ of degree 3;

• If T is edge central at v∗
1v

∗
2 , let T

′
1 = T [VTv∗

1
∪{v∗

2}] and T ′
2 = T [VTv∗

2
∪{v∗

1}].
Then T ′

i (i = 1, 2) is isomorphic to a balanced caterpillar-like tree with v∗
1v

∗
2

being a pendent edge. What is more, if there are at least five segments in T ′
i ,

then v∗
1v

∗
2 is in some pendent segment incident to some spine end of T ′

i of
degree 3.

(2) Let Pw1,1,w1,2 and Pw2,1,w2,2 be two segments of T in a common extended successor
subtree where d(wi,1) < d(wi,2) and lxi = |EPwi,1,wi,2

| (i = 1, 2).
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• If w1,2 = w2,1, then lx1 ≥ lx2 .
• If Pw1,1,w1,2 and Pw2,1,w2,2 are both pendent segments with d(w1,1) < d(w2,1),

then lx1 ≤ lx2 .
• If T is edge central, or is central at a 2-vertex, then the segment containing
the (edge) center has the length l1.

• If k ≥ 5 and T is central at a branch vertex v∗, then d(v∗) ≤ 4 with equality
only if k = 6 and all segments in T have the same length. What is more, if
d(v∗) = 3, then v∗ admits exactly one pendent segment length of lk and two
non-pendent segments.

(3) At most one extended successor subtree of T has a vertex of degree 4.

Proof (1) When T is edge central, it is sufficient to show the conclusion holds for T ′
1.

Let T̂ = Tv1v∗ or T ′
1, and let a = v∗ or v∗

1v
∗
2 . The conclusion holds easily if T̂ contains

at most four segments. So we consider that T̂ contains at least five segments in what
follows.

Let v be a branch vertex in T̂ (then v �= v∗ or v∗
2). If v is incident to at least two

non-pendent segments (Pv,w1 and Pv,w2 ) in T wherew1, w2 ∈ S(v), then without loss
of generality, assume that d(w1) ≤ d(w2). Let F = (E(w1)− EPv,w1

) andw be a leaf

in S(w2). Then T (F−, w+) ∈ T L and Mo(T (F−, w+)) < Mo(T ) by Lemma 2.1
(i), contradicted to T ∈ T L min.

Next we consider that v is incident to exactly one non-pendent segment Pv,w1

in T such that w1 ∈ S(v). If d(v) ≥ 4, let e ∈ (E(v) − EPv,w1
− EPv∗,v

). Then

T (e−, w+
1 ) ∈ T L , and Mo(T (e−, w+

1 )) < Mo(T ) by Lemma 2.1 (i), contradicted to
T ∈ T L min. So d(v) = 3.

Nowwe consider that there does not exist branch vertex in (S(v)\{v}). Let Pv,w1 be
a pendent segment such that w1 ∈ S(v). If d(v) ≥ 5, let F = {e1, e2} where e1, e2 ∈
(E(v) − EP(v) − EPv,w1

). Then T (F−, w+
1 ) ∈ T L , and Mo(T (F−, w+

1 )) < Mo(T )

by Lemma 2.1 (i), a contradiction. So d(v) ≤ 4.
Thus, (1) holds.
(2) Suppose w1,2 = w2,1. Then Pw1,1,w1,2 is a non-pendent segment. If lx1 <

lx2 , then choose w ∈ VPw2,1,w2,2
such that d(w1,1, w) = lx2 . Put F := (E(w1,2) −

EPw1,1,w2,2
). Then T (F−, w+) ∈ T L , and Mo(T (F−, w+)) < Mo(T ) by Lemma 2.1

(i), contradicted to T ∈ T L min. So lx1 ≥ lx2 and the first item holds.
Suppose both Pw1,1,w1,2 and Pw2,1,w2,2 are pendent segments with d(w1,1) <

d(w2,1). If lx1 > lx2 , then choose e ∈ EPw1,1,w1,2
such that d(w1,1, e) = lx2 . Then

T (e−, w+
2,2) ∈ T L , and Mo(T (e−, w+

2,2)) < Mo(T ) by Lemma 2.1 (i), contradicted

to T ∈ T L min. So lx1 ≤ lx2 and the second item holds.
Suppose T is edge central or central at a 2-vertex. Let Pw1,w2 be the segment

containing the (edge) center which has length lx1 . If l1 ≥ n/2, then it is easy to
see |EPw1,w2

| = l1. Suppose l1 < n/2. Then Pw1,w2 is a non-pendent segment. Let
Pwi ,wi+2 (i = 1, 2) be the segment other than Pw1,w2 , which has the greatest length
among all segments incident to wi . Let lzi = |EPwi ,wi+2

| (i = 1, 2). If lx1 < lz1 , then
choose a vertexw in Pw1,w3 such that d(w,w2) = lz1 and let F = (E(w1)−EPw1,w3

−
EPw1,w2

). Then T (e−, w+) ∈ T L , and Mo(T (e−, w+)) < Mo(T ) by Lemma 2.1 (i),
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contradicted to T ∈ T L min. So lx1 ≥ lz1 . Similarly, one has lx1 ≥ lz2 . So lx1 = l1 and
the third item holds.

For the fourth item, suppose k ≥ 5 and T is central at a branch vertex v∗.
If d(v∗) ≥ 5, then choose v1, v2, v3, v4, v5 ∈ N (v∗) such that |Tv1 | ≤ |Tv2 | ≤

|Tv3 | ≤ |Tv4 | ≤ |Tv5 |. Thus, |Tv1 | + |Tv3 | < n/2. Let Pv∗,wi (i = 1, 2, 3, 4, 5) be
the segment in Tv∗vi incident to v∗. Let T1 = T (v∗v−

1 , w+
3 ) and T2 = T1(v∗v−

2 , w+
3 ).

Then T1 is also central at v∗, T2 ∈ T L and Mo(T1) < Mo(T ) by Lemma 2.1 (ii).
If w3 is a branch vertex, then T1 ∈ T L , contradicted to T ∈ T L min. If w3 is a leaf,
then d(v∗, w3) = |Tv3 | ≥ d(v∗, w2), which implies Mo(T2) ≤ Mo(T1) < Mo(T )

by Lemma 2.2 (iii), also contradicted to T ∈ T L min. So d(v∗) ≤ 4.
Case 1 d(v∗) = 4. Then, let N (v∗) = {v1, v2, v3, v4} and Pv∗,wi (i = 1, 2, 3, 4)
be the segment of length lxi in Tv∗vi incident to v∗. Suppose σ(v1) ≤ σ(v2) ≤
σ(v3) ≤ σ(v4). Then σ(v1) + σ(v2) ≤ σ(v3) + σ(v4) and σ(v1) + σ(v3) ≤ σ(v2) +
σ(v4). If w3 is a branch vertex, then T (v∗v−

1 , w+
3 ) ∈ T L is also central at v∗, and

Mo(T (v∗v−
1 , w+

3 )) < Mo(T ) by Lemma 2.1 (ii), contradicted to T ∈ T L min. So w3
is a leaf. By a similar discussion, one concludes that wi (i = 1, 2) is also a leaf. So
w4 is a branch vertex since k ≥ 5.

If lx4 < lx3 , suppose w is a vertex in Pv∗,w3 such that d(w4, w) = lx3 . Let F =
{v∗v1, v∗v2}. Then T (F−, w+) ∈ T L andMo(T (F−, w+)) < Mo(T ) byLemma2.2
(ii), contradicted to T ∈ T L min. So lx4 ≥ lx3 .

Let Pw4,w4,1 and Pw4,w4,2 be two segments of length l4,1 and l4,2, respectively, which
is incident to w4, where w4,i �= v∗ (i = 1, 2). Without loss of generality, suppose
Pw4,w4,1 is pendent and l4,1 ≤ l4,2, by the first and the second item of Lemma 4.1 (2). If
l4,1 < lx3 , let e be the edge in Pv∗,w3 such that d(v∗, e) = l4,1. Then T (e−, w+

4,1) ∈ T L

andMo(T (e−, w+
4,1)) < Mo(T )byLemma2.2 (iii), contradicted toT ∈ T L min. Then

l4,1 ≥ lx3 , and l4,1 + l4,2 + lx4 ≥ lx1 + lx2 + lx3 , which implies k = 6 and all the
segments in T have the same length, since T is central at v∗.
Case 2 d(v∗) = 3. Then let N (v∗) = {v1, v2, v3} and Pv∗,wi (i = 1, 2, 3) be the
segment of length lxi in Tv∗vi incident to v∗. Suppose σ(v1) ≤ σ(v2) ≤ σ(v3).
If w1 is a branch vertex, let e ∈ (E(w1) \ EPv∗,w1

). Then T (v∗v2, e) ∈ T L and

Mo(T (v∗v2, e)) < Mo(T ) by Lemma 2.2 (ii), contradicted to T ∈ T L min. So w1 is
a leaf.

If w2 is also a leaf, then w3 is a branch vertex since k ≥ 5. If lx3 < lx2 , choose
a vertex w in Pv∗,w2 such that d(w3, w) = lx2 . Then T (v∗v−

1 , w+) ∈ T L and
Mo(T (v∗v−

1 , w+)) < Mo(T ) by Lemma 2.2 (ii), contradicted to T ∈ T L min. So
lx3 ≥ lx2 .

Let Pw3,w3,1 and Pw3,w3,2 be two segments of length l3,1 and l3,2, respectively, which
is incident to w3, where w3,i �= v∗ (i = 1, 2). Without loss of generality, suppose
Pw3,w3,1 is pendent and l3,1 ≤ l3,2, by the first and the second item of Lemma 4.1 (2). If
l3,1 < lx2 , let e be the edge in Pv∗,w2 such that d(v∗, e) = l3,1. Then T (e−, w+

3,1) ∈ T L

and Mo(T (e−, w+
3,1)) < Mo(T ) by Lemma 2.2 (iii), contradicted to T ∈ T L min. So

l3,1 ≥ lx2 . Then l3,1 + l3,2 + lx3 > lx1 + lx2 , contracted to the fact that T is central at
v∗. So w2 is a branch vertex.

If lx2 < lx1 , choose w be the vertex in Pv∗,w1 with d(w2, w) = lx1 . Then
T (v∗v−

3 , w+) ∈ T L and Mo(T (v∗v−
3 , w+)) < Mo(T ) by Lemma 2.2 (ii), con-
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tradicted to T ∈ T L min. Then, lx2 ≥ lx1 . Let Pw2,w2,1 and Pw2,w2,2 be two segments of
length l2,1 and l2,2, respectively, which is incident to w2, where w2,i �= v∗ (i = 1, 2).
Without loss of generality, suppose Pw2,w2,1 is pendent and l2,1 ≤ l2,2, by the first
and the second item of Lemma 4.1 (2). If l2,1 < lx1 , let e be the edge in Pv∗,w1 such
that d(v∗, e) = l2,1. Then T (e−, w+

2,1) ∈ T L and Mo(T (e−, w+
2,1)) < Mo(T ) by

Lemma 2.2 (iii), contradicted to T ∈ T L min. So l2,1 ≥ lx1 . So lx1 = lk .
Thus, we have (2) holds.
(3) By (1) and (2), if k ≤ 6 the conclusion holds directly. Suppose k ≥ 7. Let T̃1

and T̃2 be arbitrary two extended successor subtrees of T , and a be the (edge) center
of T . By (1), there is at most one 4-vertex in T̃i (i = 1, 2) which would be the end of
the spine in T̃i which is at a longer distance from a. If there are two 4-vertices w1 and
w2 in T̃1 and T̃2, respectively, then the (edge) center is in some non-pendent segment
by (2).

For i = 1, 2; j = 1, 2, 3, let Pwi ,wi, j be the pendent segment incident to wi whose
length is li, j . Without loss of generality, suppose li, j1 ≤ li, j2 (i = 1, 2) whenever
j1 < j2, and d(w1,1, a) ≤ d(w2,3, a). Let ei, j (i = 1, 2; j = 1, 2, 3) be the edge
in Pwi ,wi, j which is incident to wi . Let T1 = T (e−

2,2, w
+
2,3) and T2 = T1(e

−
1,1, w

+
2,3).

Then T2 ∈ T L and a is also the (edge) center of T1. Note that Mo(T2) ≤ Mo(T1)
by Lemma 2.2 (iii), and Mo(T1) < Mo(T ) by Lemma 2.1 (i) or Lemma 2.2 (ii),
contradicted to T ∈ T L min. So there is at most one extended successor subtree of T
having a vertex of degree 4. Thus, (3) also holds. ��
Corollary 4.2 Let T be a tree in T L min with L = (l1, l2, . . ., lk) and k ≥ 5. Then T
is caterpillar-like tree, where there is a non-pendent segment of length l1 in the spine
which contains the center or edge center. What is more, let P = u1u2. . .us be the
spine of T , and ut j ( j ∈ [1, �(k − 1)/2�]) be a branch vertex). Then

(1) Suppose T is central at a branch vertex utλ (λ ∈ [1, k]). Then d(utλ) = 4 if and
only if k = 6 and all segments in T have the same length. If d(utλ) = 3, then
k ≥ 7, T admits exactly two non-pendent segments, li2λ ≤ li2λ−2 ≤ li2λ−4 ≤ · · · ≤
li2 ≤ li1 ≤ li3 ≤ · · · ≤ li2λ−1 , and li2λ ≤ li2λ+2 ≤ li2λ+4 ≤ · · · ≤ lik−1 ≤ lik ≤
lik−2 ≤ · · · ≤ li2λ+3 ≤ li2λ+1 if k is odd or li2λ ≤ li2λ+2 ≤ li2λ+4 ≤ · · · ≤ lik−2 ≤
lik−1 ≤ lik ≤ lik−3 ≤ · · · ≤ li2λ+3 ≤ li2λ+1 if k is even.

(2) Suppose T is central at a 2-vertex uλ, or T is edge central at uλuλ+1. Let y =
max{ j |t j ≤ λ}. Then li2y ≤ li2y−2 ≤ · · · ≤ li2 ≤ li1 ≤ li3 ≤ · · · ≤ li2y−1 ≤ li2y+1 ,
and li2y+2 ≤ li2y+4 ≤ · · · ≤ lik−1 ≤ lik ≤ lik−2 ≤ · · · ≤ li2y+3 ≤ li2y+1 if k is odd
or li2y+2 ≤ li2y+4 ≤ · · · ≤ lik−2 ≤ lik−1 ≤ lik ≤ lik−3 ≤ · · · ≤ li2y+3 ≤ li2y+1 if k is
even.

Proof If k = 3 or 4, then T is a caterpillar-like tree by definition. If k ≥ 5 and T is
edge central or central with the center being a 2-vertex, then T is a caterpillar-like tree
by Lemma 4.1 (1) and (3); if k ≥ 5 and T is central with the center being a branch
vertex, then T is a caterpillar-like tree by Lemma 4.1 (1), (2) and (3).

For the rest conclusions in Corollary 4.2, if T is edge central or central at a 2-vertex,
then they hold directly by the first, second and third items of Lemma 4.1 (2). If T is
central at a branch vertex, then they hold directly by the first, second and fourth items
of Lemma 4.1 (2). ��
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Proof of Theorem 1.3 Let T ∈ T min(ε, k) (3 ≤ k ≤ ε) and n = ε + 1. Let L =
(l1, l2, . . ., lk) be the segment sequence of T , where li ≥ l j whenever i < j . Let a be
the (edge) center of T .

If (ε, k) = (3, 3), (4, 3), (4, 4) or (5, 4), then T (ε, k) has a unique tree. Suppose
k = 3 and ε ≥ 5, or k = 4 and ε ≥ 6. Then l1 ≥ 2. Let Pv,wi (i = 1, 2, 3, 4) be
a segment of length li , wiw

′
i be the pendent edge incident to wi and ei ∈ (EPv,wi

∩
E(v)). Then Pv,w1 contains the (edge) center. Let F = (E(v) \ {e1, e2}). If l2 ≥ 2,
then T (F−, w′+

2 ) ∈ T (ε, k) and Mo(T (F−, w′+
2 )) < Mo(T ) by Lemma 2.1 (i) or

Lemma 2.2 (ii), contradicted to T ∈ T min(ε, k). So l2 = 1 and T ∼= TC (ε, k).
Suppose k ≥ 5. Then T is a balanced caterpillar-like tree satisfying Corollary 4.2.
If n = k + 1, then T is the unique tree TC (ε, k) in T L

C where L = (1, 1, . . ., 1) of
length k.

If n = k + 2, then (k − 1) segments have a length one, and the rest segment
w1w2w3 of length 2 contains the (edge) center of T by Corollary 4.2. Without loss of
generality, suppose ζ(w1) ≤ ζ(w3), where ζ(wi ) (i = 1, 3) is the vertex number of
the component in (T − {w1w2, w2w3}) that contains wi . Then T is central at w2 if
and only if ζ(w1) = ζ(w3) and k = 4t + 1 (t ≥ 1); T is edge central at w2w3 if and
only if ζ(w1) = ζ(w3) − 1 and k is an even integer at least 6; T is central at w3 if and
only if ζ(w1) = ζ(w3) − 2 and k = 4t + 3 (t ≥ 1). That is T ∼= TC (ε, k).

If n ≥ k + 3, then first we have the following claims.

Claim 1 Suppose n ≥ k + 3 with k ≥ 5. Let Tb be an extended successor subtree of
T . If Tb contains at least one branch vertex other than the center, then each segment
of T in Tb other than the one which contains the (edge) center has the length one.

Proof Let w1 be one branch vertex other than the center, such that d(w1) is minimal.
Let Pw1,w2 be the longest segment incident to w1 in Tb such that VPw1,w2

⊆ S(w1)

and w2w
′
2 ∈ EPw1,w2

. Then Pw1,w2 is the longest segment in Tb other than the one
containing the (edge) center, by Corollary 4.2. Let Pw1,w3 be the other segment such
that VPw1,w3

⊆ σ(w1) and w1w
′
3 ∈ EPw1,w3

. If |EPw1,w2
| ≥ 2, then T (w1w

′−
3 , w′+

2 ) ∈
T (ε, k) and Mo(T (w1w

′−
3 , w′+

2 )) < Mo(T ) by Lemma 2.1 (i), contradicted to T ∈
T min(ε, k). This implies |EPw1,w2

| = 1 and so all segments in Tb other than the one
containing the (edge) center are of length one. ��

Claim 2 Suppose T is central at v∗, k ≥ 5 and n ≥ k + 3. Then d(v∗) = 2.

Proof By the proof of Corollary 4.2, if v∗ is incident to exactly one non-pendent
segment, then k = 6, d(v∗) = 4 and each segment has a common length l where l ≥ 2
since n ≥ k + 3. However, let P and P ′ be two pendent segments incident to v∗, and
let e be a pendent edge in P and w be a leaf in P ′. Then T (e−, w+) ∈ T (ε, k) and
Mo(T (e−, w+)) < Mo(T ) by Lemma 2.1 (ii), contradicted to T ∈ T min(ε, k). So v∗
is incident to two non-pendent segments (supposed to be Pv∗,w1 and Pv∗,w2 of length
l1 and l2, respectively, by Corollary 4.2). Then k ≥ 7.

Let Pv∗,w3 = v∗w3 be the pendent segment of length one, by Claim 1 and Corol-
lary 4.2. Let w1w ∈ EPv∗,w1

. Then T (v∗w−
3 , w+) ∈ T (ε, k). Let Tvi (i = 1, 2)

be the branch containing wi . Note that one has either l1 ≥ 3 holds, or l1, l2 ≥ 2
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holds. If l1 ≥ 3, then Mo(T (v∗w−
3 , w+)) < Mo(T ) by Lemma 2.2 (iii), contra-

dicted to T ∈ T min(ε, k). If l1 ≥ 2 and l2 ≥ 2, without loss of generality, suppose
σ(v1) ≤ σ(v2). Then again, Mo(T (v∗w−

3 , w+)) < Mo(T ) by Lemma 2.2 (iii), also
contradicted to T ∈ T min(ε, k). ��
By Claim 2 and Corollary 4.2, T is either edge central at some edge in a non-pendent
segment of length l1, or central at some 2-vertex in a non-pendent segment of length
l1. So by Claim 1, each segment other than the non-pendent segment containing the
center or edge center has a length one. That is, L = (l1, 1, 1, . . ., 1).

Let P = w1w2. . .wn−k+1 be the non-pendent segment containing the (edge) center.
Let ζ(wi ) (i = 1, n − k + 1) be the number of vertices in the connected component
in (T − EP ) containing wi . Without loss of generality, suppose ζ(w1) ≤ ζ(wn−k+1).
Note that there is at least one branch vertex in each of S(v1) and S(wn−k+1). If k = 5,
6 or 7, then T ∼= TC (ε, k). If k ≥ 8, then d(wn−k+1) = 3. Let e1 be the pendent edge
incident to wn−k+1 and w1w2 ∈ EPw1,a . Then T1 = T (e−

1 , w+
2 ) ∈ T (ε, k).

If k = 4t + 1 (t ≥ 2), then ζ(w1) = ζ(wn−k+1). Otherwise, one has ζ(w1) ≥
ζ(wn−k+1) − 4z for some z ≥ 1 which implies d(w1) ≤ d(wn−k+1) + 4 (that is
d(w2) ≤ d(wn−k+1) + 3). When n ≤ k + 4, it is a contradiction to Claim 2; When
n ≥ k + 5, Mo(T1) < Mo(T ) by Lemma 2.2 (iii), contradicted to T ∈ T min(ε, k).

If k = 4t + 3 (t ≥ 2), then ζ(w1) = ζ(wn−k+1) − 2. Otherwise, one has ζ(w1) ≥
ζ(wn−k+1) − 4z − 2 for some z ≥ 1 which implies d(w1) ≤ d(wn−k+1) + 6 (that is
d(w2) ≤ d(wn−k+1) + 5). When n ≤ k + 5, it is a contradiction to Claim 2; when
n ≥ k + 6, Mo(T1) < Mo(T ) by Lemma 2.2 (iii), contradicted to T ∈ T min(ε, k).

If k = 2t (t ≥ 4), then ζ(w1) = ζ(wn−k+1) − 1. Otherwise, one has ζ(w1) ≥
ζ(wn−k+1) − 2z − 1 for some z ≥ 1 which implies d(w1) ≤ d(wn−k+1) + 3 (that is
d(w2) ≤ d(wn−k+1) + 2). When n ≤ k + 3, it is a contradiction to Claim 2; when
n ≥ k + 4, Mo(T1) < Mo(T ) by Lemma 2.2 (iii), contradicted to T ∈ T min(ε, k).

Thus, T ∼= TC (ε, k) also holds when k ≥ 5 and n ≥ k + 3.
On the other hand,

(1) If k = 3, then

Mo(T ) = 2(n − 2) +
n−3∑

i=1

|n − 2(2i − 1)| =
⌊

(n − 1)2

2

⌋

+ 2.

(2) If k = 4 and n = 5, one has Mo(T ) = 12; If k = 4 and n ≥ 6, then

Mo(T ) = 3(n − 2) +
n−4∑

i=1

|n − 2(2i − 1)| =
⌊

(n − 1)2

2

⌋

+ 6.

(3) If k = 4t + 1 (t ≥ 1) and (n − k) is odd, then

Mo(T ) = 2t · (n − 2) + 2
t∑

i=1

[n − 2(2i − 1)] + 2

n−k−1
2∑

i=1

(2i)

123



On the Extremal Mostar Indices of Trees with a Given Segment… 609

= n2

2
− n + (k − 1)2

4
.

If k = 4t + 1 (t ≥ 1) and (n − k) is even, then

Mo(T ) = 2t · (n − 2) + 2
t∑

i=1

[n − 2(2i − 1)] + 2

n−k
2∑

i=1

(2i − 1)

= n2 + 1

2
− n + (k − 1)2

4
.

(4) If k = 4t + 3 (t ≥ 1) and (n − k) is odd, one has

Mo(T ) = (2t + 1) · (n − 2) + 2
t+1∑

i=1

[n − 2(2i − 1)] +
n−k−3

2∑

i=1

(2i) +
n−k−1

2∑

i=1

(2i)

= n2

2
− n + (k − 1)2

4
+ 1.

If k = 4t + 3 (t ≥ 1) and (n − k) is even, one has

Mo(T ) = (2t + 1) · (n − 2) + 2
t+1∑

i=1

[n − 2(2i − 1)] +
n−k−2

2∑

i=1

(2i − 1) +
n−k
2∑

i=1

(2i − 1)

= n2 + 1

2
− n + (k − 1)2

4
+ 1.

(5) If k = 4t + 2 (t ≥ 1) and (n − k) is odd, then

Mo(T ) = (2t + 2) · (n − 2) +
t∑

i=1

[n − 2(2i − 1)] +
t∑

i=2

[n − 2(2i)]

+
n−k+1

2∑

i=1

(2i − 1) +
n−k−1

2∑

i=1

(2i − 1)

= n2 + 1

2
− n + (k − 1)2 + 7

4
.

If k = 4t + 2 (t ≥ 1) and (n − k) is even, then

Mo(T ) = (2t + 2) · (n − 2) +
t∑

i=1

[n − 2(2i − 1)] +
t∑

i=2

[n − 2(2i)]

+
n−k+2

2∑

i=1

(2i) +
n−k−2

2∑

i=1

(2i)
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= n2

2
− n + (k − 1)2 + 7

4
.

(6) If k = 4t + 4 (t ≥ 1) and (n − k) is odd, then

Mo(T ) = (2t + 3) · (n − 2) +
t+1∑

i=1

[n − 2(2i − 1)] +
t∑

i=2

[n − 2(2i)]

+
n−k+1

2∑

i=1

(2i − 1) +
n−k−1

2∑

i=1

(2i − 1)

= n2 + 1

2
− n + (k − 1)2 + 7

4
.

If k = 4t + 4 (t ≥ 1) and (n − k) is even, then

Mo(T ) = (2t + 3) · (n − 2) +
t+1∑

i=1

[n − 2(2i − 1)] +
t∑

i=2

[n − 2(2i)]

+
n−k
2∑

i=1

(2i) +
n−k−2

2∑

i=1

(2i)

= n2

2
− n + (k − 1)2 + 7

4
.

So for 3 ≤ k ≤ ε, one has

Mo(T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� (n−1)2

2 � + 2, if k = 3;
12, if k = 4 and n = 5;
� (n−1)2

2 � + 6, if k = 4 and n ≥ 6;
� n2
2 	 − n + (k−1)2

4 , if k = 4t + 1(t ≥ 1);
� n2
2 	 − n + (k−1)2

4 + 1, if k = 4t + 3(t ≥ 1);
� n2
2 	 − n + (k−1)2+7

4 , if k = 2t(t ≥ 3).

That is,
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Mo(T ) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

� ε2

2 � + 2, if k = 3;
12, if k = 4 and ε = 4;
� ε2

2 � + 6, if k = 4 and ε ≥ 5;
� (ε+1)2

2 	 − (ε + 1) + (k−1)2

4 , if k = 4t + 1 (t ≥ 1);
� (ε+1)2

2 	 − ε + (k−1)2

4 , if k = 4t + 3 (t ≥ 1);
� (ε+1)2

2 	 − ε + (k−1)2+5
4 , if k = 2t (t ≥ 3).

This completes the proof. ��

5 Concluding Remarks and Further Research Problems

In this paper, we determine the trees having the greatest Mostar index among the tree
set with a given segment sequence and among the tree set with a given size and together
with a given segment number, respectively. We also identify the trees having the least
Mostar index among the later set.

Quite recently, as a generalization of the Mostar index, the edge-Mostar index [5]
was introduced:

Moe(G) =
∑

e=uv∈EG

|mu(e|G) − mv(e|G)|,

where mu(e|G) = {e′|d(e′, u) < d(e′, v)} and mv(e|G) = {e′|d(e′, v) < d(e′, u)},
respectively. The edge Mostar index of some polycyclic aromatic structures [5] and
some other chemical graphs [1,19,23] have been studied. It is a natural problem to look
for extremal graphs among all kinds of graph sets respect to the edge Mostar index,
as those have been studied respect to the Mostar index. It seems that as the number of
cycles in graphs increases, the extremal graphs are quite different respect to the two
distinct indices.

One can also consider the extremal problems respect to the Mostar index, among
trees or general graphs given parameters related to all kinds of vertex sequences [16].
For example, consider the graphs with given Grundy domination number which is the
maximum length of a dominating sequence [16].
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