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Abstract
In this article, some Bohr-type inequalities with one parameter or involving convex
combination for bounded analytic functions of Schwarz functions are established.
Some previous inequalities are generalized. All the results are sharp.

Keywords Bohr radius · Bohr-type inequality · Bounded analytic functions · Convex
combination · Schwarz functions

Mathematics Subject Classification 30A10 · 30B10

1 Introduction

Let B denote the class of analytic functions f defined on the open unit diskD := {z ∈
C : |z| < 1} such that | f (z)| ≤ 1 for z ∈ D. The Bohr’s theorem states that if f ∈ B
and f (z) = ∑∞

k=0 akz
k , then

∞∑

n=0

|an||z|n ≤ 1 f or |z| = r ≤ 1/3, (1.1)
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the constant 1/3 is sharp and the above inequality is called the classicalBohr inequality.
Bohr originally established inequality (1.1) only for r ≤ 1/6 in 1914 [16]. Later, the
value 1/3 was obtained independently by Riesz, Schur and Wiener. There are many
articles that have shown the constant 1/3 cannot be improved (see [29,31]).

For background information related to Bohr’s phenomenon, we refer to the recent
surveys by Ali et al. [8], Bénéteau et al. [10], Ismagilov et al. [21], Kayumova et al.
[27] and the references therein. In particular, [11] includes the Bohr phenomenon
on the subordination classes of concave univalent functions, [12] discusses some
Bohr inequalities for logarithmic power series, and [13] initiates a study of the Bohr
radius problem for derivatives of analytic functions. Some harmonic versions of Bohr’s
inequality were discussed in [18,24,26]. In recent years, many results related to Bohr’s
theorem are obtained in the setting of several complex variables. Boas and Khavinson
[15] obtained some multidimensional generalizations of Bohr’s theorem, and Aizen-
berg [5] extended it for further studies. For more information about Bohr inequality
and related investigations, we refer to the recent articles [7,15,23].

It is worth pointing out that the Bohr radius has been discussed for certain power
series inD, as well as for analytic functions fromD into other domains, such as convex
domains [1,6], concave wedge domains [4], the punctured unit disk [3] and the exterior
of the closed unit disk [2].

In order to state our main results, we recall the following several Bohr-type inequal-
ities.

Theorem 1.1 [22] Suppose that f (z) = ∑∞
k=0 akz

k is analytic in D and | f (z)| < 1 in
D. Then

| f (z)| +
∞∑

k=1

|ak ||z|k ≤ 1 f or |z| = r ≤ √
5 − 2

and the radius
√
5 − 2 cannot be improved. Moreover,

| f (z)|2 +
∞∑

k=1

|ak ||z|k ≤ 1 f or |z| = r ≤ 1

3

and the radius 1
3 cannot be improved.

Theorem 1.2 [28] Suppose that f (z) = ∑∞
k=0 akz

k is analytic in D and | f (z)| < 1 in
D. Then

| f (z)| +
∞∑

k=1

|a2k ||z|2k ≤ 1 f or |z| = r ≤ √
2 − 1

and the radius
√
2 − 1 cannot be improved.

In [28], combining Theorem 2.5 and Remark 2.7, we get the following theorem.
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Theorem 1.3 [28] Suppose that f (z) = ∑∞
k=0 akz

k is analytic in D and | f (z)| < 1 in
D. For s ∈ N, then

| f (z)| +
∞∑

k=1

|ask ||z|sk ≤ 1 f or |z| = r ≤ Rs,

where Rs is positive root of the equation ϕs(r) = 0, ϕs(r) = rs+1 + 3rs + r − 1. The
radius Rs is the best possible.

Theorem 1.4 [28] Suppose that f (z) = ∑∞
k=0 akz

k is analytic in D and | f (z)| < 1 in
D. Then

| f (z)| + | f ′(z)||z| +
∞∑

k=2

|ak ||z|k ≤ 1 f or |z| = r ≤
√
17 − 3

4

and the radius
√
17−3
4 cannot be improved.

In this paper, let Bm = {ω ∈ B : ω(0) = · · · = ω(m−1)(0) = 0, ω(m)(0) �= 0} and
Bn = {ω ∈ B : ω(0) = · · · = ω(n−1)(0) = 0, ω(n)(0) �= 0} be the classes of Schwarz
functions, where m, n ∈ N = {1, 2, · · · }. Our aims of this article are to generalize the
above theorems and establish some new Bohr-type inequalities with one parameter or
involving convex combination for bounded analytic functions of Schwarz functions.

2 Some Lemmas

In order to establish our main results, we need the following some lemmas which will
play the key role in proving the main results of this paper.

Lemma 2.1 (Schwarz-Pick lemma) Let φ(z) be analytic in the open unit disk D and
|φ(z)| < 1. Then

|φ(z1) − φ(z2)|
|1 − φ(z1)φ(z2)|

≤ |z1 − z2|
|1 − z1z2| f or z1, z2 ∈ D,

and equality holds for distinct z1, z2 ∈ D if and only if φ is a Möbius transformation.
In particular,

|φ′(z)| ≤ 1 − |φ(z)2|
1 − |z2| f or z ∈ D,

and equality holds for some z ∈ D if and only if φ is a Möbius transformation.

Lemma 2.2 ( [19]) Suppose f (z) is analytic in the open unit disk D and | f (z)| ≤ 1.
If f (z) = ∑∞

n=0 anz
n, then |an| ≤ 1 − |a0|2 for all n ∈ N.
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Lemma 2.3 For 0 ≤ x ≤ x0 ≤ 1, it holds that

�(x) := x + A(1 − x2) ≤ �(x0) whenever 0 ≤ A ≤ 1/2, (2.1)

and similarly,

�(x) := x2 + A(1 − x2) ≤ �(x0) whenever 0 ≤ A ≤ 1. (2.2)

The proof is simple, we omit it.

3 Main Results

In Theorem 3.1, we give a kind of convex combination form for refined classical Bohr
inequality as follows.

Theorem 3.1 Suppose that f ∈ B, f (z) = ∑∞
k=0 akz

k , a := |a0| and ω ∈ Bm for
m ∈ N. Then for t ∈ [0, 1), we have

t | f (ω(z))| + (1 − t)
∞∑

k=0

|ak ||ω(z)|k ≤ 1 (3.1)

for |z| = r ≤ Rt,m, where

Rt,m =

⎧
⎪⎪⎨

⎪⎪⎩

m
√

1−2
√
1−t

4t−3 f or t ∈ [0, 3
4 )

⋃
( 34 , 1),

m
√

1
2 f or t = 3

4 .

The radius Rt,m is the best possible.

Proof According to the assumption, f ∈ B, a := |a0| and ω ∈ Bm , by the Schwarz
lemma and the Schwarz-Pick lemma, respectively, we obtain

|ω(z)| ≤ |z|m, | f (z)| ≤ |z| + a

1 + a|z|
for z ∈ D. It follows that

| f (ω(z)| ≤ |ω(z)| + a

1 + a|ω(z)| ≤ rm + a

1 + arm
, |z| = r < 1. (3.2)

Using inequality (3.2) and Lemma 2.2, we have

t | f (ω(z))| + (1 − t)
∞∑

k=0

|ak ||ω(z)|k
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≤ t
rm + a

1 + arm
+ (1 − t)a + (1 − t)(1 − a2)

rm

1 − rm

:= Am(a, r , t).

Now, we need to show that Am(a, r , t) ≤ 1 holds for r ≤ Rt,m . It is equivalent to
show A(a, r , t) ≤ 0, where

A(a, r , t) = [Am(a, r , t) − 1](1 + arm)(1 − rm)

= −r2m(1 − t)a3 + [−r2m(1 − t)]a2
+[(1 − rm)2 + (1 − t)r2m]a − r2mt + 2rm − 1.

Obviously,

∂A(a, r , t)

∂a
= − 3r2m(1 − t)a2 − 2r2m(1 − t)a + (1 − rm)2 + (1 − t)r2m

:=B(a, r , t).

Observe that B(a, r , t) is a continuous and decreasing function of a ∈ [0, 1) for fixed
t ∈ [0, 1) and r ∈ (0, 1). Then we have B(a, r , t) ≥ B(1, r , t) = (4t − 3)r2m −
2rm + 1. Next, we divide it into two cases to discuss.

Case 1. If t ∈ [0, 3
4 )

⋃
( 34 , 1), then we have B(a, r , t) ≥ B(1, r , t) ≥ 0 for r ≤

m
√

1−2
√
1−t

4t−3 , where m
√

1−2
√
1−t

4t−3 is the unique root in (0, 1) of the equation(4t−3)r2m−
2rm +1 = 0. It follows that the A(a, r , t) is an increasing function of a for a ∈ [0, 1).
Thus, A(a, r , t) ≤ A(1, r , t) = 0 for r ≤ m

√
1−2

√
1−t

4t−3 .

Case 2. If t = 3
4 , then we have B(a, r , t) ≥ B(1, r , t) = −2rm + 1 ≥ 0 for

r ≤ m
√

1
2 . Thus, A(a, r , t) ≤ A(1, r , t) = 0 for r ≤ m

√
1
2 .

Next we show the radius Rt,m is sharp. For a ∈ [0, 1), let

ω(z) = zm, f (z) = a + z

1 + az
= a + (1 − a2)

∞∑

k=1

(−a)k−1zk, z ∈ D. (3.3)

Taking z = r , then the left side of inequality (3.1) reduces to

t | f (rm)| + (1 − t)
∞∑

k=0

|ak |rmk = t
a + rm

1 + arm
+ (1 − t)a + (1 − t)(1 − a2)

rm

1 − arm
.

(3.4)

Now we just need to show that if r > Rt,m , then there exists an a, such that the right
side of (3.4) is greater than 1. That is

(1 − a)[2r2m(1 − t)a2 − ((2t − 1)r2m − rm)a + rm − 1] > 0. (3.5)
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Let

C(a, r , t) = 2r2m(1 − t)a2 − ((2t − 1)r2m − rm)a + rm − 1.

Then we have

∂C(a, r , t)

∂a
=4r2m(1 − t)a − (2t − 1)r2m + rm

:=D(a, r , t).

Observe that D(a, r , t) is a continuous and increasing function of a ∈ [0, 1) for each
fixed t ∈ [0, 1) and r ∈ (0, 1). Then we have

D(a, r , t) ≥ D(0, r , t) = (1 − 2t)r2m + rm ≥ 0

for any t ∈ [0, 1) and r ∈ (0, 1). It means that

C(a, r , t) ≤ C(1, r , t) = (3 − 4t)r2m + 2rm − 1 = −B(1, r , t).

Furthermore, themonotonicity of B(1, r , t) leads that if r > Rt,m , then B(1, r , t) < 0.
Namely, if r > Rt,m , then C(1, r , t) > 0. Hence, by the continuity of C(a, r , t), we
have

lim
a→1− C(a, r , t) = C(1, r , t) > 0.

Therefore, if r > Rt,m , then there exists an a ∈ [0, 1), such that inequality (3.5) holds.
This proves the sharpness and proof of Theorem 3.1 is complete. 
�
Remark 3.1 1. If ω(z) = z, then Theorem 3.1 reduces to Theorem 3.1 of [32].
2. If ω(z) = z, t = 0, then Theorem 3.1 reduces to the classical Bohr inequality.

Theorem 3.2 Suppose that f ∈ B, f (z) = ∑∞
k=0 akz

k , a := |a0| and ωm ∈ Bm, ωn ∈
Bn for m, n ∈ N. Then for λ ∈ (0,∞), we have

| f (ωm(z))| + λ

∞∑

k=1

|ak ||ωn(z)|k ≤ 1 (3.6)

for |z| = r ≤ Rλ,m,n, where Rλ,m,n is the unique root in (0, 1) of the equation

(2λ − 1)rm+n + 2λrn + rm + rn − 1 = 0

and the radius Rλ,m,n is the best possible. Moreover,

| f (ωm(z))|2 + λ

∞∑

k=1

|ak ||ωn(z)|k ≤ 1 (3.7)
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for |z| = r ≤ R2,λ,m,n, where R2,λ,m,n is the unique root in (0, 1) of the equation

(λ − 1)r2m+n + 2λrm+n + (λ + 1)rn + r2m − 1 = 0

and the radius R2,λ,m,n is the best possible.

Proof Firstly, we consider the first part. By the Schwarz lemma and the Schwarz-Pick
lemma, respectively, we obtain

|ωm(z)| ≤ |z|m, |ωn(z)| ≤ |z|n, and | f (ωm(z))| ≤ rm + a

1 + arm
, (3.8)

for z ∈ D. Then by Lemma 2.2, we obtain

| f (ωm(z))| + λ

∞∑

k=1

|ak ||ωn(z)|k ≤ a + rm

1 + arm
+ λ(1 − a2)

rn

1 − rn

:=Am,n(a, r , λ).

We just need to show that Am,n(a, r , λ) ≤ 1 holds for r ≤ Rλ,m,n . That is to prove
A(a, r , λ) ≤ 0, where

A(a, r , λ) = (a + rm)(1 − rn) + λ(1 − a2)rn(1 + arm) − (1 + arm)(1 − rn)

= (1 − a)[rm+nλa2 + rnλ(1 + rm)a + rnλ − rm+n + rm + rn − 1]
≤ (1 − a)[rm+nλ + rnλ(1 + rm) + rnλ − rm+n + rm + rn − 1]
= (1 − a)[(2λ − 1)rm+n + 2λrn + rm + rn − 1].

Obviously, it is enough to show that (2λ − 1)rm+n + 2λrn + rm + rn − 1 ≤ 0 holds
for r ≤ Rλ,m,n . Let g(r) = (2λ − 1)rm+n + 2λrn + rm + rn − 1, then we have

g′(r) = (m + n)(2λ − 1)rm+n−1 + 2nλrn−1 + mrm−1 + nrn−1

= 2(m + n)λrm+n−1 + mrm−1(1 − rn) + nrn−1(1 − rm) + 2nλrn−1

> 0.

We conclude that g(r) is an increasing function of r ∈ (0, 1) for fixed λ ∈ (0,∞).
Meanwhile, we observe that g(0) = −1 < 0 and g(1) = 4λ > 0. Then there is a
unique root Rλ,m,n ∈ (0, 1) such that g(r) = 0. Hence, g(r) ≤ 0 holds for r ≤ Rλ,m,n .

To show that the radius Rλ,m,n is the best possible. For a ∈ [0, 1), let

ωm(z) = zm, ωn(z) = zn and

f (z) = a + z

1 + az
= a + (1 − a2)

∞∑

k=1

(−a)k−1zk, z ∈ D. (3.9)
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Taking z = r , then the left side of inequality (3.6) reduces to

| f (rm)| + λ

∞∑

k=1

|ak |rnk = a + rm

1 + arm
+ λ(1 − a2)

rn

1 − arn
. (3.10)

Now we just need to show that if r > Rλ,m,n , then there exists an a ∈ [0, 1), such that
the right side of (3.10) is greater than 1. That is

(1 − a)(rm+nλa2 + rn[λ(1 + rm) + (1 − rm)]a + rnλ + rm − 1) > 0. (3.11)

Let

B(a, r , λ) = rm+nλa2 + rn[λ(1 + rm) + (1 − rm)]a + rnλ + rm − 1.

Obviously, B(a, r , λ) is a continuous and increasing function of a ∈ [0, 1) for each
fixedλ ∈ (0,∞) and r ∈ (0, 1). Then B(a, r , λ) ≤ B(1, r , λ) = (2λ−1)rm+n+(2λ+
1)rn + rm − 1 = g(r) for λ ∈ (0,∞) and r ∈ (0, 1). Meanwhile, the monotonicity
of g(r) leads to that if r > Rλ,m,n , then B(1, r , λ) > 0. Hence, by the continuity of
B(a, r , λ), if r > Rλ,m,n , we have

lim
a→1− B(a, r , λ) = B(1, r , λ) > 0.

Therefore, if r > Rλ,m,n , then there exists an a, such that inequality (3.11) holds.
Next, we prove the second part. As in the previous case, by (3.8) and Lemma 2.2,

it follows easily that

| f (ωm(z))|2 + λ

∞∑

k=1

|ak ||ωn(z)|k ≤
(

a + rm

1 + arm

)2

+ λ(1 − a2)
rn

1 − rn
. (3.12)

Weknowabove inequality (3.12) is smaller than or equal to 1 for r ≤ R2,λ,m,n provided
A2(a, r , λ) ≤ 0, where

A2(a, r , λ) =(1 − a2)[r2m+nλa2 + 2rm+nλa − r2m+n + rnλ + r2m + rn − 1]
≤(1 − a2)[(λ − 1)r2m+n + 2λrm+n + (λ + 1)rn + r2m − 1].

It is sufficient for us to prove (λ − 1)r2m+n + 2λrm+n + (λ + 1)rn + r2m − 1 ≤ 0
holds for r ≤ R2,λ,m,n . Let k(r) = (λ − 1)r2m+n + 2λrm+n + (λ + 1)rn + r2m − 1,
then we obtain

k′(r) =(2m + n)(λ − 1)r2m+n−1 + 2(m + n)λrm+n−1

+ n(λ + 1)rn−1 + 2mr2m−1

=(2m + n)λr2m+n−1 + nrn−1(1 − r2m)

+ 2mr2m−1(1 − rn) + 2(m + n)λrm+n−1
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+ nλrn−1 > 0.

Obviously, k(r) is an increasing function of r ∈ (0, 1) for fixed λ ∈ (0,∞). And
we also have k(0) = −1 < 0 and k(1) = 4λ > 0. Then there is a unique root
R2,λ,m,n ∈ (0, 1) such that k(r) = 0. Hence, k(r) ≤ 0 holds for r ≤ R2,λ,m,n .

The sharpness part follows similarly. Thus the proof of Theorem 3.2 is complete.

�

In Theorem 3.2, setting ωm(z) = ωn(z) = ω(z), then we have the following
corollary.

Corollary 3.1 Suppose that f ∈ B, f (z) = ∑∞
k=0 akz

k and ω ∈ Bm for m ∈ N. Then
for λ ∈ (0,∞), we have

| f (ω(z))| + λ

∞∑

k=1

|ak ||ω(z)|k ≤ 1

for |z| = r ≤ Rλ,m, where

Rλ,m =

⎧
⎪⎪⎨

⎪⎪⎩

m
√√

λ2+4λ−(λ+1)
2λ−1 f or λ ∈ (0, 1

2 )
⋃

( 12 ,∞),

m
√

1
3 f or λ = 1

2 .

The radius Rλ,m is the best possible. Moreover,

| f (ω(z))|2 + λ

∞∑

k=1

|ak ||ω(z)|k ≤ 1

for |z| = r ≤ R2,λ,m, where

R2,λ,m =

⎧
⎪⎪⎨

⎪⎪⎩

m
√

λ+2−√
λ2+8λ

2(1−λ)
f or λ ∈ (0, 1)

⋃
(1,∞),

m
√

1
3 f or λ = 1.

The radius R2,λ,m is the best possible.

Remark 3.2 1. If ω(z) = z, then Corollary 3.1 reduces to Theorem 3.3 of [32].
2. If ω(z) = z, λ = 1, then Corollary 3.1 reduces to Theorem 1.1.

Theorem 3.3 Suppose that f ∈ B, f (z) = ∑∞
k=0 akz

k , a := |a0| and ωm(z) ∈ Bm,
ωn(z) ∈ Bn for m, n ∈ N. Then for λ ∈ (0,∞) and s ∈ N, we have

| f (ωm(z))| + λ

∞∑

k=1

|ask ||ωn(z)|sk ≤ 1 (3.13)
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for |z| = r ≤ Rλ,m,n,s , where Rλ,m,n,s is unique root in (0, 1) of equation

(2λ − 1)rns+m + (2λ + 1)rns + rm − 1 = 0.

The radius Rλ,m,n,s is the best possible.

Proof Inequality (3.8) and Lemma 2.2 lead to that

| f (ωm(z))| + λ

∞∑

k=1

|ask ||ωn(z)|sk ≤ a + rm

1 + arm
+ λ(1 − a2)

rns

1 − rns

:=Am,n,s(a, r , λ). (3.14)

We know (3.14) is smaller than or equal to 1 provided A′
m,n,s(a, r , λ) ≤ 0, where

A′
m,n,s(a, r , λ)

= (a + rm)(1 − rns) + λ(1 − a2)rns(1 + arm) − (1 + arm)(1 − rns)

= (1 − a)[rns+mλa2 + rnsλ(1 + rm)a + rnsλ − rns+m + rns + rm − 1]
≤ (1 − a)[rns+mλ + rnsλ(1 + rm) + rnsλ − rns+m + rns + rm − 1]
= (1 − a)[(2λ − 1)rns+m + (2λ + 1)rns + rm − 1].

Let l(r) = (2λ − 1)rns+m + (2λ + 1)rns + rm − 1 ≤ 0. Now, A′
m,n,s(a, r , λ) ≤ 0 if

l(r) ≤ 0, which holds for r ≤ Rλ,m,n,s . When λ ∈ (0,∞), we have

l ′(r) = (2λ − 1)(ns + m)rns+m−1 + (2λ + 1)(ns)rns−1 + mrm−1

= 2λ(ns + m)rns+m−1 + nsrns−1(1 − rm) + mrm−1(1 − rns) + 2λnsrns−1

> 0.

We claim that for any λ ∈ (0,∞), l(r) is a monotonically increasing function of r ∈
(0, 1). Meanwhile, we have l(0)l(1) < 0.Thus, there is a unique root Rλ,m,n,s ∈ (0, 1)
such that l(r) = 0. Hence, l(r) ≤ 0 holds for r ≤ Rλ,m,n,s .

Now, we show that the radius Rλ,m,n,s is the best possible, we still consider the
function ωm(z), ωn(z), f (z) as in (3.9). Taking z = r , then the left side of inequality
(3.13) reduces to

| f (rm)| + λ

∞∑

k=1

|ask |rnsk = a + rm

1 + arm
+ λ(1 − a2)

as−1rns

1 − asrns
. (3.15)

Now to show that if r > Rλ,m,n,s , then there exists an a ∈ [0, 1), such that the right
side of (3.15) is greater than 1. That is

(1 − a)(rns+mλas+1 + rns[1 − rm + (rm + 1)λ]as + λrnsas−1 + rm − 1) > 0.

(3.16)
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Let

Bm,n,s(a, r , λ) = rns+mλas+1 + rns[1 − rm + (rm + 1)λ]as + λrnsas−1 + rm − 1.

Obviously, Bm,n,s(a, r , λ) is a continuous and increasing function of a ∈ [0, 1) for
each fixed λ ∈ (0,∞) and r ∈ (0, 1). Then

Bm,n,s(a, r , λ) ≤ Bm,n,s(1, r , λ) = (2λ − 1)rns+m + (2λ + 1)rns + rm − 1 = l(r)

holds for λ ∈ (0,∞) and r ∈ (0, 1). Furthermore, according to the monotonicity of
l(r), we have if r > Rλ,m,n,s , then Bm,n,s(1, r , λ) > 0. Hence, by the continuity of
Bm,n,s(a, r , λ), if r > Rλ,m,n,s , we have

lim
a→1− Bm,n,s(a, r , λ) = Bm,n,s(1, r , λ) > 0.

Therefore, if r > Rλ,m,n,s , then there exists an a, such that inequality (3.16) holds. 
�
Remark 3.3 If λ = 1, then Theorem 3.3 reduces to Theorem 3.3 of [20].

In Theorem 3.3, setting ωm(z) = ωn(z) = ω(z); ωm(z) = ωn(z) = ω(z) and
s = 2, then we have Corollaries 3.2, 3.3, respectively.

Corollary 3.2 Suppose that f ∈ B, f (z) = ∑∞
k=0 akz

k and ω ∈ Bm for m ∈ N. Then
for λ ∈ (0,∞) and s ∈ N, we have

| f (ω(z))| + λ

∞∑

k=1

|ask ||ω(z)|sk ≤ 1

for |z| = r ≤ Rλ,m,s , where Rλ,m,s is unique root in (0, 1) of equation

(2λ − 1)rms+m + (2λ + 1)rms + rm − 1 = 0.

The radius Rλ,m,s is the best possible.

Remark 3.4 1. If ω(z) = z, then Corollary 3.2 reduces to Theorem 3.2 of [32].
2. If ω(z) = z and λ = 1, then Corollary 3.2 reduces to Theorem 1.3.

Corollary 3.3 Suppose that f ∈ B, f (z) = ∑∞
k=0 akz

k and ω ∈ Bm for m ∈ N. Then
for λ ∈ (0,∞), we have

| f (ω(z))| + λ

∞∑

k=1

|a2k ||ω(z)|2k ≤ 1

for |z| = r ≤ Rλ,m,2, where

Rλ,m,2 =

⎧
⎪⎪⎨

⎪⎪⎩

m
√√

2λ−1
2λ−1 f or λ ∈ [0, 1

2 )
⋃

( 12 ,∞),

m
√

1
2 f or λ = 1

2 .
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The radius Rλ,m,2 is the best possible.

Remark 3.5 If ω(z) = z and λ = 1, then Corollary 3.3 reduces to Theorem 1.2.

Theorem 3.4 Suppose that f ∈ B, f (z) = ∑∞
k=0 akz

k , a := |a0| and ω ∈ Bm for
m ∈ N. Then for λ ∈ (0,∞), we have

| f (ω(z))| + | f ′(ω(z))||ω(z)| + λ

∞∑

k=2

|ak ||ω(z)|k ≤ 1 (3.17)

for |z| = r ≤ Rλ, where

Rλ =
⎧
⎨

⎩

rλ, f or λ ∈ ( 12 ,∞)

r∗, f or λ ∈ (0, 1
2 ]

is the best possible, and the radii rλ and r∗ are the unique roots in (0,
m
√√

2 − 1) of
the equations

2λr4m + (4λ − 1)r3m + (2λ − 1)r2m + 3rm − 1 = 0

and

r4m + r3m + 3rm − 1 = 0,

respectively.

Proof By inequality (3.2), Schwarz-Pick lemma, Lemma 2.2 and Lemma 2.3 (2.1),
respectively. Then we have

| f (ω(z))| + | f ′(ω(z))||ω(z)| + λ

∞∑

k=2

|ak ||ω(z)|k

≤ a + rm

1 + arm
+

[

1 −
(

a + rm

1 + arm

)2
]

rm

1 − r2m
+ λ(1 − a2)

r2m

1 − rm

= a + rm

1 + arm
+ (1 − a2)rm

(1 + arm)2
+ λ(1 − a2)

r2m

1 − rm

= 1 + (1 − a)�(a, r , λ)

(1 + arm)2(1 − rm)
,

for r ≤ m
√√

2 − 1, where

�(a, r , λ) = r4mλa3 + (2r3mλ + r4mλ)a2 + (r2mλ + 2r3mλ + r2m − r3m)a

+3rm + r2mλ − 2r2m − 1
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and
m
√√

2 − 1 is the unique root in (0, 1) of the equation r2m +2rm −1 = 0. Observe
that �(a, r , λ) is a monotonically increasing function of a ∈ [0, 1) for each fixed
λ ∈ [0,∞) and r ∈ (0, 1). Then we have

�(a, r , λ) ≤ �(1, r , λ) = 2λr4m + (4λ − 1)r3m + (2λ − 1)r2m + 3rm − 1.

Now, we need to show that �(1, r , λ) ≤ 0 holds for r ≤ Rλ.
Case 1. If λ ∈ ( 12 ,∞), �(1, r , λ) is a continuous and increasing function of r ∈

(0, 1) and

�(1, 0, λ)�(1,
m
√√

2 − 1, λ) < 0.

Thus rλ is unique root in (0,
m
√√

2 − 1) of �(1, r , λ) and �(1, r , λ) ≤ 0 for r ≤ rλ.
Case 2. If λ ∈ [0, 1

2 ], then we have �(1, r , λ) ≤ r4m + r3m + 3rm − 1. Let j(r) =
r4m +r3m +3rm −1. One can verify that j(r) is a continuous and increasing function

of r ∈ (0, 1) and j(0) j(
m
√√

2 − 1) < 0. Thus r∗ is unique root in (0,
m
√√

2 − 1)
of j(r) and j(r) ≤ 0 for r ≤ r∗. Then �(1, r , λ) ≤ j(r) ≤ 0 for r ≤ r∗. Hence,
inequality (3.17) holds for r ≤ Rλ.

To show the radius Rλ is sharp, we consider the function ω(z) and f (z) is same as
(3.3). Taking z = r , then the left side of inequality (3.17) gives

| f (rm)| + | f ′(rm)||rm | + λ

∞∑

k=2

|ak ||r |mk = a + rm

1 + arm
+ (1 − a2)rm

(1 + arm)2

+λ(1 − a2)
ar2m

1 − arm
.

Next, we show that if r > Rλ, then there exists an a ∈ [0, 1), such that the right side
of above equality is greater than 1. It is equivalent to show that

r4mλa4 + (2r3mλ + r4mλ)a3 + (r2mλ + 2r3mλ − r3m)a2

+(rm + r2mλ − r2m)a + 2rm − 1 > 0. (3.18)

Let

P(a, r , λ) = r4mλa4 + (2r3mλ + r4mλ)a3 + (r2mλ + 2r3mλ − r3m)a2

+(rm + r2mλ − r2m)a + 2rm − 1.

Next, we divide it into two cases to show that there exists an a ∈ [0, 1), such that
(3.18) holds for r > Rλ.

Case 1. If λ ∈ ( 12 ,∞), one can verify that the function P(a, r , λ) is an increasing
function with respect to a ∈ [0, 1) for each fixed λ ∈ ( 12 ,∞) and r ∈ (0, 1). Thus
P(a, r , λ) ≤ P(1, r , λ) = 2λr4m+(4λ−1)r3m+(2λ−1)r2m+3rm−1 = �(1, r , λ).
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According to themonotonicity of�(1, r , λ), if r > rλ, then P(1, r , λ) = �(1, r , λ) >

0. In the same way, if r > rλ, we have

lim
a→1− P(a, r , λ) = P(1, r , λ) > 0.

Hence, if r > rλ, then there exists an a, such that inequality (3.18) holds.
Case 2. If λ ∈ [0, 1

2 ], then

P(a, r , λ) ≤ P(a, r ,
1

2
)

= 1

2
r4ma4 +

(
1

2
r4m + r3m

)

a3

+ 1

2
r2ma2 +

(

−1

2
r2m + rm

)

a + 2rm − 1

≤ r4m + r3m + 3rm − 1 = j(r).

According to the monotonicity of j(r), if r > r∗, then j(r) > 0. It means that

lim
a→1− P(a, r , λ) = j(r) > 0.

Therefore, if r > r∗, then there exists an a, such that (3.18) holds. We complete the
proof of theorem. 
�
Remark 3.6 1. If λ = 1, then Theorem 3.4 reduces to Corollary 4.5 of [20].
2. If ω(z) = z, then Theorem 3.4 reduces to Theorem 3.4 of [32].
3. If ω(z) = z and λ = 1 in Theorem 3.4, then it reduces to Theorem 1.4.

Theorem 3.5 Suppose that f ∈ B, f (z) = ∑∞
k=0 akz

k , a := |a0| and ω ∈ Bm for
m ∈ N. Then for λ ∈ (0,∞), we have

| f (ω(z))|2 + | f ′(ω(z))||ω(z)| + λ

∞∑

k=2

|ak ||ω(z)|k ≤ 1 (3.19)

for |z| = r ≤ R2,λ, where

R2,λ =
⎧
⎨

⎩

r2,λ, f or λ ∈ (1,∞)

r∗
2 , f or λ ∈ (0, 1]

is the best possible, and the radii r2,λ and r∗
2 are the unique roots in (0, m

√√
5−1
2 ) of

the equations

λr4m + (2λ − 1)r3m + λr2m + 2rm − 1 = 0
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and

r4m + r3m + r2m + 2rm − 1 = 0,

respectively.

Proof By inequality (3.2), Schwarz-Pick lemma, Lemma 2.2 and Lemma 2.3 (2.2),
respectively. Then

| f (ω(z))|2 + | f ′(ω(z))||ω(z)| + λ

∞∑

k=2

|ak ||ω(z)|k

≤
(

a + rm

1 + arm

)2

+
[

1 −
(

a + rm

1 + arm

)2
]

rm

1 − r2m
+ λ(1 − a2)

r2m

1 − rm

=
(

a + rm

1 + arm

)2

+ (1 − a2)rm

(1 + arm)2
+ λ(1 − a2)

r2m

1 − rm

= 1 + (1 − a2)�(a, r , λ)

(1 + arm)2(1 − rm)
,

for r ≤ m
√√

5−1
2 , where

�(a, r , λ) = r4mλa2 + 2r3mλa − r3m + r2mλ + 2rm − 1

and m
√√

5−1
2 is the unique root in (0, 1) of the equation r2m + rm − 1 = 0. Observe

that �(a, r , λ) is a monotonically increasing function of a ∈ [0, 1) for each fixed
λ ∈ [0,∞) and r ∈ (0, 1). Then we have

�(a, r , λ) ≤ �(1, r , λ) = r4mλ + (2λ − 1)r3m + r2mλ + 2rm − 1.

Next, we show that �(1, r , λ) ≤ 0 holds for r ≤ R2,λ.
Case 1. If λ ∈ (1,∞),�(1, r , λ) is a continuous and increasing function of r ∈ (0, 1)
and

�(1, 0, λ) = −1 < 0, �

⎛

⎝1,
m

√√
5 − 1

2
, λ

⎞

⎠ = λ > 0.

Thus r2,λ is unique root in (0, m
√√

5−1
2 ) of �(1, r , λ) and �(1, r , λ) ≤ 0 for

r ≤ r2,λ.
Case 2. If λ ∈ [0, 1], then we have �(1, r , λ) ≤ r4m + r3m + r2m + 2rm − 1. Let
s(r) = r4m + r3m + r2m + 2rm − 1. One can verify that s(r) is a continuous and

123



590 X. Hu et al.

increasing function of r ∈ (0, 1) and

s(0) = −1, s

⎛

⎝
m

√√
5 − 1

2

⎞

⎠ = 1 > 0.

Thus r∗
2 is unique root in (0, m

√√
5−1
2 ) of s(r) and s(r) ≤ 0 for r ≤ r∗

2 . Then
�(1, r , λ) ≤ s(r) ≤ 0 for r ≤ r∗

2 . Hence, inequality (3.19) holds for r ≤ R2,λ.
The sharpness part is similar to Theorem 3.4, and we omit it. Thus the proof of

Theorem 3.5 is complete. 
�
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