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Abstract
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1 Introduction

LetH represent the family of analytic functions in the region D := {z ∈ C : |z| < 1}.
By the notation A, we mean a set consisting of functions f ∈ H of the Taylor series
form:

f (z) = z +
∞∑

n=2

anz
n (z ∈ D) . (1.1)

The symbol S denotes a family of functions f ∈ A which are univalent in D. It is
familiar that for the function f ∈ S of form (1.1), the coefficients of this function
satisfy the sharp inequality |an| ≤ n for all n ∈ N := {1, 2, 3, . . .}. This outstanding
result was proposed by Bieberbach [12] as a conjecture in 1916 and it remained a
challenge for researchers for a long period of time. Finally, after almost 69 years, de-
Branges [16] in 1985 proved this fundamental result. Many subfamilies of the set S of
univalent functions were introduced with respect to geometric point of view of their
image domains, such as the families C, S∗, K of convex, starlike and close-to-convex
univalent functions, respectively, and these are defined as:

C :=
{
f : f ∈ S and �

((
z f ′ (z)

)′

f ′ (z)

)
> 0 (z ∈ D)

}
,

S∗ :=
{
f : f ∈ S and �

(
z f ′ (z)
f (z)

)
> 0 (z ∈ D)

}
,

K :=
{
f : f ∈ S and �

(
z f ′ (z)
g(z)

)
> 0 (g ∈ S∗; z ∈ D)

}
.

In particular, letR denote the subclass of K with g(z) = z.
In 1996, Sokół and Stankiewicz [43] introduced a subfamily SL of the set S,

defined as:

SL :=
{
f : f ∈ S and

∣∣∣∣∣

(
z f ′(z)
f (z)

)2

− 1

∣∣∣∣∣ < 1 (z ∈ D)

}
.

The geometrical interpretation of f ∈ SL is that, for any z ∈ D, the ratio z f ′(z)/ f (z)
lies in the region bounded by the right half side of the Bernoulli’s lemniscate

∣∣∣w2 − 1
∣∣∣ = 1.

Equivalently, by using the familiar subordination, a function f ∈ SL satisfies the
relationship

z f ′(z)
f (z)

≺ √
1 + z (z ∈ D).
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On the Third and Fourth Hankel Determinants… 325

This set was further studied by different researchers, see the work of Ali et al. [1],
Kumar et al. [24], Omar and Halim [34], Raza and Malik [39] and Sokół [44]. We
now define a subclass KL of univalent functions f of form (1.1) as follows:

KL :=
{
f : f ∈ S and

∣∣∣∣∣

(
z f ′(z)
g(z)

)2

− 1

∣∣∣∣∣ < 1 (g ∈ SL; z ∈ D)

}
.

Alternatively, a function f ∈ KL if and only if

z f ′(z)
g(z)

≺ √
1 + z (g ∈ SL; z ∈ D). (1.2)

We note that if g (z) = z, then the familyKL reduced to the classRLwhich is defined
in terms of subordination as:

RL :=
{
f : f ∈ S and f ′(z) ≺ √

1 + z (z ∈ D)
}

. (1.3)

For the given parameters q, n ∈ N, the Hankel determinant Hq,n ( f ) for a function
f ∈ S of form (1.1) was defined by Pommerenke [36,37] (see also [3,4]) as:

Hq,n ( f ) :=

∣∣∣∣∣∣∣∣∣

an an+1 . . . an+q−1
an+1 an+2 . . . an+q
...

... . . .
...

an+q−1 an+q . . . an+2q−2

∣∣∣∣∣∣∣∣∣

. (1.4)

The growth of Hq,n ( f ) for different fixed integer q and n has been studied for different
subfamilies of univalent functions. We include here a few of them. The sharp bounds
of
∣∣H2,2 ( f )

∣∣ for the subfamilies S∗, C andR of the set S were investigated by Janteng
et al. [19,20]. They proved the bounds:

∣∣H2,2 ( f )
∣∣ ≤

⎧
⎨

⎩

1 ( f ∈ S∗),
1
8 ( f ∈ C),
4
9 ( f ∈ R).

The problem of this determinant was studied by many researchers for different sub-
families of analytic and univalent functions, see [10,18,23,28,30,33,35,45].

The third-order Hankel determinant is given by:

H3,1 ( f ) =
∣∣∣∣∣∣

1 a2 a3
a2 a3 a4
a3 a4 a5

∣∣∣∣∣∣
= 2a2a3a4 − a33 − a24 + a3a5 − a22a5, (1.5)

the estimation of
∣∣H3,1 ( f )

∣∣ is so hard as to find the value of
∣∣H2,2 ( f )

∣∣. The first
article on H3,1 ( f ) shows up in 2010 by Babalola [8], in which he got the upper bound
of
∣∣H3,1 ( f )

∣∣ for the groups of S∗, C and R. Later on, many researchers distributed
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326 Z.-G. Wang et al.

their work concerning
∣∣H3,1 ( f )

∣∣ for various subfamilies of analytic and univalent
functions, see [2,3,6,11,14,39–42].

In 2017, Zaprawa [46] improved the consequences of Babalola [8] by proving

∣∣H3,1 ( f )
∣∣ ≤

⎧
⎨

⎩

1 ( f ∈ S∗),
49
540 ( f ∈ C),
41
60 ( f ∈ R).

and asserted that these inequalities are as yet not sharp. Further for the sharpness, he
thought about the subfamilies of S∗, C and R comprising of functions with m-fold
symmetry and acquired the sharp bounds. Recently, Kowalczyk et al. [22] and Lecko
et al. [27] get the sharp inequalities

∣∣H3,1 ( f )
∣∣ ≤ 4

135 and
∣∣H3,1 ( f )

∣∣ ≤ 1
9 ,

for the familiar sets C and S∗ (1/2), respectively, where the symbol S∗ (1/2) indicates
to the family of starlike functions of order 1/2. Additionally, in 2018, the authors [26]
obtained an improved bound

∣∣H3,1 ( f )
∣∣ ≤ 8/9 for f ∈ S∗, yet not the best possible.

Moreover, in 2018, Arif et al. [5] studied the problem of fourth Hankel determinant
for the class of bounded turning functions at the first time and successfully obtained
the bound

∣∣H4,1 ( f )
∣∣ ≤ 73757

94500
≈ 0.7805.

Recently, this determinant was studied in [7] for a subclass of starlike function con-
nected with Bernoulli’s lemniscate.

In this paper, we make a contribution to the subject by deducing the third and fourth
Hankel determinants for the class RL of bounded turning functions associated with
Bernoulli’s lemniscate.

2 A SET OF LEMMAS

To derive the bounds of Hankel determinants, we need the following results involving
the class P of functions with positive real part.

Lemma 2.1 If p ∈ P and of the form

p(z) = 1 +
∞∑

n=1

cn z
n (z ∈ D), (2.1)

then, for n, k ∈ N, the following sharp inequalities hold,

|cn+k − λcnck | ≤ 2 (0 ≤ λ ≤ 1), (2.2)

|cn| ≤ 2, (2.3)
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On the Third and Fourth Hankel Determinants… 327

∣∣∣c31 − 2c1c2 + c3
∣∣∣ ≤ 2, (2.4)

and for a complex number μ,

∣∣∣c2 − μc21

∣∣∣ ≤ 2max{1, |2μ − 1|}. (2.5)

Inequalities (2.2), (2.3), (2.4) and (2.5) are given in [13,29,31] and [32], respectively.

Lemma 2.2 ([38]) Let the parameters δ, λ, ρ and σ satisfy the conditions 0 < δ < 1,
0 < σ < 1, and

8σ(1 − σ)
[
(δλ − 2ρ)2 + (δ(σ + δ) − λ)2

]

+ δ(1 − δ)(λ − 2σδ)2 ≤ 4δ2(1 − δ)2σ(1 − σ). (2.6)

If p ∈ P , then

∣∣∣∣ρc
4
1 + σc22 + 2δc1c3 − 3

2
λc21c2 − c4

∣∣∣∣ ≤ 2.

Lemma 2.3 ([25,29]) If h ∈ P and c1 > 0, then

c2 = 1

2
[c21 + (4 − c21)x], (2.7)

c3 = 1

4
[c31 + 2c1(4 − c21)x − c1(4 − c21)x

2 + 2(4 − c21)(1 − |x |2)y], (2.8)

and

c4 = 1

8

[
c41 + 3c21(4 − c21)x + (4 − 3c21)(4 − c21)x

2 + c21(4 − c21)x
3

+ 4(4 − c21)(1 − |x |2)(c1y − c1xy − x y2) + 4(4 − c21)(1 − |x |2)(1 − |y|2)z],
(2.9)

hold for some x, y, z ∈ D := {z : |z| ≤ 1}.

3 Bound of
∣
∣H3,1 (f )

∣
∣ for the ClassRL

In this section, we derive the bound of
∣∣H3,1 ( f )

∣∣ for the class RL.
Theorem 3.1 Let f ∈ RL. Then

|a2| ≤ 1
4 , |a3| ≤ 1

6 , |a4| ≤ 1
8 , |a5| ≤ 1

10 , (3.1)

and these inequalities are the best possible.
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Proof If f ∈ RL, then we can rewrite (1.3) in terms of Schwarz functions w(z) as

f ′(z) = √
1 + w (z) (z ∈ D) . (3.2)

Also, if the function p ∈ P , then

p(z) = 1 + w(z)

1 − w(z)
= 1 + c1z + c2z

2 + . . . , (3.3)

and this further gives

w(z) = p(z) − 1

p(z) + 1
.

Putting the value of w in (3.2), we obtain

f ′(z) =
√

2p (z)

1 + p(z)
. (3.4)

Using the series form (3.3) of p, we have

√
2p (z)

1 + p(z)
= 1 + 1

4
c1z + 1

4

(
c2 − 5

8
c21

)
z2 + 1

4

(
c3 − 5

4
c1c2 + 13

32
c31

)
z3

+ 1

4

(
c4 − 5

8
c22 − 5

4
c1c3 + 39

32
c21c2 − 141

512
c41

)
z4 + · · · .

(3.5)

Similarly, using (1.1), we know that

f ′(z) = 1 + 2a2z + 3a3z
2 + 4a4z

3 + 5a5z
4 + · · · . (3.6)

From (3.4), (3.5) and (3.6), we can easily obtain the following coefficients,

a2 = 1

8
c1, (3.7)

a3 = 1

12

(
c2 − 5

8
c21

)
, (3.8)

a4 = 1

16

(
c3 − 5

4
c1c2 + 13

32
c31

)
, (3.9)

and

a5 = 1

20

(
c4 − 5

8
c22 − 5

4
c1c3 + 39

32
c21c2 − 141

512
c41

)
. (3.10)
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By virtue of (2.2) and (2.3), we get the bounds

|a2| ≤ 1
4 and |a3| ≤ 1

6 .

To prove the sharpness of the fourth coefficient, we consider

|a4| = 1

16

∣∣∣∣c3 − 5

4
c1c2 + 13

32
c31

∣∣∣∣

= 1

16

∣∣∣∣
13

32

(
c3 − 2c1c2 + c31

)
+ 7

16
(c3 − c1c2) + 5

32
c3

∣∣∣∣

≤ 1

16

[
13

32

∣∣∣
(
c3 − 2c1c2 + c31

)∣∣∣+ 7

16
|c3 − c1c2| + 5

32
|c3|

]

≤ 1

8

(
13

32
+ 7

16
+ 5

32

)
= 1

8
,

where we have used (2.2) , (2.3) and (2.4) . For the proof of |a5| ≤ 1
10 , consider

relationship (3.10) and compare it with (2.6), yields

ρ = 141

512
, δ = 5

8
, σ = 5

8
, λ = 13

16
.

These constants satisfy all the conditions of Lemma 2.2, and hence, the result follows.
To see the sharpness of the results, consider the function fn : D → C defined by

fn (z) =
z∫

0

√
1 + ζ ndζ = z + 1

2(n + 1)
zn+1 + · · · (n = 1, 2, 3, 4), (3.11)

we know that fn ∈ RL, it follows that the inequalities in (3.1) are sharp by taking
n = 1, 2, 3, 4. �

From (3.11), we conjecture the following result.

Conjecture 3.2 Let f ∈ RL. Then

|an| ≤ 1

2n
(n ≥ 2).

Theorem 3.3 Let f ∈ KL. Then for n ≥ 2,

|nan − bn|2 ≤
n−1∑

k=1

(
|kγ ak − bk |2 − |kak − bk |2

)
, (3.12)

where bn are the coefficients of g ∈ SL given by

g(z) = z +
∞∑

n=2

bnz
n (z ∈ D) , (3.13)
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and

γ = √
2 − 1. (3.14)

Proof From (1.2), we have

z f ′(z)
g(z)

≺ √
1 + z ≺ 1 + z

1 + γ z
,

where g ∈ SL. So we can rewrite

z f ′(z)
g(z)

= 1 + w(z)

1 + γw(z)
,

where w(0) = 0, |w(z)| < 1 and w(z) =
∞∑
n=1

cnzn for z ∈ D. Thus, we know that

z f ′(z) − g(z) = w(z)[g(z) − γ z f ′(z)].

Now, using (1.1) and (3.13), we get

∞∑

k=1

(kak − bk)z
k = w(z)

∞∑

k=1

(bk − kγ ak)z
k (a1 = b1 = 1).

Rewrite it as

n∑

k=1

(kak − bk)z
k +

∞∑

k=n+1

(kak − bk)z
k

= w(z)

[
n−1∑

k=1

(bk − kγ ak)z
k +

∞∑

k=n

(bk − kγ ak)z
k

]
,

it follows that

n∑

k=1

(kak − bk)z
k +

∞∑

k=n+1

(kak − bk)z
k − w(z)

∞∑

k=n

(bk − kγ ak)z
k

= w(z)
n−1∑

k=1

(bk − kγ ak)z
k .

By applying the same method as in Clunie and Keogh [15], we now write

n∑

k=1

(kak − bk)z
k +

∞∑

k=n+1

dkz
k = w(z)

n−1∑

k=1

(bk − kγ ak)z
k,
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for some dk (n + 1 ≤ k < ∞), where dk can be expressed in terms of the coefficients
ak, bk and ck as

dk = (kak − bk) −
k−n∑

j=1

(bk− j − (k − j)γ ak− j )c j .

This gives

∣∣∣∣∣

n∑

k=1

(kak − bk)z
k +

∞∑

k=n+1

dkz
k

∣∣∣∣∣

2

=
∣∣∣∣∣w(z)

n−1∑

k=1

(bk − kγ ak)z
k

∣∣∣∣∣

2

≤
∣∣∣∣∣

n−1∑

k=1

(bk − kγ ak)z
k

∣∣∣∣∣

2

.

Now, we consider

n∑

k=1

(kak − bk)z
k +

∞∑

k=n+1

dkz
k =

∞∑

k=1

ekz
k,

which is an analytic function in D. Parseval’s theorem [17] gives

2π∫

0

∣∣∣∣∣

∞∑

k=1

ek(re
iθ )k

∣∣∣∣∣

2

dθ = 2π
∞∑

k=1

|ek |2r2k .

For any r (0 < r < 1), by integrating the above relation with respect to θ from 0 to
2π , we obtain

n∑

k=1

|kak − bk |2r2k +
∞∑

k=n+1

|dk |2r2k ≤
n−1∑

k=1

|bk − kγ ak |2r2k .

Therefore,

n∑

k=1

|kak − bk |2r2k ≤
n−1∑

k=1

|bk − kγ ak |2r2k .

When r → 1, we deduce that

n∑

k=1

|kak − bk |2 ≤
n−1∑

k=1

|bk − kγ ak |2,

which leads to the desired result. �
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If we take g (z) = z, then b1 = 1 and bk = 0 for all k = 2, 3, . . . , n− 1. We easily
get the following Corollary.

Corollary 3.4 Let f ∈ RL. Then for n ≥ 3,

n2|an|2 ≤ (1 − γ )2 +
(
γ 2 − 1

) n−1∑

k=2

k2|ak |2. (3.15)

By setting n = 6 and n = 7 in (3.15), we obtain the following bounds of |a6| and
|a7|.
Corollary 3.5 Let f ∈ RL. Then

|a6| ≤ 2 − √
2

6
and |a7| ≤ 2 − √

2

7
. (3.16)

Theorem 3.6 Let f ∈ RL. Then, for λ ∈ R,

∣∣∣a3 − λa22

∣∣∣ ≤ 1

6
max

{
1,

1

8
|2 + 3λ|

}
,

and this inequality is sharp.

Proof From (3.7) and (3.8), we have

∣∣∣a3 − λa22

∣∣∣ = 1

12

∣∣∣∣c2 − 10 + 3λ

16
c21

∣∣∣∣ ≤ 1

6
max

{
1,

∣∣∣∣
2 + 3λ

8

∣∣∣∣

}
,

where we have used inequality (2.5) . This result is sharp for the functions

f1 (z) =
z∫

0

√
1 + ζdζ = z + 1

4
z2 − 1

24
z3 + · · · , (3.17)

and

f2 (z) =
z∫

0

√
1 + ζ 2dζ = z + 1

6
z3 − 1

40
z5 + · · · . (3.18)

�
For λ = 1, we obtain the following Corollary.

Corollary 3.7 Let f ∈ RL. Then
∣∣∣a3 − a22

∣∣∣ ≤ 1

6
, (3.19)

and this inequality is sharp for the function f2 given by (3.18).
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Theorem 3.8 Let f ∈ RL. Then

|a2a3 − a4| ≤ 1

8
, (3.20)

and this bound is the best possible.

Proof From (3.7), (3.8), (3.9), we know that

|a2a3 − a4| = 1

16

∣∣∣∣
49

96
c31 − 17

12
c1c2 + c3

∣∣∣∣

= 1

16

∣∣∣∣
49

96

(
c3 − 2c1c2 + c31

)
+ 19

48
(c3 − c1c2) + 3

32
c3

∣∣∣∣

≤ 1

16

{
49

96

∣∣∣
(
c3 − 2c1c2 + c31

)∣∣∣+ 19

48
|(c3 − c1c2)| + 3

32
|c3|

}

≤ 1

16

(
49

48
+ 19

24
+ 3

16

)
= 1

8
,

where we have used triangle inequality along with Lemma 2.1. This result is sharp for
the function

f3 (z) =
z∫

0

√
1 + ζ 3dζ = z + 1

8
z4 − 1

56
z7 + · · · . (3.21)

�
The result given below has been proved in [28], but we still present it for the reader.

Theorem 3.9 Let f ∈ RL. Then
∣∣∣a2a4 − a23

∣∣∣ ≤ 1

36
. (3.22)

This inequality is sharp.

Motivated by the papers [9,21,22,27], we now determine the sharp bound of third-
order Hankel determinant for the familyRL of bounded turning functions connected
with Bernoulli’s lemniscate.

Theorem 3.10 Let f ∈ RL. Then
∣∣H3,1 ( f )

∣∣ ≤ 1

64
. (3.23)

This result is sharp.
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Proof From (1.5), we have

H3,1 ( f ) = 2a2a3a4 − a33 − a24 + a3a5 − a22a5. (3.24)

Putting the values of a j ( j = 2, 3, 4, 5) in (3.7)–(3.10) to (3.24), we get

H3,1( f ) = 3479

35389440

(
c61 − 15504

3479
c41c2 + 8640

3479
c31c3 + 19392

3479
c21c

2
2 − 119808

3479
c21c4

+ 207360

3479
c1c2c3 − 112640

3479
c32 + 147456

3479
c2c4 − 138240

3479
c23

)
.

By using (2.7)–(2.9) and letting c1 = c ∈ [0, 2], t = 4 − c2, also, by straightforward
algebraic computations, we have

H3,1( f ) = 3479

35389440

[
25

497
c6 + 36864

3479
t2x3 − 14080

3479
t3x3

− 23040

3479
c2t x2 − 5760

3479
c4t x3 + 6480

3479
c4t x2

− 120

497
c4t x + 576

3479
c2t2x4 − 19008

3479
c2t2x3

+ 7536

3479
c2t2x2 − 34560

3479
t2
(
1 − |x |2

)2
y2

− 1440

3479
c3t

(
1 − |x |2

)
y

+ 23040

3479
c3t x

(
1 − |x |2

)
y + 23040

3479
c2t x

(
1 − |x |2

)
y2

− 23040

3479
c2t

(
1 − |x |2

) (
1 − |y|2

)
z

− 2304

3479
ct2x2

(
1 − |x |2

)
y − 36864

3479
t2xx

(
1 − |x |2

)
y2

+19584

3479
ct2x

(
1 − |x |2

)
y + 36864

3479
t2x

(
1 − |x |2

) (
1 − |y|2

)
z

]
.

Therefore,

H3,1( f ) = 3479

35389440

[
v1 (c, x) + v2(c, x)y + v3 (c, x) y2 + 
(c, x, y)z

]
,
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where x, y, z ∈ D, and

v1 (c, x) = 25

497
c6 +

(
4 − c2

) [ (
4 − c2

)(
−19456

3479
x3 − 704

497
c2x3

+ 576

3479
c2x4 + 7536

3479
c2x2

)

− 23040

3479
c2x2 − 5760

3479
c4x3 + 6480

3479
c4x2 − 120

497
c4x

]
,

v2 (c, x) =
(
4 − c2

) (
1 − |x |2

)

[(
4 − c2

)(19584

3479
cx − 2304

3479
cx2

)
+ 23040

3479
c3x − 1440

3479
c3
]

,

v3 (c, x) =
(
4 − c2

) (
1 − |x |2

) [(
4 − c2

)(
−2304

3479
x2 − 34560

3479

)
+ 23040

3479
c2x

]
,

and


 (c, x, y) =
(
4 − c2

) (
1 − |x |2

) (
1 − |y|2

) [
−23040

3479
c2 + 36864

3479
x
(
4 − c2

)]
.

Now, by using |x | = x, |y| = y and utilizing the fact |z| ≤ 1, we get

∣∣H3,1 ( f )
∣∣ ≤ 3479

35389440

(
|v1 (c, x)| + |v2 (c, x)| y + |v3 (c, x)| y2 + |
 (c, x, y)|

)

= 3479

35389440
G (c, x, y) ,

(3.25)

where

G (c, x, y) = g1 (c, x) + g2 (c, x) y + g3 (c, x) y2 + g4 (c, x)
(
1 − y2

)
,

(3.26)

with

g1 (c, x) = 25

497
c6 +

(
4 − c2

) [ (
4 − c2

)(19456

3479
x3 + 704

497
c2x3

+ 576

3479
c2x4 + 7536

3479
c2x2

)

+ 23040

3479
c2x2 + 5760

3479
c4x3 + 6480

3479
c4x2 + 120

497
c4x

]
,
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g2 (c, x) =
(
4 − c2

) (
1 − |x |2

)

[(
4 − c2

)(19584

3479
cx + 2304

3479
cx2

)
+ 23040

3479
c3x + 1440

3479
c3
]

,

g3 (c, x) =
(
4 − c2

) (
1 − |x |2

)

[(
4 − c2

)(2304

3479
x2 + 34560

3479

)
+ 23040

3479
c2x

]
,

and

g4 (c, x) =
(
4 − c2

) (
1 − |x |2

) [23040
3479

c2 + 36864

3479
x
(
4 − c2

)]
.

Let the closed cuboid be � : [0, 2] × [0, 1] × [0, 1]. We have to obtain the points of
maxima inside �, inside the six faces and on the twelve edges in order to maximize
G.

(I) Let (c, x, y) ∈ (0, 2) × (0, 1) × (0, 1). Now, to find points of maxima inside �,
we take partial derivative of (3.26) with respect to y and get

∂G

∂ y
= 288

3479
(4 − p2)(1 − x2){16y(x − 1)[(x − 15)(4 − c2) + 10c2]

+ c[4x(4 − c2)(17 + 2x) + 5c2(1 + 16x)]}.

For ∂G
∂ y = 0, yields

y = c[4x(4 − c2)(17 + 2x) + 5c2(1 + 16x)]
16(x − 1)[(4 − c2)(15 − x) − 10c2] := y0.

If y0 is a critical point inside �, then y0 ∈ (0, 1), which is possible only if

5c3(1 + 16x) + 4cx(4 − c2)(17 + 2x)

+ 16(1 − x)(4 − c2)(15 − x) < 160c2(1 − x), (3.27)

and

c2 >
4(15 − x)

25 − x
. (3.28)

Now, we have to obtain the solutions which satisfy both inequalities (3.27) and (3.28)
for the existence of the critical points. Let

g(x) := 4(15 − x)

25 − x
.
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Since g′(x) < 0 for (0, 1), g(x) is decreasing in (0, 1). Hence c2 > 7/3 and a simple
exercise shows that ( 3.27) does not hold in this case for all values of x ∈ (0, 1) and
there is no critical point of G in (0, 2) × (0, 1) × (0, 1).

(II) To find points of maxima inside the six faces of �. We deal with each face
individually.

When c = 0, G(c, x, y) reduces to

h1(x, y) := G(0, x, y)

= 4096
[
9(1 − x2)(y2(x − 1)(x − 15) + 16x) + 76x3

]

3479
(x, y ∈ (0, 1)). (3.29)

h1 has no optimal point in (0, 1) × (0, 1) since

∂h1
∂ y

= 73728
[
y(1 − x2)(x − 1)(x − 15)

]

3479
�= 0 (x, y ∈ (0, 1)). (3.30)

When c = 2, G(c, x, y) reduces to

G(2, x, y) = 1600

497
(x, y ∈ (0, 1)). (3.31)

When x = 0, G(c, x, y) reduces to G(c, 0, y), given by

h2(c, y) :=
[
34560

3479
(4 − c2)2 − 23040

3479
(4 − c2)c2

]
y2 + 1440

3479
(4 − c2)c3y

+ 25

497
c6 + 23040

3479
(4 − c2)c2, (3.32)

where c ∈ (0, 2) and y ∈ (0, 1). We solve ∂h2
∂ y = 0 and ∂h2

∂c = 0 to find the points of

maxima. By solving ∂h2
∂ y = 0, we obtain

y = − c3

16(12 − 5c2)
=: y1. (3.33)

For the given range of y, y1 should belong to (0, 1), which is possible only if c > c0,
c0 ≈ 1.549193338. ∂h2

∂c = 0 implies that

(−24576 + 7680c2)y2 + (576c − 240c3)y + 35c4 − 3072c2 + 6144 = 0.(3.34)

By substituting (3.33) into (3.34), we get

− 40368c6 + 415c8 + 263424c4 − 589824c2 + 442368 = 0. (3.35)
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A calculation given in the solution of (3.35) in (0, 2) is c approximately equal to
1.420061367. Thus, h2 has no optimal point in (0, 2) × (0, 1).

When x = 1, G(c, x, y) reduces to

h3(c, y) := G(c, 1, y)

= 311296 + 145152c2 − 55584c4 + 135c6

3479
(c ∈ (0, 2)). (3.36)

By solving ∂h3
∂c = 0, we obtain that the critical points are c =: c0 = 0 and

c := c1 = 4

15

√
1930 − 5

√
146161 ≈ 1.145412714.

Here, c0 is the minimum point of h3. Thus, h3 achieves its maximum

−457485033472 + 1197350912
√
146161

2348325
≈ 116.804

at c1.
When y = 0, G(c, x, y) reduces to

h4(c, x) := G(c, x, 0)

= 1

3479

⎛

⎝
175c6 + (4 − c2)

[
(4 − c2)(7536c2x2 + 576x4c2

−17408x3 + 4928x3c2 + 36864x) + 840c4x + 5760c4x3

+6480c4x2 + 23040c2
]

⎞

⎠ .

A calculation shows that there does not exist any solution for the system of equations
∂h4
∂x = 0 and ∂h4

∂c = 0 in (0, 2) × (0, 1).
When y = 1, G(c, x, y) reduces to

G(c, x, 1) = 1

3479

⎛

⎜⎜⎜⎜⎝

175c6 + (4 − c2)[(4 − c2)(576x4c2 + 2304cx2 + 19584cx
−2304x4c + 19456x3 + 7536c2x2 − 19584x3c + 34560
−32256x2 + 4928x3c2 − 2304x4) + 5760c4x3 − 1440x2c3

−23040x3c3 + 840c4x + 23040c2x + 23040c2x2 + 6480c4x2

+23040c3x + 1440c3 − 23040x3c2]

⎞

⎟⎟⎟⎟⎠

=: h5(c, x).

A calculation shows that there does not exist any solution for the system of equations
∂h5
∂x = 0 and ∂h5

∂c = 0 in (0, 2) × (0, 1).
(III) Now, we are going to find the maxima of G(c, x, y) on the edges of �. By

putting y = 0 in (3.32), we have

G(c, 0, 0) =: m1(c) = 175c6 + 92160c2 − 23040c4

3479
.
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We note that m′
1(c) = 0 for c =: λ0 = 0 and

c =: λ1 = (4/35)

√
3360 − 70

√
2094 ≈ 1.431005319 ∈ [0, 2],

where λ0 is minimum point and maximum point of m1 is achieved at λ1 . We can see
that

G(c, 0, 0) ≤ (−6256852992 + 137232384
√
2094)/852355 ≈ 26.90720149 (c ∈ [0, 2]).

Solving equation (3.32) at y = 1, we get

G(c, 0, 1) = m2(c) := 175c6 + 5760c3 − 1440c5 + 552960 − 276480c2 + 34560c4

3479
.

Since m′
2(c) < 0 for [0, 2], we know that m2(c) is decreasing in [0, 2] and the

maximum is achieved at c = 0. Thus,

G(c, 0, 1) ≤ 552960

3479
≈ 158.9422248 (c ∈ [0, 2]).

By taking c = 0 in (3.32), we get

G(0, 0, y) = 552960y2

3479
.

A simple calculation gives

G(0, 0, y) ≤ 552960

3479
≈ 158.9422248 (y ∈ [0, 1]).

As we see that Eq. (3.36) is independent of y, we have

G(c, 1, 1) = G(c, 1, 0) = m3(c) := 311296 + 145152c2 − 55584c4 + 135c6

3479
.

Now, m′
3(c) = 0 for c =: λ0 = 0 and

c =: λ1 = 4

15

√
1930 − 5

√
146161 ≈ 1.145412714 ∈ [0, 2],

where λ0 is minimum point, and maximum point of m3(c) is achieved at λ1. We
conclude that

G(c, 1, 1) = G(c, 1, 0)
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≤ −457485033472 + 1197350912
√
146161

2348325
≈ 116.804 (c ∈ [0, 2]).

By setting c = 0 in Eq. (3.36), we get

G(0, 1, y) = 311296

3479
≈ 89.4785858.

As (3.31) is independent of x and y, thus, we have

G(2, 1, y) = G(2, 0, y)

= G(2, x, 0) = G(2, x, 1)

= 1600

497
≈ 3.219315895 (x, y ∈ [0, 1]).

By taking y = 0 in (3.29), we get

G(0, x, 0) = m4(x) := −278528x3 + 589824x

3479
.

Now, m′
4(x) = 0 for

x =: x0 = 2
√
51

17
≈ 0.8401680504 ∈ [0, 1],

we know that m4(x) is an increasing function for x ≤ x0 and decreasing for x0 ≤ x .
Hence, m4(x) has its maximum at x = x0, and we conclude that

G(0, x, 0) ≤ 786432
√
51

59143
≈ 94.96048292 (x ∈ [0, 1]).

By putting y = 1 in (3.29), we get

G(0, x, 1) =: m5(x) = −36864x4 + 311296x3 − 516096x2 + 552960

3479
.

By observing that m′
5(x) < 0 for [0, 1], m5(x) is decreasing in [0, 1] and hence

achieves its maxima at x = 0. Thus,

G(0, x, 1) ≤ 552960

3479
≈ 158.9422248 (x ∈ [0, 1]).

From above cases, we conclude that

G (c, x, y) ≤ 552960

3479
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on [0, 2] × [0, 1] × [0, 1]. It follows from (3.25) that

H3,1 ( f ) ≤ 3479

35389440
G (c, x, y) ≤ 1

64
≈ 0.01562.

If f ∈ RL, then sharp bound for this Hankel determinant is determined by

H3,1 ( f ) = 1

64
≈ 0.01562,

with an extremal function

f3 (z) =
z∫

0

√
1 + ζ 3dζ = z + 1

8
z4 − 1

56
z7 + · · · . (3.37)

�

4 Bound of
∣
∣H4,1(f )

∣
∣ for the ClassRL

In this section, we investigate the bound of
∣∣H4,1( f )

∣∣ for the class RL.
Theorem 4.1 Let f ∈ RL. Then

∣∣∣a5 − a23

∣∣∣ ≤ 1

10
. (4.1)

The bound is sharp.

Proof From (3.8) and (3.10), we obtain

∣∣∣a5 − a23

∣∣∣ = 1

20

∣∣∣∣
1519

4608
c41 − 401

288
c21c2 + 5

4
c3c1 + 55

72
c22 − c4

∣∣∣∣ . (4.2)

Comparing the right side of (4.2) with

∣∣∣∣ρc
4
1 + 2δc1c3 + σc22 − 3

2
λc21c2 − c4

∣∣∣∣ ,

we get ρ = 1519
4608 , δ = 5

8 , σ = 55
72 and λ = 401

432 . It follows that

8σ(1 − σ)
[
(δλ − 2ρ)2 + (δ(σ + δ) − λ)2

]
+ δ(1 − δ)(λ − 2σδ)2 = 0.014429,

and

4δ2(1 − δ)2σ(1 − σ) = 0.03963.

123



342 Z.-G. Wang et al.

By Lemma 2.2, we deduce that

∣∣∣a5 − a23

∣∣∣ ≤ 1

10
.

For the sharpness, we consider the function f4 : D →C defined by

f4 (z) =
z∫

0

√
1 + ζ 4dζ = z + 1

10
z5 − 1

72
z9 + · · · .

�
Theorem 4.2 Let f ∈ RL. Then

|a2a5 − a3a4| ≤ 0.02645871784. (4.3)

Proof From the coefficient bounds given in (3.7), (3.8), (3.9) and (3.10), along with
c1 = c, we have

|a2a5 − a3a4| = 1

122880

∣∣∣−49c5 + 176c3c2 − 560c2c3 + 320cc22 + 768cc4 − 640c2c3
∣∣∣ .

Let t = 4 − c21 and using Lemma 2.3, we obtain

|a2a5 − a3a4|
= 1

122880

{
−5c5 + 96c3x3t + 80cx3t2 − 384ct x̄

(
1 − |x |2

)
y2 − 384c2t x

(
1 − |x |2

)
y

− 68x2tc3 − 160t2
(
1 − |x |2

)
xy − 80x2t2c + 384ct

(
1 − |x |2

) (
1 − |y|2

)
z

−56c2t
(
1 − |x |2

)
y + 16t xc3 + 384t x2c

}
.

Since t = 4 − c2, we get

|a2a5 − a3a4| = 1

122880

(
f1 (c, x) + f2 (c, x) y + f3 (c, x) y2 + f4 (c, x, y) z

)
,

where

f1 (c, x) = −5c5 +
(
4 − c2

) [(
4 − c2

) (
80x3c − 80x2c

)

+96x3c3 − 68x2c3 + 16xc3 + 384x2c
]
,

f2 (c, x) =
(
4 − c2

) (
1 − |x |2

) [
−160

(
4 − c2

)
x − 384xc2 − 56c2

]
,

f3 (c, x) = −384c
(
4 − c2

) (
1 − |x |2

)
x̄,
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and

f4 (c, x, y) = 384c
(
1 − |x |2

) (
1 − |y|2

)
.

Now, by using |x | = x , |y| = y and taking |z| ≤ 1, we obtain

|a2a5 − a3a4| ≤ 1

122880

(
| f1 (c, x)| + | f2 (c, x)| y + | f3 (c, x)| y2 + | f4 (c, x, y)|

)

≤ Q(c, x, y), (4.4)

where

Q(c, x, y) := 1

122880

[
q1(c, x) + q2(c, x)y + q3(c, x)y

2 + q4(c, x)(1 − y2)
]

(4.5)

with

q1 (c, x) := 5c5 +
(
4 − c2

) [(
4 − c2

) (
80x3c + 80x2c

)

+96x3c3 + 68x2c3 + 16xc3 + 384x2c
]
,

q2 (c, x) :=
(
4 − c2

) (
1 − x2

) [
160

(
4 − c2

)
x + 384xc2 + 56c2

]
,

q3 (c, x) := 384c
(
4 − c2

) (
1 − x2

)
x,

and

q4 (c, x) := 384c
(
1 − x2

)
.

Let the closed cuboid be � : [0, 2] × [0, 1] × [0, 1]. We have to obtain the points of
maxima inside �, inside the six faces and on the twelve edges in order to maximize
Q.

(I) Let (c, x, y) ∈ (0, 2) × (0, 1) × (0, 1). Now, to find points of maxima inside �,
we take partial derivative of (4.5) with respect to y and get

∂Q

∂ y
= 1

15360
(1 − x2)

{
[96c(4 − c2)x − 96c]y + 20(4 − c2)2x

+48(4 − c2)c2x + 7(4 − c2)c2
}

.

For ∂Q
∂ y = 0, yields

y = 20(4 − c2)2x + 48(4 − c2)c2x + 7(4 − c2)c2

96c[1 − (4 − c2)x] := y0.
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If y0 is a critical point inside �, then y0 ∈ (0, 1), which is possible only if

20(4 − c2)2x + 48(4 − c2)c2x + 7(4 − c2)c2 < 96c[1 − (4 − c2)x], (4.6)

and

c2 >
4x − 1

x
=: g1(x). (4.7)

We have to obtain the solutions which satisfy both inequalities (4.6) and (4.7) for the
existence of the critical points. A simple exercise shows that (4.6) does not hold in this
case for all values of x ∈ (0, 1), and there is no critical point of Q in (0, 2) × (0, 1) ×
(0, 1).

(II) To find points of maxima inside the six faces of �. We deal with each case
individually.

When c = 0, Q(c, x, y) reduces to

t1(x, y) := Q(0, x, y) = x(1 − x2)y

48
(x, y ∈ (0, 1)). (4.8)

t1 has no critical point in (0, 1) × (0, 1) since

∂t1
∂ y

= x(1 − x2)

48
�= 0 (x, y ∈ (0, 1)). (4.9)

When c = 2, Q(c, x, y) reduces to

t2(x, y) := Q(2, x, y) = 24(1 − x2)(1 − y2) + 5

3840
(x, y ∈ (0, 1)). (4.10)

t2 has no critical point in (0, 1) × (0, 1) since

∂t2
∂ y

= − (1 − x2)y

80
�= 0 (x, y ∈ (0, 1)). (4.11)

When x = 0, Q(c, x, y) reduces to

t3(c, y) := Q(c, 0, y) = −384cy2 + 56(4 − c2)c2y + 5c5 + 384c

122880
, (4.12)

where c ∈ (0, 2) and y ∈ (0, 1). A calculation shows that there does not exist any
solution for the system of equations ∂t3

∂ y = 0 and ∂t3
∂c = 0 in (0, 2) × (0, 1).

When x = 1, Q(c, x, y) reduces to

t4(c, y) := Q(c, 1, y) = 4096c − 944c3 − 15c5

122880
(c ∈ (0, 2)). (4.13)
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Solving ∂t4
∂c = 0, we obtain optimal point at

c =: c0 = 2

15

√
−1062 + 6

√
36129 ≈ 1.181018790.

Thus, t4 achieves its maximum at c0 that is

(
5081

450000
− 59

√
36129

1350000

)
·
√

−1062 + 6
√
36129 ≈ 0.02643184534.

When y = 0, Q(c, x, y) reduces to

t5(c, x) := Q(c, x, 0)

= 1

122880

(
5c5 − 384cx2 + 384c + (4 − c2)

[
(4 − c2)(80x3c + 80cx2)

+96x3c3 + 384cx2 + 68x2c3 + 16xc3
]

)
.

A calculation shows that there exists a unique solution (c, x) ≈
(1.894283613, 0.3232411338) for the system of equations ∂t5

∂x = 0 and ∂t5
∂c = 0

in (0, 2) × (0, 1). We conclude that

t5(c, x) := Q(c, x, 0) ≈ 0.006930539679.

When y = 1, Q(c, x, y) reduces to

Q(c, x, 1) = 1

122880

⎛

⎝
5c5 + (4 − c2)[(4 − c2)(−160x3 + 160x + 80cx3 + 80cx2)
+384cx − 384cx3 + 384cx2 + 68x2c3 + 16xc3 + 96x3c3

−384x3c2 + 384c2x + 56c2 − 56x2c2]

⎞

⎠

=: t6(c, x).

A calculation shows that there exists a unique solution

(c, x) ≈ (1.176425264, 0.9758744867)

for the system of equations ∂t6
∂x = 0 and ∂t6

∂c = 0 in (0, 2) × (0, 1). We deduce that

t6(c, x) := Q(c, x, 1) ≈ 0.02645871784.

(III) Now, we are going to find the maxima of Q(c, x, y) on the edges of �.
By putting y = 0 in (4.8), we get Q(0, x, 0) = 0, where x ∈ [0, 1].
By setting y = 1 in (4.8), we get

Q(0, x, 1) = n5(x) := x − x3

48
.
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By noting that n′
5(x) = 0 for x =: x0 = 1/

√
3 in [0, 1]. Since n5(x) is increasing for

x ≤ x0 and decreasing for x0 ≤ x , it achieves maxima at x0. Hence

Q(0, x, 1) ≤
√
3

216
≈ 0.008018753741 (x ∈ [0, 1]).

By taking y = 0 in (4.10), we get

Q(2, x, 0) = n4(x) := 29 − 24x2

3840
.

Since n′
4(x) < 0 for x ∈ [0, 1], we know that n4(x) is decreasing in [0, 1]. Thus, it

achieves maxima at x = 0. Hence

Q(2, x, 0) ≤ 29

3840
≈ 0.007552083 (x ∈ [0, 1]).

By putting y = 1 in (4.10), we get

Q(2, x, 1) ≤ 1

768
≈ 0.001302083 (x ∈ [0, 1]).

By setting y = 0 in (4.12), we have

Q(c, 0, 0) =: n1(c) = 5c5 + 384c

122880
.

Since n′
1(c) > 0 for c ∈ [0, 2], we see that n1(c) is increasing in [0, 2] and hence

attains its maximum value at c = 2. Thus,

Q(c, 0, 0) ≤ 29

3840
≈ 0.007552083 (c ∈ [0, 2]).

Solving Eq. (4.12) at y = 1, we get

Q(c, 0, 1) = n2(c) := 5c5 − 56c4 + 224c2

122880
.

It is easy to verify that the function n′
2(c) = 0 for c =: c0 = 0 and

c =: c1 ≈ 1.555704593

in the interval [0, 2]. We observe that c0 is the point of minima and themaximum value
of n2(c) is approximately equal to 0.002113230011, which is attained at c1, thus,

Q(c, 0, 1) ≤ 0.002113230011 (c ∈ [0, 2]).
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By putting c = 0 in (4.12), we get

Q(0, 0, y) ≤ 0 (y ∈ [0, 1]).

By setting c = 2 in (4.12), we obtain

Q(2, 0, y) = 29 − 24y2

3840
.

A simple calculation gives

Q(2, 0, y) ≤ 29

3840
≈ 0.007552083 (y ∈ [0, 1]).

As we see that Eq. (4.13) is independent of y, so we have

Q(c, 1, 1) = Q(c, 1, 0) = n3(c) := 4096c − 944c3 − 15c5

122880
.

Now, n′
3(c) = 0 for

c =: c0 = 2

15

√
−1062 + 6

√
36129 ≈ 1.18101879 ∈ [0, 2]

and n3(c) achieves its maximum at c0. We conclude that

Q(c, 1, 1) = Q(c, 1, 0) ≤
(

5081

450000
− 59

1350000

√
36129

)√
−1062 + 6

√
36129

≈ 0.02643184534 (c ∈ [0, 2]).

By putting c = 0 in Eq. (4.13), we get

Q(0, 1, y) ≤ 0 (y ∈ [0, 1]).

By setting c = 2 in Eq. (4.13), we have

Q(2, 1, y) ≤ 1

768
≈ 0.001302083 (y ∈ [0, 1]).

Therefore, by virtue of all the above cases, we deduce that inequality (4.3) holds. �
Theorem 4.3 Let f ∈ RL. Then

∣∣∣a3a5 − a24

∣∣∣ ≤ 1

64
. (4.14)

The bound is sharp.
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Proof From (3.8), (3.9) and (3.10), along with c1 = c, we have

∣∣∣a3a5 − a24

∣∣∣ = 1

3932160

∣∣∣285c6 − 1392c4c2 + 320c3c3 + 2368c2c22 − 10240c2c4

+ 17920cc2c3 − 10240c32 + 16384c2c4 − 15360c23

∣∣∣.

Let t = 4 − c21 and using Lemma 2.3, we obtain

∣∣∣a3a5 − a24

∣∣∣

= 1

3932160

{
5c6 − 56c4xt + 368c4x2t + 464c2x2t2 − 1024c2t x2 − 256c4t x3

− 1472x3t2c2 + 64t2x4c2 − 3840t2
(
1 − |x |2

)2
y2 + 1024c2t x̄

(
1 − |x |2

)
y2

+ 1024c3t
(
1 − |x |2

)
xy − 1024c2t

(
1 − |x |2

) (
1 − |y|2

)
z + 896cxt2

(
1 − |x |2

)
y

− 256ct2x2
(
1 − |x |2

)
y + 4096xt2

(
1 − |x |2

) (
1 − |y|2

)
z − 224c3t

(
1 − |x |2

)
y

− 1280x3t3 + 4096x3t2 − 4096xt2 x̄
(
1 − |x |2

)
y2
}
.

Since t = 4 − c2, we know that

∣∣∣a3a5 − a24

∣∣∣ = 1

3932160

(
u1 (c, x) + u2 (c, x) y + u3 (c, x) y2 + u4 (c, x, y) z

)
,

where

u1(c, x) = 5c6 + (4 − c2)2(64x4c2 − 192x3c2 + 464x2c2 − 1024x3)

+ (4 − c2)(−1024x2c2 + 368c4x2 − 56c4x − 256c4x3),

u2(c, x) = −32c(4 − c2)(1 − |x |2)[c2(−32x + 7) + (4 − c2)x(8x − 28)],
u3(c, x) = −256(4 − c2)(1 − |x |2)[(4 − c2)(15 + x2) − 4c2 x̄],

and

u4(c, x, y) = 1024(4 − c2)(1 − |x |2)(1 − |y|2)[4x(4 − c2) − c2].

Now, by using |x | = x , |y| = y and taking |z| ≤ 1, we obtain

∣∣∣a3a5 − a24

∣∣∣ ≤ 1

3932160

(
|u1 (c, x)| + |u2 (c, x)| y + |u3 (c, x)| y2 + |u4 (c, x, y)|

)

≤ S(c, x, y),

where

S(c, x, y) = 1

3932160

[
s1 (c, x) + s2 (c, x) y + s3 (c, x) y2 + s4 (c, x)

(
1 − y2

)]
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(4.15)

with

s1(c, x) = 5c6 + (4 − c2)2(64x4c2 + 192x3c2 + 464x2c2 + 1024x3)

+ (4 − c2)(1024x2c2 + 368c4x2 + 56c4x + 256c4x3),

s2(c, x) = 32c(4 − c2)(1 − x2)[c2(32x + 7) + (4 − c2)x(8x + 28)],
s3(c, x) = 256(4 − c2)(1 − x2)[(4 − c2)(15 + x2) + 4c2x],

and

s4(c, x) = 1024(4 − c2)(1 − x2)[4x(4 − c2) + c2].

Let the closed cuboid be � : [0, 2] × [0, 1] × [0, 1]. We have to obtain the points
of maxima inside �, inside the six faces and on the twelve edges in order to maximize
Q.

(I) Let (p, x, y) ∈ (0, 2) × (0, 1) × (0, 1). Now, to find points of maxima inside
�, we take partial derivative of (4.15) with respect to y and get

∂S

∂ y
= 1

122880
(4 − c2)(1 − x2)

{
16y(x − 1)[(4 − c2)(x − 15) + 4c2]

+ c[4x(4 − c2)(7 + 2x) + c2(7 + 32x)]}.

For ∂S
∂ y = 0, yields

y = c[4x(4 − c2)(7 + 2x) + c2(7 + 32x)]
16(x − 1)[(4 − c2)(15 − x) − 4c2

:= y0.

If y0 is a critical point inside �, then y0 ∈ (0, 1), which is possible only if

c3(7 + 32x) + 4cx(4 − c2)(7 + 2x) + 16(1 − x)(4 − c2)(15 − x) < 64c2(1 − x),

(4.16)

and

c2 >
4(15 − x)

19 − x
. (4.17)

Now, we have to obtain the solutions which satisfy both inequalities (4.16) and (4.17)
for the existence of the critical points.

Let

g2(x) := 4(15 − x)

19 − x
.
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Since g′
2(x) < 0 for (0, 1), g2(x) is decreasing in (0, 1). Hence c2 > 28/9, a simple

exercise shows that (4.16) does not hold in this case for all values of x ∈ (0, 1), and
there is no critical point of S in (0, 2) × (0, 1) × (0, 1).

(II) Now, to find points of maxima inside the six faces of�. We deal with each case
individually.

When c = 0, S(c, x, y) reduces to

�1(x, y) := S(0, x, y) = (1 − x2)(y2(x − 1)(x − 15) + 16x) + 4x3

960
(x, y ∈ (0, 1)).

(4.18)

�1 has no optimal point in (0, 1) × (0, 1) since

∂�1

∂ y
= y(1 − x2)(x − 1)(x − 15)

480
�= 0 (x, y ∈ (0, 1)). (4.19)

When c = 2, S(c, x, y) reduces to

S(2, x, y) = 1

12288
(x, y ∈ (0, 1)). (4.20)

When x = 0, S(c, x, y) reduces to S(c, 0, y), given by

�2(c, y) := 256y2(240 − 136c2 + 19c4) + 224c3y(4 − c2) + 5c6 + 4096c2 − 1024c4

3932160
,

(4.21)

where c ∈ (0, 2) and y ∈ (0, 1). We solve ∂�2
∂ y = 0 and ∂�2

∂c = 0 to find the points of

maxima. By solving ∂�2
∂ y = 0, we obtain

y = − 7c3

16(60 − 19c2)
=: y1. (4.22)

For the given range of y, y1 should belong to (0, 1), which is possible only if c > c0,
c0 ≈ 1.777046633. A calculation shows that ∂�2

∂c = 0, which implies that

(−34816 + 9728c2)y2 + (1344c − 560c3)y + 15c4 + 4096 − 2048c2 = 0.

(4.23)

By substituting (4.22) into (4.23), we get

− 377160c6 + 1311c8 + 3083408c4 − 8355840c2 + 7372800 = 0. (4.24)

A calculation gives the solution of (4.24) in (0, 2) that is c ≈ 1.413134655. Thus �2
has no optimal point in (0, 2) × (0, 1).
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When x = 1, S(c, x, y) reduces to

�3(c, y) := S(c, 1, y) = 45c6 − 3040c4 + 7424c2 + 16384

3932160
(c ∈ (0, 2)).(4.25)

By solving ∂�3
∂c = 0, we obtain the critical point are c =: c0 = 0 and

c := c1 = 4

45

√
2850 − 15

√
32185 ≈ 1.120751931,

where c0 is minimum point and maximum point of �3 is achieved at c1 that is

− 45071

209952
+ 6437

√
32185

5248800
≈ 0.00534108401.

When y = 0, S(c, x, y) reduces to

�4(c, x) := S(c, x, 0)

= 1

3932160(
5c6 + (4 − c2)[(4 − c2)(64x4c2 + 464x2c2 − 3072x3 + 4096x
+192x3c2) + 368c4x2 + 56c4x + 256c4x3 + 1024c2]

)
.

A calculation shows that there does not exist any solution for the system of equations
∂�4
∂x = 0 and ∂�4

∂c = 0 in (0, 2) × (0, 1).
When y = 1, S(c, x, y) reduces to

S(c, x, 1) = 1

3932160⎛

⎜⎜⎝

5c6 + (4 − c2)
[
(4 − c2)(896cx + 256cx2 + 192x3c2 − 896cx3

+1024x3 − 256cx4 + 64x4c2 + 3840 + 464x2c2 − 256x4 − 3584x2)
+368c4x2 − 224c3x2 + 256c4x3 − 1024c3x3 + 1024c3x + 56c4x
+224c3 + 1024x2c2 − 1024x3c2 + 1024c2x

]

⎞

⎟⎟⎠

=: �5(c, x).

A calculation shows that there does not exist any solution for the system of equations
∂�5
∂x = 0 and ∂�5

∂c = 0 in (0, 2) × (0, 1).
(III) We are going to find the maxima of S(c, x, y) on the edges of �. By taking

y = 0 in (4.21), we have

S(c, 0, 0) =: l1(c) = 5c6 + 4096c2 − 1024c4

3932160
.

Now, l ′1(c) = 0 for c =: λ0 = 0 and

c =: λ1 = 8

15

√
240 − 15

√
241 ≈ 1.424846645 ∈ [0, 2],
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where λ0 is minimum point and maximum point of l1 is λ1, we see that

S(c, 0, 0) ≤ −7472 + 482
√
241

10125
≈ 0.0010520697 (c ∈ [0, 2]).

By solving Eq. (4.21) at y = 1, we get

S(c, 0, 1) = l2(c) := 5c6 − 224c5 + 3840c4 + 896c3 − 30720c2 + 61440

3932160
.

Since l ′2(c) < 0 for [0, 2], we know that l2(c) is decreasing in [0, 2] and hence maxima
is achieved at c = 0. Thus,

S(c, 0, 1) ≤ 1

64
≈ 0.015625 (c ∈ [0, 2]).

By setting c = 0 in (4.21), we get S(0, 0, y) = y2/64. A simple calculation gives

S(0, 0, y) ≤ 1

64
≈ 0.015625 (y ∈ [0, 1]).

As we see that Eq. (4.25) is independent of y, we have

S(c, 1, 1) = S(c, 1, 0) = l3(c) := 45c6 − 3040c4 + 7424c2 + 16384

3932160
.

Now, l ′3(c) = 0 for c =: c0 = 0 and

c =: c1 = 4

45

√
2850 − 15

√
32185 ≈ 1.120751931,

where c0 is minimum point and maximum point of l3 is achieved at c1. We conclude
that

S(c, 1, 1) = S(c, 1, 0) ≤ − 45071

209952
+ 6437

√
32185

5248800
≈ 0.00534108401 (c ∈ [0, 2]).

By taking c = 0 in Eq. (4.25), we get

S(0, 1, y) = 1

240
≈ 0.004166666667 (y ∈ [0, 1]).

As (4.20) is independent of c, x and y, thus we have

S(2, 1, y) = S(2, 0, y) = S(2, x, 0) = S(2, x, 1)

= 1

12288
≈ 0.00008138 (x, y ∈ [0, 1]).

123



On the Third and Fourth Hankel Determinants… 353

By putting y = 0 in (4.18), we get

S(0, x, 0) = l4(x) := −3x3 + 4x

240
.

Since l ′4(x) = 0 for x =: x0 = 2/3 in [0, 1], we know that l4(x) is increasing for
x ≤ x0 and l4(x) is decreasing for x0 ≤ x . It achieves maximum at x0. Hence

S(0, x, 0) ≤ 1

135
≈ 0.007407407 (x ∈ [0, 1]).

By setting y = 1 in (4.18), we get

S(0, x, 1) =: l5(x) = −x4 + 4x3 − 14x2 + 15

960
.

Since l ′5(x) < 0 for [0, 1], we see that l5(x) is decreasing in [0, 1] and achieves its
maxima at x = 0. Thus,

S(0, x, 1) ≤ 1

64
≈ 0.015625 (x ∈ [0, 1]).

By means of all the above cases, we deduce that inequality (4.14) holds. The result
is sharp for the function f3(z) given by (3.37). �
Theorem 4.4 Let f ∈ RL. Then

|H4,1 ( f )| ≤ 7.9206 × 10−3. (4.26)

Proof It is easy to see that

H4 (1) = a7H3,1 ( f ) − a61 + a52 − a43, (4.27)

where 1, 2, 3 are determinants of order 3 and given by

1 = a6
(
a3 − a22

)
+ a5 (a2a3 − a4) + a4

(
a2a4 − a23

)
, (4.28)

2 = a6 (a4 − a2a3) − a5
(
a5 − a23

)
+ a4 (a2a5 − a3a4) , (4.29)

and

3 = a6
(
a2a4 − a23

)
− a5 (a2a5 − a3a4) + a4

(
a3a5 − a24

)
. (4.30)

By applying triangle inequality on (4.28) , (4.29) and (4.30) , we get

|1| ≤ |a6|
∣∣∣a3 − a22

∣∣∣+ |a5| |a2a3 − a4| + |a4|
∣∣∣a2a4 − a23

∣∣∣ , (4.31)
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|2| ≤ |a6| |a4 − a2a3| + |a5|
∣∣∣a5 − a23

∣∣∣+ |a4| |a2a5 − a3a4| , (4.32)

and

|3| ≤ |a6|
∣∣∣a2a4 − a23

∣∣∣+ |a5| |a2a5 − a3a4| + |a4|
∣∣∣a3a5 − a24

∣∣∣ . (4.33)

FromTheorem 3.1, alongwith (3.16) , (3.20), (3.22), (4.1), (4.3) and (4.14), we obtain

|1| ≤ 3.2244 × 10−2,

|2| ≤ 2.5511 × 10−2,

and

|3| ≤ 7.3110 × 10−3.

Clearly, it follows from (4.27) that

∣∣H4,1 ( f )
∣∣ ≤ |a7|

∣∣H3,1 ( f )
∣∣+ |a6| |1| + |a5| |2| + |a4| |3| . (4.34)

By putting the values of
∣∣H3,1 ( f )

∣∣ , |1| , |2| and |3| into (4.34), as well as
with the help of Theorem 3.1, it follows that

∣∣H4,1( f )
∣∣ ≤ 2 − √

2

7
× 1

64
+ 2 − √

2

6
×
(
3.2244 × 10−2

)

+ 1

10
×
(
2.5511 × 10−2

)
+ 1

8
×
(
7.3110 × 10−3

)
≈ 7.9206 × 10−3.

�

5 Bounds of
∣
∣H4,1 (f )

∣
∣ for the ClassesRL(2) andRL(3)

For given m ∈ N, a domain � is said to be m-fold symmetric if � is taken on itself
by a rotation of � around the origin by an angle 2π/m. It is easy to observe that the
analytic function f is m-fold symmetric in D, if

f
(
e2π i/mz

)
= e2π i/m f (z) (z ∈ D) .

By S(m), we specify the collection of all univalentm-fold functions having the Taylor
series expansion

f (z) = z +
∞∑

n=1

amn+1z
mn+1 (z ∈ D) . (5.1)
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The subclass RL(m)
of S(m) is the set of m-fold symmetric functions with bounded

turning subordinated with
√
1 + z. More precisely,

RL(m) =
{
f ∈ S(m) : f ′ (z) =

√
2p (z)

p (z) + 1
with p ∈ P(m) (z ∈ D)

}
, (5.2)

where the set P(m) is defined by

P(m) =
{
p ∈ P : p (z) = 1 +

∞∑

n=1

cmnz
mn (z ∈ D)

}
. (5.3)

Theorem 5.1 If f ∈ RL(2), then

∣∣H4,1 ( f )
∣∣ ≤ 1

600
.

Proof Since f ∈ RL(2), there exists a function p ∈ P(2) such that

f ′(z) =
√

2p (z)

p (z) + 1
.

For f ∈ RL(2), using the series form (5.1) and (5.3) with m = 2, we can write

f ′ (z) = 1 + 3a3z
2 + 5a5z

4 + 7a7z
6 + · · · , (5.4)

and

√
2p (z)

p (z) + 1
= 1 + 1

4
c2z

2 +
(
1

4
c4 − 5

32
c22

)
z4 +

(
1

4
c6 − 5

16
c2c4 + 13

128
c32

)
z6 + · · · .

(5.5)

Comparing (5.4) with (5.5), we obtain

a3 = 1

12
c2,

a5 = 1

5

(
1

4
c4 − 5

32
c22

)
,

and

a7 = 1

7

(
1

4
c6 − 5

16
c2c4 + 13

128
c32

)
,
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while a2 = a4 = a6 = 0, so it is clear that for f ∈ RL(2),

H4,1 ( f ) :=
(
a5 − a23

) (
a3a7 − a25

)
.

Therefore, we get

a5 − a23 = 1

5

(
1

4
c4 − 5

32
c22

)
− 1

144
c22 = 1

20
c4 − 11

288
c22 = 1

20

(
c4 − 55

72
c22

)
.

By using (2.2) of Lemma 2.1, we have

∣∣∣a5 − a23

∣∣∣ ≤ 1

10
. (5.6)

Furthermore, we see that

a3a7 − a25 = 1

2100

(
−5

4
c22c4 + 125

256
c42 − 21

4
c24 + 25

4
c2c6

)

= 1

2100

[
−5

4
c22

(
c4 − 25

64
c22

)
− 25

4
(c8 − c2c6) + 25

4

(
c8 − 21

25
c24

)]
,

and then with the help of triangle inequality, (2.2) and (2.3), which yields

∣∣∣a3a7 − a25

∣∣∣ ≤ 1

60
. (5.7)

From (5.6) and (5.7), we conclude that

∣∣H4,1 ( f )
∣∣ ≤ 1

600
.

�
Theorem 5.2 If f ∈ RL(3), then

∣∣H4,1 ( f )
∣∣ ≤ 1

896
.

Proof Let f ∈ RL(3). Then there exists a function p ∈ P(3) such that

f ′ (z) =
√

2p (z)

p (z) + 1
.

For f ∈ RL(3), by using the series form (5.1) and (5.3) when m = 3, we can write

f ′(z) = 1 + 4a4z
3 + 7a7z

6 + · · · , (5.8)
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and

√
2p (z)

p (z) + 1
= 1 + 1

4
c3z

3 +
(
1

4
c6 − 5

32
c23

)
z6 + · · · . (5.9)

By comparing (5.8) and (5.9), we get

a4 = 1

16
c3, (5.10)

and

a7 = 1

7

(
1

4
c6 − 5

32
c23

)
, (5.11)

while a2 = a3 = a5 = a6 = 0. So it is clear that for f ∈ RL(3), we have

H4,1 ( f ) := −a24

(
a7 − a24

)
.

From (5.10) and (5.11), we obtain

a7 − a24 = 1

28

(
c6 − 47

64
c23

)
.

By the virtue of triangle inequality and (2.2), it follows that

∣∣∣a7 − a24

∣∣∣ ≤ 1

14
. (5.12)

Also, we observe that

|a4| ≤ 1

8
, (5.13)

therefore, in view of (5.12) and (5.13), we deduce that

∣∣H4,1 ( f )
∣∣ ≤ 1

896
.
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