
Bull. Malays. Math. Sci. Soc. (2022) 45:501–512
https://doi.org/10.1007/s40840-021-01192-x

Ground State Solution of Critical p-Biharmonic Equation
Involving Hardy Potential

Yang Yu1 · Yulin Zhao1 · Chaoliang Luo1

Received: 13 July 2021 / Revised: 2 September 2021 / Accepted: 6 September 2021 /
Published online: 11 October 2021
©Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2021

Abstract
In this paper, we consider the following critical p-biharmonic equation involving
Hardy potential

�2
pu − �qu − μ

|u|p−2u

|x |2p = |u|p∗−2u, x ∈ R
N ,

where 2 ≤ p < N
2 , 0 < μ < μN ,p =

(
(p−1)N (N−2p)

p2

)p
,�2

pu = �(|�u|p−2�u),

q = p∗ = Np
N−p , and p∗ = Np

N−2p . The existence of ground state solution to above
equation is established by using the Nehari manifold and some analysis techniques.
Our result extends the existing results in the literature.
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1 Introduction

In this paper, we study the following critical p-biharmonic equation involving Hardy
potential:

�2
pu − �qu − μ

|u|p−2u

|x |2p = |u|p∗−2u, x ∈ R
N , (1.1)

where 2 ≤ p < N
2 , 0 < μ < μN ,p =

(
(p−1)N (N−2p)

p2

)p
, �2

pu = �(|�u|p−2�u)

is p-biharmonic operator and �qu = div(|∇u|q−2∇u) is q-Laplace operator, q =
p∗ = Np

N−p , and p∗ = Np
N−2p denotes the critical Sobolev exponent.

In recent years, the nonlinear elliptic equations with singularities become an inter-
esting topic. It arises from physical modeling, such as non-Newtonian fluid, viscous
fluids, elastic mechanic, boundary layer, see, for instance, [1]. Recently, the existence
and multiplicity of ground state solutions, positive solutions and sign-changing solu-
tions of p-biharmonic equations with singular potential have been studied extensively.
For more related works, we refer to [2–12] and the references therein. In particular,
Dhifli–Alsaedi [3] studied the following p-biharmonic equation:

{
�2

pu − μ
|u|p−2u
|x |2p − �pu = g(x)um−1 + λ f (x)uq−1, x ∈ R

N ,

u(x) > 0, x ∈ R
N ,

(1.2)

where 0 < m < 1 < p < q < p∗, N > 2p, λ > 0. Under some appropriate
conditions on functions f and g, the authors showed that Eq. (1.2) has at least two
positive solutions by using the fibering maps and Nehari manifold.

Yang–Zhang–Liu [13] dealt with the following p-biharmonic equation:

�2
pu − μ

|u|p−2u

|x |2p = a(x)|u|r−2u, x ∈ R
N , (1.3)

where 1 < p < N
2 , p < r < p∗. By applying the method of invariant sets of

descending flow, the existence of sign-changing solutions of Eq. (1.3) was obtained.
By using Nehari manifold, Su–Shi [14] investigated the existence of ground state
solutions for the following equation:

�2u − μ
u

|x |4 − �pu = |u|2∗−2u, x ∈ R
N , (1.4)

where N ≥ 5, p = 2∗ = 2N
N−2 , 2∗ = 2N

N−4 . Furthermore, Su–Liu–Feng [10] estab-
lished the existence of ground state solutions for the thin film epitaxy equation via the
generalized versions of Lions-type theorem.

Inspired by the above-mentioned works, it is natural to ask a question whether
Eq. (1.1) admits ground state solution? As far as we know, there is no result about
the ground state solution for p-biharmonic equations with Hardy potential in current
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literature. Therefore, in the present paper, we shall give a positive answer to the above
question. Our main result is the following theorem.

Theorem 1.1 Assume that 2 ≤ p < N
2 , q = p∗ = Np

N−p and μ ∈ (0, μN ,p) hold.
Then, Eq. (1.1) has at least a ground state solution.

2 Proof of Theorem 1.1

The space W 2,p
0 (RN ) is the completion of C∞

0 (RN ), where the norm is ‖u‖p
0 =∫

RN |�u|pdx . According to [15], μN ,p is the best constant in the following Rellich
inequality:

μN ,p

∫

RN

|u|p
|x |2p dx ≤

∫

RN
|�u|pdx, ∀u ∈ W 2,p

0 (RN ). (2.1)

For the above inequality, we refer to [16] for more details. We define

E =
{
u ∈ W 2,p

0 (RN ) ∩ W 1,p
0 (RN )

∣∣∣
∫

RN

(
|�u|p − μ

|u|p
|x |2p

)
dx < ∞

}
.

For μ ∈ (0, μN ,p), E is equipped with the norm

‖u‖ =
[∫

RN

(
|�u|p − μ

|u|p
|x |2p

)
dx

] 1
p

.

Furthermore, we denote the best Sobolev’s constant by

Sμ := inf
u∈E\{0}

{
‖u‖p

(
∫
RN |u|p∗dx)

p
p∗

}
. (2.2)

The energy functional I (u) : E → R associated with Eq. (1.1) can be given by

I (u) = 1

p
‖u‖p + 1

p∗

∫

RN
|∇u|p∗

dx − 1

p∗

∫

RN
|u|p∗dx,

and the Nehari manifold of E is defined by

ℵ = {u ∈ E\{0}|〈I ′(u), u〉 = 0}.

Denote

c = inf
γ∈�

max
t∈[0,1] I (γ (t)), c̄ = inf

u∈ℵ I (u), ¯̄c = inf
u∈E\{0} supt≥0

I (tu),

where � = {γ ∈ C([0, 1], E)|γ (0) = 0, I (γ (1)) < 0}.
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Lemma 2.1 Assume that the assumptions of Theorem 1.1 hold. Then, the following
conclusions are true.
(i) For every u ∈ E \ {0}, there exists only one tu > 0 such that tuu ∈ ℵ and
I (tuu) = max

t>0
I (tu).

(ii) c = c̄ = ¯̄c.
(iii) There exists a (PS)c sequence {un} ⊂ ℵ of I with c > 0.

Proof (i) For any u ∈ E \ {0} and t ∈ (0,+∞), we set

g(t) := I (tu) = t p

p
‖u‖p + t p

∗

p∗

∫

RN
|∇u|p∗

dx − t p∗

p∗

∫

RN
|u|p∗dx .

Then, we have

g′(t) = t p−1‖u‖p + t p
∗−1

∫

RN
|∇u|p∗

dx − t p∗−1
∫

RN
|u|p∗dx .

By p < p∗ < p∗, we know that g′(·) > 0 for t > 0 enough small, and g′(·) < 0 for
t enough large. Then, there exists tu > 0 such that g′(tu) = 0.

Toprove the uniqueness of tu , let us assume that 0 < t̄ < ¯̄t satisfy g′(t̄) = g′( ¯̄t) = 0.
Then,

0 = g′(t̄)
t̄ p∗−1 = t̄ p−p∗‖u‖p +

∫

RN
|∇u|p∗

dx − t̄ p∗−p∗
∫

RN
|u|p∗dx

and

0 = g′( ¯̄t)
¯̄t p∗−1

= ¯̄t p−p∗‖u‖p +
∫

RN
|∇u|p∗

dx − ¯̄t p∗−p∗
∫

RN
|u|p∗dx .

According to 0 = g′(t̄)
t̄ p∗−1 = g′( ¯̄t)

¯̄t p∗−1
, we obtain

(t̄ p−p∗ − ¯̄t p−p∗
)‖u‖p = (t̄ p∗−p∗ − ¯̄t p∗−p∗

)

∫

RN
|u|p∗dx .

On the one hand, since p − p∗ < 0 and 0 < t̄ < ¯̄t, then t̄ p−p∗ − ¯̄t p−p∗
> 0. On

the other hand, by p∗ − p∗ > 0 and 0 < t̄ < ¯̄t , we have t̄ p∗−p∗ − ¯̄t p∗−p∗
< 0. This

is a contradiction. Hence, for any u ∈ E \ {0}, there exists a unique tu > 0 such that
tuu ∈ ℵ. So g(t) admits a unique critical point tu ∈ (0,+∞) such that g(t) attains its
maximum at tu .

(ii) First, we prove I (u) ≥ I (tu) for t ≥ 0. Let u ∈ ℵ. Then, we have

〈I ′(u), u〉 = 0 ⇔
∫

RN
|∇u|p∗

dx = −‖u‖p +
∫

RN
|u|p∗dx .
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It follows that

I (u) − I (tu) = 1

p
(1 − t p)‖u‖p + 1

p∗ (1 − t p
∗
)

∫

RN
|∇u|p∗

dx − 1

p∗
(1 − t p∗)

∫

RN
|u|p∗dx

=
(
1 − t p

p
+ t p

∗ − 1

p∗

)
‖u‖p +

(
1 − t p

∗

p∗ + t p∗ − 1

p∗

) ∫

RN
|u|p∗dx .

(2.3)
Since 2 ≤ p < p∗ < p∗, it is easy to see that

1 − t p

p
+ t p

∗ − 1

p∗ ≥ 0, and
1 − t p

∗

p∗ + t p∗ − 1

p∗
≥ 0.

Thus, we have I (u) ≥ I (tu) for t ≥ 0. From (i), it is obvious that c = c̄.
Next, we prove c̄ = ¯̄c. By the definition of c, we can select a sequence {un} ⊂ E

such that

c ≤ max
t≥0

I (tun) ≤ c + 1

n
, ∀n ∈ N

∗. (2.4)

For any u ∈ E\{0} and t > 0 large enough, we have g(t) = I (tu) < 0 and then
there exists tn = t(un) > 0 and sn > tn such that

I (tnun) = max
t≥0

I (tun), I (snun) < 0, ∀n ∈ N
∗. (2.5)

Let γn(t̄) = t̄ snun , t̄ ∈ [0, 1], then γn ∈ �. It follows from (2.4) and (2.5) that

sup
t̄∈[0,1]

I (γn(t̄)) = max
t≥0

I (tun) < c + 1

n
, ∀n ∈ N

∗,

which indicates ¯̄c < c. Obviously, E can be separated into two parts by the manifold
ℵ as follows:

E+ = {u ∈ E | 〈I ′(u), u〉 > 0} ∪ {0} and E− = {u ∈ E | 〈I ′(u), u〉 < 0}.

By p < p∗ < p∗, it easy to obtain that I (u) ≥ 1
p∗ 〈I ′(u), u〉 for any u ∈ E . It follows

that I (u) ≥ 0 for all u ∈ E+ and indicates that E+ conclude a little ball which is
around the origin. Thus, every γ ∈ � has to cross ℵ for γ (0) ∈ E+ and γ (1) ∈ E−.
So c̄ ≤ ¯̄c. Combining with ¯̄c ≤ c and c = c̄, we have c = c̄ = ¯̄c.

(iii) Set

�(u) = 〈I ′(u), u〉 = ‖u‖p +
∫

RN
|∇u|p∗

dx −
∫

RN
|u|p∗dx,

then

〈�′(u), u〉 = p‖u‖p + p∗
∫

RN
|∇u|p∗

dx − p∗
∫

RN
|u|p∗dx .
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According to (i),wehaveℵ �= ∅ and inf
u∈ℵ I (u) = c̄ = c.ApplyingEkeland’s variational

principle, there exists {un} ⊂ ℵ and λn ∈ R such that I (un) → c and I ′(un) −
λn�

′(un) → 0, as n → ∞. Then, we get

I (un) = I (un) − 1

p∗ 〈I ′(un), un〉 ≥
(
1

p
− 1

p∗

)
‖u‖p.

Therefore, {un} is bounded in E . In view of

|〈I ′(un), un〉 − 〈λn�′(un), un〉| ≤ ‖I ′(un) − λn�
′(un)‖‖un‖,

then we have
|〈I ′(un), un〉 − 〈λn�′(un), un〉| → 0,

as n → ∞. Since |〈I ′(un), un〉| = 0 and 〈�′(un), un〉 �= 0, we can easily get λn → 0.
Applying Hölder’s and Sobolev’s inequalities, we know

‖�′(un)‖ = sup
‖ϕ‖=1

|〈�′(un), ϕ〉|

= sup
‖ϕ‖=1

∣∣∣∣p
∫

RN
|�u|p−2�u�ϕ − pμ

|u|p−2uϕ

|x |2p dx

+p∗
∫

RN
|∇u|p∗−2∇u∇ϕdx − p∗

∫

RN
|u|p∗−2uϕdx

∣∣∣∣

≤ sup
‖ϕ‖=1

⎧⎨
⎩

∣∣∣∣∣∣
p

(∫

RN
|�u|pdx

) p−1
p

(∫

RN
|�ϕ|pdx

) 1
p

∣∣∣∣∣∣

+
∣∣∣∣∣∣
pμ

(∫

RN

|u|p
|x |2p dx

) p−1
p

(∫

RN

|ϕ|p
|x |2p dx

) 1
p

∣∣∣∣∣∣

+
∣∣∣∣∣∣
p∗

(∫

RN
|∇u|p∗

dx

) p∗−1
p∗

(∫

RN
|∇ϕ|p∗

dx

) 1
p∗

∣∣∣∣∣∣

+
∣∣∣∣∣∣
p∗

(∫

RN
|u|p∗dx

) p∗−1
p∗

(∫

RN
|ϕ|p∗dx

) 1
p∗

∣∣∣∣∣∣

⎫
⎬
⎭

≤ C .

Therefore, we have

‖I ′(un)‖ ≤ ‖I ′(un) − λn�
′(un)‖ + |λn|‖�′(un)‖ = o(1).
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It shows that I ′(un) → 0 and then {un} ⊂ ℵ is the (PS)c sequence of I . Next, we
prove that c > 0. For any u ∈ ℵ, it follows that

I (u) = I (u) − 1

p∗ 〈I ′(u), u〉

= 1

p
‖u‖p + 1

p∗

∫

RN
|∇u|p∗

dx − 1

p∗

∫

RN
|u|p∗dx

− 1

p∗ ‖u‖p − 1

p∗

∫

RN
|∇u|p∗

dx + 1

p∗

∫

RN
|u|p∗dx

=
(
1

p
− 1

p∗

)
‖u‖p +

(
1

p∗ − 1

p∗

) ∫

RN
|u|p∗dx

≥
(
1

p
− 1

p∗

)
‖u‖p,

which implies our desired results. The proof is completed. ��
Lemma 2.2 Assume that the assumptions described in Theorem 1.1 hold. Let {un} ⊂ ℵ
be a (PS)c sequence of I with c > 0. Then, there exists C1 > 0 such that
lim sup
n→∞

∫
RN |un|p∗dx = C1.

Proof It follows from the proof of Lemma 2.1-(iii) that {un} is uniformly bounded in
E . We divide the following proof into two steps.

Step 1. There is a constant C > 0 independent of n such that 0 ≤ Qn =∫
RN |un|p∗dx ≤ C , which means that {Qn} is a bounded sequence in R. By Bolzano–
Weierstrass theorem, we know that there is an accumulation point Q0.

Let us define H ⊂ [0,C] ⊂ R be the set of all accumulation points of {Qn}.
By Q0 ∈ H , so H �= ∅. It follows from the definition of the superior limit and
H that lim sup

n→∞
Qn = sup H . Using H ⊂ [0,C] and the supremum and infimum

principle, we can get the existence of sup H . Then, there is C1 ∈ [0,C] such that
lim sup
n→∞

∫
RN |un|p∗dx = C1.

Step 2. We prove that C1 > 0. By contradiction, we assume that

lim
n→∞

∫

RN
|un|p∗dx = 0. (2.6)

From the Gagliardo–Nirenberg inequality, we have

lim
n→∞

∫

RN
|∇un|p∗

dx≤C

(
lim
n→∞

∫

RN
|�un|pdx

) p∗
2p

(
lim
n→∞

∫

RN
|un|p∗dx

) 2p−p∗
2p =0.

(2.7)
Combining (2.6), (2.7) and {un} is a (PS)c sequence of I , we get

c + o(1) = 1

p
‖un‖p
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and ‖un‖p = o(1), which indicates c = 0. This contradicts c > 0. Hence, we get
lim sup
n→∞

∫
RN |∇un|p∗dx = C1 > 0. The proof is completed. ��

Lemma 2.3 Assume that the assumptions described in Theorem 1.1 hold. Let {un} ⊂ E
be a (PS)c sequence of I at c > 0, and un⇀0 weakly in E. Then, there exists ε > 0
satisfying that

ei ther lim
n→∞

∫

B1(0)
|un|p∗dx = 0 or lim sup

n→∞

∫

B1(0)
|un|p∗dx ≥ ε,

where B1(0) denotes a sphere with a center at 0 and radius of 1.

Proof Let {un} be a (PS)c sequence of I at c > 0. For any ϕ ∈ E , we have

〈I ′(un), ϕ〉 =
∫

RN
|�un|p−2�un�ϕdx − μ

∫

RN

|un|p−2unϕ

|x |2p dx

+
∫

RN
|∇un|p∗−2∇un∇ϕdx −

∫

RN
|un|p∗−2unϕdx .

(2.8)

Let ψ ∈ C∞
0 (RN ) be a cutoff function satisfying supp(ψ) = B2(0) and ψ = 1 in

B1(0). The embedding
E ↪→ Lr (B2(0))

is compact for all r ∈ [2, p∗).

Step 1. According to Rellich’s compactness theorem, Sobolev’s inequality and
Hölder’s inequality, we obtain

∫

RN
|�un|p−2�un�(ψ pun)dx =

∫

RN
|�(ψun)|pdx + o(1) (2.9)

and ∫

RN
|∇un|p∗−2∇un∇(ψ pun)dx =

∫

RN
ψ p|∇un|p∗

dx + o(1). (2.10)

According to Hölder’s inequality, one gets

∫

RN
|un|p∗ψ pdx =

∫

RN
(ψun)

p|un|p∗−pdx ≤
∫

B2(0)
|ψun|p|un|p∗−pdx

≤
(∫

B2(0)
|ψun|p∗dx

) p
p∗

(∫

B2(0)
|un|p∗dx

) p∗−p
p∗

≤ ‖ψun‖p
L p∗ (RN )

(∫

B2(0)
|un|p∗dx

) p∗−p
p∗

≤ 1

Sμ

‖ψun‖p‖un‖p∗−p
L p∗ (B2(0))

.

(2.11)
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We choose ϕ = ψ pun in (2.8), and there holds

〈I ′(un), ψ pun〉 =
∫

RN
|�un|p−2�un�(ψ pun)dx − μ

∫

RN

|un|p−2un(ψ pun)

|x |2p dx

+
∫

RN
|∇un|p∗−2∇un∇(ψ pun)dx −

∫

RN
|un|p∗−2un(ψ

pun)dx .

Applying (2.9)–(2.11) and

‖ψun‖ =
(∫

RN
|�(ψun)|pdx − μ

∫

RN

|ψun|p
|x |2p dx

) 1
p

,

one has

1

Sμ

‖ψun‖p‖un‖p∗−p
L p∗ (B2(0))

≥ C‖ψun‖p +
∫

RN
ψ p|∇un|p∗

dx + o(1)

≥ C‖ψun‖p + o(1).
(2.12)

Step 2. In this step, we split our following proof into two aspects: (I) lim sup
n→∞

‖ψun‖ >

0 and (II) lim
n→∞ ‖ψun‖ = 0.

Case (I). According to lim sup
n→∞

‖ψun‖ > 0 and (2.12), we get

lim sup
n→∞

∫

B2(0)
|un|p∗dx ≥ (

C2Sμ

) p∗
p∗−p > 0. (2.13)

Similar to Step 1 of Lemma 2.2, there exists 0 ≤ C3 < ∞ such that

C3 = lim sup
n→∞

∫

B2(0)
|un|p∗dx .

In view of (2.13), we get C3 > 0. Set D1 := lim sup
n→∞

∫
B2(0)\B1(0) |un|p∗dx , we have

lim sup
n→∞

∫

B2(0)
|un|p∗dx ≤ D1 + lim sup

n→∞

∫

B1(0)
|un|p∗dx . (2.14)

According to the range of D1, there are three subcases.
Case (I-1). If D1 = 0, by (2.14), then

lim sup
n→∞

∫

B1(0)
|un|p∗dx = lim sup

n→∞

∫

B2(0)
|un|p∗dx = C3 > 0. (2.15)

Case (I-2). If D1 ∈ (0,C3), then there exists C4 = C3 − D1 > 0 satisfying

lim sup
n→∞

∫

B1(0)
|un|p∗dx ≥ C4 > 0. (2.16)
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Case (I-3). If D1 = C3 = lim sup
n→∞

∫
B2(0)

|un|p∗dx . Then, we have the following two

subsubcases: (1) lim
n→∞

∫
B1(0)

|un|p∗dx exists, and (2) lim
n→∞

∫
B1(0)

|un|p∗dx does not

exist. If (1) happens, then (2.14) turns into

lim sup
n→∞

∫

B2(0)
|un|p∗dx = D1 + lim sup

n→∞

∫

B1(0)
|un|p∗dx .

Substituting D1 = C3 = lim sup
n→∞

∫
B2(0)

|un|p∗dx into above equality, we can see that

lim sup
n→∞

∫

B1(0)
|un|p∗dx = lim

n→∞

∫

B1(0)
|un|p∗dx = 0. (2.17)

If (2) happens, it follows that lim sup
n→∞

∫
B1(0)

|un|p∗dx > lim inf
n→∞

∫
B1(0)

|un|p∗dx ≥ 0,

which indicates that there exists C5 > 0 such that

lim sup
n→∞

∫

B1(0)
|un|p∗dx = C5 > 0. (2.18)

Case (II). From lim
n→∞ ‖ψun‖ = 0 and Sobolev’s inequality, we get

0 = lim
n→∞

‖ψun‖p

Sμ

≥ lim
n→∞

(∫

RN
|ψun|p∗dx

) p
p∗ ≥ lim

n→∞

(∫

B1(0)
|un|p∗dx

) p
p∗

,

which indicates

lim
n→∞

∫

B1(0)
|un|p∗dx = 0. (2.19)

In conclusion, setting ε = min{C3,C4,C5} and combining (2.15)–(2.19), we can
deduce

either lim
n→∞

∫

B1(0)
|un|p∗dx = 0 or lim sup

n→∞

∫

B1(0)
|un|p∗dx ≥ ε,

The proof is completed. ��
In order to obtain our main result, we also give the following general version

Brezis–Lieb lemma.

Lemma 2.4 (Brezis–Lieb Lemma, [17]) Let� be an open subset ofRN , and let {un} ⊂
L p(�), 1 ≤ p < ∞. If

(1) {un} is bounded in L p(�);
(2) un → u0 almost everywhere in �,
then

lim
n→∞(‖un‖p

L p − ‖un − u0‖p
L p ) = ‖u0‖p

L p . (2.20)
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The proof of Theorem 1.1 In view of Lemma 2.2, we have

lim sup
n→∞

∫

RN
|un|p∗dx = C1 > 0. (2.21)

Set δ = min{C1,
ε
2 }, where ε > 0 is taken in Lemma 2.3. By (2.21), there exists a

sequence {rn} ⊂ R
+ such that for any δ′ ∈ (0, δ), one has lim sup

n→∞
∫
Brn (0) |un|p∗dx =

δ′. Define un := r
N−2p

p
n un(rnx). Then, un ∈ E and

I (un) → c, I ′(un) → 0 and
∫

B1(0)
|un|p∗dx = δ′, (2.22)

as n → ∞. By (2.22), it is easy to check {un} is bounded in E . Without loss of
generality, we suppose there exists u ∈ E such that un⇀u in E .

We next prove u �≡ 0. Argue by contradiction. Let u ≡ 0. It follows from Lemma
2.3 that we have

either lim
n→∞

∫

B1(0)
|un|p∗dx = 0 or lim sup

n→∞

∫

B1(0)
|un|p∗dx ≥ ε,

which contradicts to (2.22) since 0 < δ′ < δ = min{C1,
ε
2 }.

Now, we prove un → u strongly in E . It follows from lim
n→∞〈I ′(un), ϕ〉 = o(1),

un⇀u in E and Lemma 2.1 that

〈I ′(u), ϕ〉 = 0 and u ∈ ℵ.

Set

F(u) :=
(
1

p
− 1

p∗

)
‖un‖2 +

(
1

p∗ − 1

p∗

) ∫

RN
|∇un|p∗

dx .

According to Lemma 2.4, Fatou lemma and c = c, we have

c + o(1) = limn→∞ I (un) − limn→∞ 1
p∗ 〈I ′(un), un〉 = limn→∞ F(un)

≥ F(u) = I (u) ≥ c = c. (2.23)

Thus, the above inequalities will be equalities. Applying lim
n→∞ F(un) = F(u) and

Lemma 2.4 again, we get lim
n→∞ F(un) − lim

n→∞ F(un − u) = F(u) + o(1). So

lim
n→∞ F(un − u) = 0, which implies un → u strongly in E . Applying (2.23) again,

we have I ′(u) = c. Thus, u is a ground state solution of Eq. (1.1). ��
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