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Abstract
In this paper, we consider the following critical p-biharmonic equation involving
Hardy potential

|u|P~2u

2 -2 N
Apu—Aqu—uW:Mp* u, x eRY,

_ _ p
where2 < p < 5,0 <p < puy,p = (w) L A2u = A(lAulP2Aw),

p
g =p* = NN—fP, and py = NNT’; The existence of ground state solution to above

equation is established by using the Nehari manifold and some analysis techniques.
Our result extends the existing results in the literature.
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1 Introduction

In this paper, we study the following critical p-biharmonic equation involving Hardy
potential:

|ulP~2u

MW = |u|”*u, x eR", (L.1)

2
Apu — Aqu —

_ _2m\?
where 2 < p < %,O <M< UNp = (MM) , Aiu = A(|Au|P"2Au)

is p-biharmonic operator and A u = div(|Vu|?=2Vu) is q-Laplace operator, g =
p*= NN—_pp, and py = NNTI; denotes the critical Sobolev exponent.

In recent years, the nonlinear elliptic equations with singularities become an inter-
esting topic. It arises from physical modeling, such as non-Newtonian fluid, viscous
fluids, elastic mechanic, boundary layer, see, for instance, [1]. Recently, the existence
and multiplicity of ground state solutions, positive solutions and sign-changing solu-
tions of p-biharmonic equations with singular potential have been studied extensively.
For more related works, we refer to [2—12] and the references therein. In particular,

Dhifli-Alsaedi [3] studied the following p-biharmonic equation:

|x[?P

Af,u — M—‘”VH” — Apu=gu™ M+ afxui!, x e RV, (1.2)
u(x) >0, x e RV, .

where 0 < m < 1 < p < g < psyy, N > 2p, . > 0. Under some appropriate
conditions on functions f and g, the authors showed that Eq. (1.2) has at least two
positive solutions by using the fibering maps and Nehari manifold.

Yang—Zhang-Liu [13] dealt with the following p-biharmonic equation:

p—2
Af,u—,u'u' " =a()|ul"%u, x eR", (1.3)

|x[2P

where | < p < %, p < r < ps«. By applying the method of invariant sets of
descending flow, the existence of sign-changing solutions of Eq. (1.3) was obtained.
By using Nehari manifold, Su-Shi [14] investigated the existence of ground state
solutions for the following equation:

u _
AZM—MW—ApuzMZ* 2u, x e RV, (1.4)

where N > 5, p = 2% = %, 2 = %. Furthermore, Su-Liu-Feng [10] estab-
lished the existence of ground state solutions for the thin film epitaxy equation via the
generalized versions of Lions-type theorem.

Inspired by the above-mentioned works, it is natural to ask a question whether
Eq. (1.1) admits ground state solution? As far as we know, there is no result about

the ground state solution for p-biharmonic equations with Hardy potential in current
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literature. Therefore, in the present paper, we shall give a positive answer to the above
question. Our main result is the following theorem.

Theorem 1.1 Assume that 2 < p < % qg =p*= NN—pp and € (0, uy,p) hold.

Then, Eq. (1.1) has at least a ground state solution.

2 Proof of Theorem 1.1
The space Wg "P(RN) is the completion of C{°(RY), where the norm is [Jull) =

fRN |Au|Pdx. According to [15], uy, , is the best constant in the following Rellich
inequality:

|u|P » 2,p ;N
pngp | mede < | JAulPdx, Yue Wy (RY). 2D
RN |x[°P RN

For the above inequality, we refer to [16] for more details. We define

)
E= ueWOZ’p(]RN)mW(}’p(RN)‘/ |Aul? — LI R
RN |x|2P

For u € (0, un,p), E is equipped with the norm

1
|u| v
— P _
lu|| = [AN <|Au| M|x|2p dx | .

Furthermore, we denote the best Sobolev’s constant by

)4
S.= inf {L} 02

wCENO) | (fry lulPedx) 7

The energy functional /(u#) : E — R associated with Eq. (1.1) can be given by

rw = st [ vurae - [ iras,
p P JRN P« JRN
and the Nehari manifold of E is defined by
N = {u € E\{O}(I'(u), u) = O}.
Denote

¢=inf max I(y()), ¢=infI(u), c¢= inf supl(ru),
yel t€[0.1] @) ueN (w) uek },EE (tu)

where I' = {y € C([0, 1], E)|y (0) = 0, I(y(1)) < O0}.
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Lemma 2.1 Assume that the assumptions of Theorem 1.1 hold. Then, the following
conclusions are true.
(i) For every u € E \ {0}, there exists only one t, > 0 such that t,u € N and
I(tyu) = max I (tu).

t>0
(i)c=¢=¢c

(iii) There exists a (P S). sequence {u,} C R of I with ¢ > 0.

Proof (i) For any u € E \ {0} and ¢ € (0, +00), we set

tP 1P . 1P
() :=1I(tu) = —|u|l” + —*/ [Vul? dx — — |u|P*dx.
p p* Jry ps Jry

Then, we have

ga)=t¢4mmp+zf—‘/'|Vmﬁhx—tm—1/
RN R

|u|P*dx.
N
By p < p* < ps«, we know that g’(:) > 0 for z > 0 enough small, and g’(-) < 0 for
t enough large. Then, there exists 7, > 0 such that g’(z,) = 0. _

To prove the uniqueness of #,,, letus assume that 0 < 7 < 7 satisfy g’ () = g’(¢) = 0.
Then,

/ t_ - * * - *
0= i%’*( )1 — PP ||u||p+/ |Vu|P dx — PP / lu|Pdx
tP— RN RN
and B
! t_ = * * = *
0= ;g( ) =P7P ||u|? +f |VulP dx —tP==P / |u|P*dx.
pr-l RN RN

According to 0 = 20 _ 20 e obtain

p¥—12

~1

(fp—l?* _ t:P—P*)”u”P — (t‘p*—P* _ t:p*—l’*) /N u|P*dx.
R

On the one hand, since p — p* < 0and 0 < 7 < f, then 77~P" — P~P" > (0. On
the other hand, by p, — p* > 0and 0 < 7 < 7, we have 17*~P" — P=~P" < (. This
is a contradiction. Hence, for any u € E \ {0}, there exists a unique f,, > O such that
t,u € R. So g(t) admits a unique critical point 7, € (0, +-00) such that g(¢) attains its
maximum at z,.

(i1) First, we prove I(u) > I(tu) for t > 0. Let u € X. Then, we have

(1’(u),u>=0©/ IVulp*dX=—||u||p+/ |u|Pdx.
RV RN
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It follows that

1 1 x X 1
IT(w) —I(tu) = —(1 —t")|u|’ + — A —¢? )/ [Vul? dx — —(1 — tp*)/ |u|P*dx
P P* RN P RN

1—tP P 1= e —
= + ” lul|? + — / [u|P*dx.
p p p P+ RN

(2.3)
Since 2 < p < p* < py, itis easy to see that
1—t7 P —1 1= P —1
+——=>0, and — + > 0.
p P p DPx

Thus, we have I(u) > I_(tu) for t+ > 0. From (i), it is obvious that ¢ = ¢.
Next, we prove ¢ = ¢. By the definition of ¢, we can select a sequence {u,} C E
such that

1
cfmaécl(tun) <c+—, VneN* 2.4)
1> n

For any u € E\{0O} and ¢ > 0O large enough, we have g(t) = I(tu) < 0 and then
there exists t, = (u,) > 0 and s,, > 1, such that

I(thuy,) = r}]zaéc I(tuy,), I(s,u,) <0, Vn e N*, (2.5)
Let y, (f) = tsyuy, t € [0, 1], then y,, € T. It follows from (2.4) and (2.5) that

- 1
sup I(y,()) = max I (tu,) < c+ —, Vn e N¥,
7el0,1] =0 n

which indicates ¢ < ¢. Obviously, E can be separated into two parts by the manifold
R as follows:

Et={ueE| (I'(w,u)>0}U{0} and E~ = {u € E| (I'(u), u) < O}.

By p < p* < ps, it easy to obtain that 7 (u) > #(l’(u), u) for any u € E. It follows
that 7 («) > O for all u € E* and indicates that E* conclude a little ball which is
around the origin. Thus, every y € I has to cross & for y(0) € ET and y(1) € E~.
Soé <c. Combining withc <candc = ¢, wehavec = ¢ = C.

(iii) Set

<I>(u>=<1/(u>,u>=||ull”+/ IVu|”*dx—/ |u|P*dx,
RN RN

then
(@ (u), u) =p||u||p+p*/ IVulp*dx—p*/ |u|P*dx.
RN RN
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Accordingto (i), wehave 8 # (Jand ing I(u) = ¢ = c. Applying Ekeland’s variational
ue

principle, there exists {u,} C N and A, € R such that I(u,) — ¢ and I'(u,) —
An® (uy) — 0, as n — oo. Then, we get

r 1 1
I(up) = I(uy) — " (I'(up), up) > <_ - ) ”u”p
p p p*

Therefore, {u,} is bounded in E. In view of

|<I/(un)a Up) — <)\nq)/(un)’ up)| < ”I/(un) - /\n®/(un)||||un||,

then we have
|(1/(I/tn), Up) — ()‘nq)/(un)s up)| — 0,

asn — oo. Since [{(I'(uy), uy)| = 0and (D' (u,), u,) # 0, we can easily get A, — 0.
Applying Holder’s and Sobolev’s inequalities, we know

19" ()l = sup (P’ (un), ¢)|

lol=1
ulP~2u
= s |p [ 18ulr 2 aung - put
lol=11" J&Y |x|=P

+p*/ |Vu|P" 2VuVedx —p*/ lu|P*2updx
RY RV

p—1

p=1 1
P P
< sup p(/ |Au|”dx> </ |A<p|”dx)
llll=1 RN RN
ul? N7 / ol \7
dx
RN |x|2P RN |x|?P

p -1 n
+lp ( Vul? dx) ' (/ |V<p|f’*dx)”
RN

+|pu

pa—1

1
|u|”*dx> " <f |<p|!’*dx)p*
RN

Therefore, we have

1" ) Il < 11 () — 2o ® ) 1| + (A 1|19 () 1| = 0(1).
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It shows that I’(u,) — 0 and then {u,} C N is the (PS). sequence of I. Next, we
prove that ¢ > 0. For any u € R, it follows that

1
Ty = 1) — —(I'(u), u)
p

1 1 . 1

—lull?” + — [Vul? dx — — || P dx

P P JRN P« JRY
1 1 . 1

— —|jul|? — —/ [Vu|P dx + —/ || P*dx
p* p* JRN p* JRN
11 11

(5= s e (5 =) [ i
p P p* p«) JrNY

11
= (; - F) flall?,

which implies our desired results. The proof is completed. O

Lemma 2.2 Assume that the assumptions described in Theorem 1.1 hold. Let {u,} C N
be a (PS). sequence of I with ¢ > 0. Then, there exists C1 > 0 such that
limsup [ |up|P*dx = Cy.

n—o0

Proof 1t follows from the proof of Lemma 2.1-(iii) that {u,} is uniformly bounded in
E. We divide the following proof into two steps.

Step 1. There is a constant C > 0 independent of n such that 0 < Q, =
fRN lu,|P*dx < C, which means that {Q,} is a bounded sequence in R. By Bolzano—
Weierstrass theorem, we know that there is an accumulation point Q.

Let us define H C [0,C] C R be the set of all accumulation points of {Q,}.
By Qo € H,so H # {. It follows from the definition of the superior limit and
H that limsup @, = sup H. Using H C [0, C] and the supremum and infimum

n—oo

principle, we can get the existence of sup H. Then, there is C; € [0, C] such that
limsup [ |uy|P*dx = Cy.

n— oo

Step 2. We prove that C1 > 0. By contradiction, we assume that

lim |un|P*dx = 0. (2.6)

n— 00 RN
From the Gagliardo—Nirenberg inequality, we have

2p—p*

P*
¥ 2p 2p
lim |Vu,|? dxfC(lim/ |Aun|pdx> (lim/ |u,,|”*dx) =0.
n—00 JpN n—00 JpN n—00 JpN
2.7

Combining (2.6), (2.7) and {u,} is a (P S). sequence of I, we get
! p
c+o(l) = —|luyll
p
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and [|u,||? = o(1), which indicates ¢ = 0. This contradicts ¢ > 0. Hence, we get
limsup gy |Vuu|P*dx = Cy > 0. The proof is completed. ]
n—0o0

Lemma 2.3 Assume that the assumptions described in Theorem 1.1 hold. Let {u,} C E
be a (PS). sequence of I at ¢ > 0, and u,—0 weakly in E. Then, there exists € > 0
satisfying that

either lim |, |P*dx =0 or lim sup/ |ty |Pxdx > &,
%0 J B (0) n—oo JBj(0)

where B1(0) denotes a sphere with a center at 0 and radius of 1.

Proof Let {u,} be a (PS). sequence of I at ¢ > 0. For any ¢ € E, we have

_ |u |p_2u 7
(I (upn), @) =f |Aup|? zAunA(pdx—u/ e
RN Ry |x[*P 2.8)

+/ |Vun|p*_2VunV<pdx—/ |t P 2 updx.
RN RN

Letyr € Cgo (RM) be a cutoff function satisfying supp(¥) = B2(0) and ¥ = 1 in
B1(0). The embedding
E — L"(B2(0))

is compact for all r € [2, py).

Step 1. According to Rellich’s compactness theorem, Sobolev’s inequality and
Holder’s inequality, we obtain

/ IAunlp’zAunA(w”un)dX=/ [A(Wru,)|Pdx 4 o(1) (2.9)
RN RN
and
/ |wn|l’*—2wnvo/ﬂ’un)dx=/ UP Vi, [P dx + o(1). (2.10)
RN RN

According to Holder’s inequality, one gets

/ g |PopPdx = / (Wit) PP dx < / (it |P i+~ dx
RN RN B>(0)

P px=p

5(/ |1/fun|”*dx>"* (/ |un|f’*dx)”
B> (0) B> (0)

Px=p
Px
2

1
L p Px—P
=5, I unll ”un”LP*(Bz(O))'

@2.11)

A
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We choose ¢ = ¥ ”u, in (2.8), and there holds

ltn [P 20 (WP 1)
|x|2P

(I'(up), yPup) = / |Aun|p_2AunA(wpun)dx - /L/ dx
RN RN
+/1;N |vun|p*_2vunv(l/fpun)dx - /RN |un|p*_214n(¢pun)dx~

Applying (2.9)—(2.11) and

1
P\
IlwunH:(/ T dx) ,
R R X2

one has

1 _ *
S_||¢Mn||p||un||1]ij)*5gz(o)) > CllYruall” + V/RN Ul Vu,|P dx +o(1)

B (2.12)

= CllYunll” + o(1).

Step 2. In this step, we split our following proof into two aspects: (I) lim sup || u, | >

n—0o0
Oand (I) lim |[Yu,| =0.
n—oo
Case (I). According to lim sup ||{ru,|| > 0 and (2.12), we get
n— o0
_px_
lim sup/ |un|P*dx = (C2S,) 77 > 0. (2.13)
n—o0 JBy(0)

Similar to Step 1 of Lemma 2.2, there exists 0 < C3 < oo such that

C3 = lim sup/ [ty |P*dx.
B»(0)

n—o00

In view of (2.13), we get C3 > 0. Set D := lim sup fBz(O)\m |u,|P*dx, we have
n—oo

n—o0 n—oo

limsup/ lu,|P*dx < Dy + lim sup/ [ty |P*dx. (2.14)
B>(0) B1(0)

According to the range of D1, there are three subcases.
Case (I-1). If D; = 0, by (2.14), then

lim sup/ |ty |P*dx = lim sup/ luy|Pxdx = C3 > 0. (2.15)
B (0) B>(0)

n—oo n—oo

Case (I-2). If D; € (0, C3), then there exists C4 = C3 — D1 > 0 satisfying

n—oo

lim sup/ lun|P*dx > Cq4 > 0. (2.16)
B1(0)
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510 Y.Yuetal.

Case (I-3). If D; = C3 = limsup f B(0) |, |P*dx. Then, we have the following two
n—oo

subsubcases: (1) nll)ngo fBl(O) |, |Pxdx exists, and (2) nli)ngo fB.(O) |, |P=dx does not
exist. If (1) happens, then (2.14) turns into

n—0oo n—o00

lim sup/ lu, |P*dx = Dy + limsup/ lu,, |P*dx.
B>(0) B1(0)

Substituting D = C3 = limsup [ B,(0) |Un |P*dx into above equality, we can see that
n—oo
limsupf lun|P*dx = lim lun|P*dx = 0. (2.17)
n—oo JB(0) =00 J B (0)
If (2) happens, it follows that h,fis;ip J5,0) ltnlP*dx > linrgigéf fB.(O) [uy|P+dx > 0,

which indicates that there exists Cs > 0 such that

limsup/ lu,|P*dx = C5 > 0. (2.18)
B1(0)

n— o0
Case (II). From lim [|[¥u,| = 0 and Sobolev’s inequality, we get
n— o0
)4

P

u,||? Px P

0= lim [Yien > lim (/ |1pun|P*dx> > lim (/ |Mn|1’*dx> ,
n— 00 SM n— 00 RN n— 00 B, (0)

which indicates

lim |un|P*dx = 0. (2.19)

In conclusion, setting ¢ = min{C3, C4, C5} and combining (2.15)-(2.19), we can
deduce

either lim |uy|P*dx =0 or lim sup/ |ty |Pxdx > &,
=00 JB1(0) n—>o0 JB;(0)
The proof is completed. O

In order to obtain our main result, we also give the following general version
Brezis—Lieb lemma.

Lemma 2.4 (Brezis—Lieb Lemma, [17]) Let 2 be an open subset of RN, and let {u,} C
LP(Q2),1 <p<oo.lf
(1) {un} is bounded in LP($2);
(2) u, — ug almost everywhere in <2,
then
nli)lgo(llunllfp — llun — uoll} ) = lluoll} - (2.20)
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The proof of Theorem 1.1 In view of Lemma 2.2, we have

limsup/ lu,|P*dx = C1 > 0. 2.2
RN

n— o0

Set § = min{Cy, %}, where ¢ > 0 is taken in Lemma 2.3. By (2.21), there exists a

sequence {r,} C R such that for any §’ € (0, §), one has lim sup fBr ) luy|Pxdx =
N2 n—00

8'.Defineu, :=r, © u,(r,x). Then, u, € E and

I1(,;) — ¢, I'(y) = 0 and / [, |P*dx = &, (2.22)
B1(0)

as n — o00. By (2.22), it is easy to check {u,} is bounded in E. Without loss of
generality, we suppose there exists # € E such that u,—u in E.

We next prove u # 0. Argue by contradiction. Let u = 0. It follows from Lemma
2.3 that we have

either lim |uy|P*dx =0 or limsupf |, |Pxdx > &,
=00 JB;(0) n—>00 J B(0)

which contradicts to (2.22) since 0 < 8’ < § = min{Cy, §}.

Now, we prove u,, — u strongly in E. It follows from lim {I'(uy), ¢) = o(1),
n—oo

u,—u in E and Lemma 2.1 that

(I'm),¢) =0 and u € N.

1 1 ) 1 1 o
Fu) :=|———|lluall"+{——— [Vuy | dx.
P D« p P+ RN

According to Lemma 2.4, Fatou lemma and ¢ = ¢, we have

Set

¢+ o(1) = limy— o0 1 () = limy—s o0 5= (I' (@), W) = 1imy— o0 F (i)

>F@w)=1{u)>c=c. (2.23)

Thus, the above inequalities will be equalities. Applying lim F(u,) = F(u) and

n—oo
Lemma 2.4 again, we get lim F(u,) — lim F(u, —u) = Fu) + o(1). So
n—o0 n— o0

lim F(u, —u) = 0, which implies u,, — u strongly in E. Applying (2.23) again,

n—oQ

we have I’() = c. Thus, u is a ground state solution of Eq. (1.1). O
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