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Abstract
Glrac semigroups are common generalizations of left GC-lpp semigroups and left
inverse semigroups. And, such a semigroup is a left restriction semigroup if and only
if the projection set is a semilattice. So, glrac semigroup is also a generalization of left
restriction semigroup. Permissible subsets of a glrac semigroup are introduced in this
paper. In terms of permissible subsets, we define (uniquely) factorizable glrac semi-
groups and (uniquely) almost factorizable glrac semigroups. Many characterizations
of (uniquely) factorizable glrac semigroups and (uniquely) almost factorizable glrac
semigroups are obtained. As their applications, we establish the structures of uniquely
factorizable left GC-lpp semigroups (left inverse semigroups, inverse semigroups,
ample semigroups, left restriction semigroup, restriction semigroups) and uniquely
almost factorizable left GC-lpp semigroups (left inverse semigroups, inverse semi-
groups, ample semigroups, left restriction semigroup, restriction semigroups). Our
results enrich and extend the related results of almost factorizable restriction semi-
groups.

Keywords Glrac semigroup · (Almost) factorizable semigroup · Left GC-lpp
semigroup · Reduced semigroup
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1 Introduction

An inverse semigroup is defined to be a regular semigroup whose set of idempotents
forms a commutative subsemigroup; that is, a semilattice under its multiplication.
Because inverse semigroups play an important role in the theory of semigroups and are
extensively used in many branches of mathematics (see [28]), this class of semigroups
is generalized in various aspects; for example, left (right) inverse semigroup (see [1,
29]), (left; right) adequate semigroup (see [8]), (left; right) ample semigroup (see [8]),
(left; right) Ehresmann semigroup (see, [3–5,12]), (left; right) restriction semigroup
(see [10,15,16,23]), and so on.

Left (right) inverse semigroups may be regarded as generalizations of inverse semi-
groups in the range of regular semigroups. Precisely, a left (right) inverse semigroup is
a regular semigroup with left (right) regular bands of idempotents. In [17], Guo weak-
ened the regularity of left inverse semigroup into a left p.p. semigroup and defined
left GC-lpp semigroups; for concrete definition, the reader can be found in Sect. 2.
Indeed, left GC-lpp semigroups can be thought of a common generalization of left
inverse semigroups and left ample semigroups because a left inverse semigroup is
just a regular left GC-lpp semigroup and a left ample semigroup is just a left GC-lpp
semigroup with semilattice of idempotents. There are a series of papers on left GC-lpp
semigroups (see [16–21]).

Left (right) restriction semigroups have been studied from various points of view
under different names; for example, weakly left (right) E-ample semigroup [12], since
the 1960s. Concretely, from universal algebraic point of view, a left restriction semi-
group is an algebra of type (2, 1) which satisfies certain identities. In particular, each
inverse semigroup is a left (right) restriction semigroup if the semigroup is possessed
the unary operation which assign the idempotent a−1a (aa−1) to any element a. For
a historical overview of (left; right) restriction semigroups, the reader can be referred
to [10,15,23]. In a similar way as in generalizing left GC-lpp semigroups, Branco,
Gomes and Gould in [2] replaced the identities of left restriction semigroups such that
the set of projections becomes a semilattice by those making the set of projections to
become a left regular band and call such an algebra of type (2, 1) a glrac semigroup.
In [7], Ding, J. Guo, X. Guo and Shum have probed glrac semigroups. We shall find
that any left GC-lpp semigroup (left inverse semigroup) is a glrac semigroup and
that a semigroup is a left restriction semigroup if and only if its set of projections is
a semilattice. Thus, glrac semigroups are non-regular generalizations of left inverse
semigroups (of course, inverse semigroups). The semigroups mentioned in the above
have the inclusion relationships as follows:
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where | stands for the upper class of semigroups including the next one, and

– GLRAC = {glrac semigroups},
– LGC = {left GC-lpp semigroups},
– L I = {left inverse semigroups},
– LR = {left restriction semigroups},
– L A = {left ample semigroups},
– R = {restriction semigroups},
– A = {ample semigroups}, and
– I = {inverse semigroups}.

It is worthy to point out that glrac semigroups become a kind of special perfect restric-
tion semigroups (see [25]).

Factorizability and almost factorizability of weakly ample semigroups are consid-
ered in [13]. In the same reference, the authors defined the W-product of a semilattice
by a monoid by adapted a semidirect product of a semilattice by a group, which is due
to [7] and further extended the fundamental results on factorizable inversemonoids and
almost factorizable inverse semigroups to the weakly ample case. Based onW-product
of a semilattice by a monoid, in [28], Szendrei proved that these results can be adapted
for restriction semigroups and that every restriction semigroup can be embeddable in
an almost left factorizable restriction semigroup. Especially, it is verified that each
restriction semigroup is isomorphic to some (2, 1, 1)-subsemigroup of a projection-
separating homomorphic image of a W-product of a semilattice by a monoid. Inspired
by Szendrei’s results in [28], we define permissible subsets of a glrac semigroup,which
may be regarded as a generalization of permissible subsets of a restriction semigroup,
and moreover introduce (uniquely) factorizable glrac monoids and (uniquely) almost
factorizable glrac semigroups. It is proved that the set of permissible subsets of a glrac
semigroup is a left restriction semigroup under the power product (Theorem 1). In
Sect. 4, we introduce the notion of weakly semidirect product and further obtain the
weakly semidirect product structures of uniquely almost factorizable glrac semigroups
(Theorem 2) and of uniquely factorizable glrac monoids (Theorem 3). It is proved that
a glrac semigroup is almost factorizable if and only if it is a projection-separating
(2, 1)-homomorphic image of some full (2, 1)-subsemigroup of a weakly semidirect
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product of a left regular band and a left reduced monoid (Theorem 4). And, the sim-
ilar result is valid for a factorizable glrac monoid (Theorem 5). Finally, the special
case for left GC-lpp semigroups is considered. The weakly semidirect product struc-
tures of uniquely almost factorizable left GC-lpp semigroups (left inverse semigroups)
and of uniquely factorizable left GC-lpp monoids (left inverse monoids) are obtained
(Theorems 14, 15, 16 and 17).

2 Preliminaries

We recall first some concepts and notations, which are used in the sequel without
mentions.

Definition 1 A glrac semigroup is defined to be an algebra of type (2, 1), more pre-
cisely, an algebra S = (S, ·,+) where (S, ·) is a semigroup and + is a unary operator
such that the following identities are satisfied:

(x+)+ = x+, x+x = x, x+y+ = x+y+x+,

(x+y)+ = x+y+, (xy)+ = (xy+)+, xy+ = (xy+)+x .
(1)

The identities in the notion of glrac semigroups are somewhat different to that
defined by Branco, Gomes and Gould in [2]. We may check that our identities are
equivalent to those of Branco, Gomes and Gould. We here omit the detail.

Recall that a left regular band is a semigroup satisfying identities: ab = aba
and a2 = a. Equivalently, a semigroup is a left regular band if and only if it is a
semilattice of left zero semigroups. Let B be a left regular band and B = ⋃

α∈Y Bα

be the semilattice decomposition of B into left zero semigroups Bα . We shall call the
semilattice Y the structure semilattice of B. If e ∈ Bα ⊆ B, we shall write Bα = E(e);
if BαBβ ⊆ Bβ , then we denote Bβ ≤ Bα . It is easy to see that any left regular band
with respect to the identity unary operation is a glrac semigroup. For left regular bands,
the reader can be referred to the textbook [26].

By definition, we have the following corollary:

Corollary 1 Let S be a glrac semigroup. Then,

(i) P(S) = {a+ : a ∈ S} is a left regular sub-band of S.
(ii) S is a left restriction semigroup if and only if P(S) is a semilattice.

Proof (i) Because

a+ = (a+a)+ = a+a+,

we know that P(S) is a left regular band.
(ii) It is obvious and we omit the detail. ��
We call P(S) in Corollary 1 the set of projections of S; and any element of P(S) a

projection of S.
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A left restriction semigroup is defined to be an algebra of type (2, 1), more precisely,
an algebra S = (S, ·,+) where (S, ·) is a semigroup and + is a unary operator such
that the following identities are satisfied:

(x+)+ = x+, x+x = x, x+y+ = y+x+,

(x+y)+ = x+y+ (xy)+ = (xy+)+, xy+ = (xy+)+x .
(2)

A right restriction semigroup is dually defined, that is, it is an algebra (S, ·, ∗) satisfying
the duals of the identities (2). If S = (S, ·,+, ∗) is an algebra of type (2, 1, 1) where
S = (S, ·,+) is a left restriction semigroup and S = (S, ·, ∗) is a right restriction
semigroup and the identities

(x+)∗ = x+, (x∗)+ = x∗ (3)

hold, then it is called a restriction semigroup. By definition, the defining properties
of a restriction semigroup are left-right dual. Therefore, in the sequel dual definitions
and statements will not be explicitly formulated. It is well known that in a restriction
semigroup, we always have

(xy)+ = (xy+)+ and (xy)∗ = (x∗y)∗. (4)

(for example, see [15]). Obviously, a left restriction semigroup is just a glrac semigroup
whose projection set is a semilattice.

Example 1 Let S be a left inverse semigroup. Then, by a result in [1,29], eachR-class
of S contains exactly one idempotent. We denote by a† the unique idempotent of the
R-class of S containing a ∈ S. Note that the set E(S) of idempotents of S become a
left regular band. Of course, any left inverse semigroup is an orthodox semigroup; for
orthodox semigroups, see [24]. Let a′ be an inverse of a, then by [24, Theorem 3.5
(i), p.46], aa′ = a†. Then, we have the following facts:

(RI1) For any a ∈ S, we have a = aa′a = a†a and (a†)† = a†.
(RI2) For any a, b ∈ S, from that E(S) is a left regular band under the multiplication

of S, it follows that a†b† = a†b†a†.
(RI3) For any a, b ∈ S, since S is an orthodox semigroup, b′a′ and bb′a′ are inverses

of ab and abb′, respectively, so that (ab)† = abb′a′ = (abb′)(bb′a′)R(ab†)†,
and as each R-class of S contains exactly one idempotent, (ab)† = (ab†)†.

(RI4) By E(S) is a left regular band, we have

(ab†a′)(ab†a′) = a · b†(a′a)b† · a′ = a · b†(a′a) · a′ = ab†a′

ab† = a · (a′a)b† = a · (a′a)b†(a′a) = ab†a′ · a
ab†a′ = ab† · a′.

The second equality and the third one derive that ab†a′Rab†. But each R-
class of S contains a unique idempotent, so ab†a′ = (ab†)†. Therefore, ab† =
(ab†)†a.

123



278 Y. Liu et al.

(RI5) Notice that b†Rb and since R is a left congruence, we observe that

a†b†Ra†bR(a†b)†.

But each R-class of S contains exactly one idempotent, now (a†b)† = a†b†.

Define

+ : S → S; a 
→ a†.

By the foregoing proof, (S, ·,+) is a glrac semigroup whose projection set is E(S)

and in which for any a ∈ S, a+Ra.

The Green’s ∗-relations R∗ and L∗ are generalizations of usual Green’s R and L,
respectively. For elements a and b of S, (a, b) ∈ R∗ (L∗) if and only if (a, b) ∈ R
(L) in some oversemigroup of S. Equivalently, (a, b) ∈ R∗ if and only if for any
x, y ∈ S1,

xa = ya ⇔ xb = yb.

A semigroup S is a left GC-lpp semigroup [17] if

(i) the set E(S) of idempotents of S is a left regular band;
(ii) each R∗-class of S contains uniquely one idempotent;
(iii) for any a ∈ S and e ∈ E(S), ae = (ae)+a, where a+ is the unique idempotent

related to a by R∗.
Dually, right GC-rpp semigroup can be defined. By definition, any left GC-lpp semi-
group can be viewed as a glrac semigroup S with unary operation

+ : S → S; a 
→ a+

and in which aR∗a+ for any a ∈ S. Indeed,

(1) Because every a+ is an idempotent and a+R∗(a+)+, we get a+ = (a+)+. And,
by a+a+ = 1 · a+ and since aR∗a+, we have a+a = a;

(2) Notice that R∗ is a left congruence, we observe that a+b+R∗a+bR∗(a+b)+, so
that a+b+ = (a+b)+. Also, abR∗ab+, so that (ab)+ = (ab+)+;

(3) By definition, E(S) is a left regular band. It follows that E(S) satisfies the identity:
xy = xyx . This shows that a+b+ = a+b+a+ for all a, b ∈ S;

(4) Consider that b+ is an idempotent, by definition, we always have ab+ = (ab+)+a.
Consequently, (S, ·,+ ) is a glrac semigroup.

Definition 2 (i) A semigroup S is said to be a left reduced semigroup if S is a glrac
semigroup in which |P(S)| = 1. Dually, right reduced semigroup is defined.

(ii) A semigroup S is said to be a reduced semigroup if S is both a left reduced
semigroup and a right reduced semigroup.

(iii) A glrac semigroup S is called a glrac monoid if (S, ·) is a monoid with identity 1
and 1+ = 1.
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By definition, we have the following observations:

(i) Any left reduced semigroup is a left restriction semigroup.
(ii) Any reduced semigroup is a (glrac) monoid.
(iii) Any monoid is a reduced monoid with a suitable unary operation; for, if T is a

monoid with identity 1, a routine check that (T , ·,+ ,∗ ) is a reduced semigroup
with unary operations:

+ : S → S; a 
→ 1

and

∗ : S → S; x 
→ 1.

So, in what follows, we shall view a monoid as a reduced semigroup in the above
sense.

Proposition 1 Let S be a glrac semigroup. If S is reduced, then S is a glrac monoid.

Proof Because P(S) is a singleton, we may let P(S) = {e}, and so e = a+ for any
a ∈ S. It follows that a = a+a = ea. This shows that e is a left identity of S. On the
other hand, since ae = (ae)+a = ea = a, we know that e is a right identity of S.
Consequently, S is a glrac monoid since e+ = e. ��

Among glrac semigroups, the notions of subalgebra, homomorphism, congru-
ence and factor algebra are understood in type (2, 1), which is emphasized by using
the expressions (2, 1)-subsemigroup, (2, 1)-morphism, (2, 1)-congruence and (2, 1)-
factor semigroup, respectively.

Let S be a glrac semigroup and ρ a (2, 1)-congruence on S. On S/ρ, define

+ : S/ρ → S/ρ; xρ 
→ x+ρ.

It is routine to check that (S/ρ, ·,+) is a glrac semigroup, called the quotient of S
over ρ and still denoted by S/ρ.

Definition 3 Let S be a glrac semigroup and ρ a (2, 1)-congruence on S. Then, ρ is
said to be a reduced (2, 1)-congruence on S if S/ρ is left reduced.

Proposition 2 Let S be a glrac semigroup. Then, the relation

σS = {(a, b) ∈ S × S : (∃ f ∈ P(S)) f a = f b}

is the smallest reduced (2, 1)-congruence on S.

Proof We first show that σS is an equivalence relation on S. Clearly, σS is reflexive
and symmetric. To prove the transitivity of σS , we let ex = ey and f y = f z, where
e, f ∈ P(S). Then, since P(S) is a left regular band, we have

(e f )x = e f (ex) = e f (ey) = e f y = (e f )z,

123
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where e f ∈ P(S), and so xσSz.
If xσS y and z ∈ S, then it is obvious that xz σS yz. If ex = ey for some e ∈ P(S),

then (ze)+zx = zex = zey = (ze)+zy and zxσSzy. So, σS is a congruence on S.
If a, b ∈ S, then a+σSb+ since (a+b+)a+ = (a+b+)b+. This means that

|P(S/σS)| = 1. Therefore, σS is a reduced (2, 1)-congruence on S.
Finally, we suppose that ρ is a reduced (2, 1)-congruence on S. Then, |P(S/ρ)| = 1

and x+ρ = y+ρ for any x, y ∈ S. If xσS y, then we have ex = ey for some e ∈ P(S).
This implies that

xρ = (x+ρ)(xρ) = (eρ)(xρ) = (ex)ρ = (ey)ρ = (eρ)(yρ) = (y+ρ)(yρ) = yρ.

Hence, σS ⊆ ρ, and whence σS is the smallest reduced (2, 1)-congruence on S. ��
Let V be a semigroup and letU be a monoid with 1. Denote by End(V ) the monoid

of endomorphisms of V . Let

φ : U → End(V ); v 
→ φv

be a monoid homomorphism. In what follows, we write aφv as v · a. Notice that φ1 is
the identity mapping on V . So, 1 · a = a. On the set V ×U , define

(x, u) ◦ (y, v) = (x(u · y), uv).

It may be checked that (V ×U , ◦) is a semigroup, called the semidirect product of V
and U over φ and denoted by V �φ U .

Proposition 3 Let U be a left reduced monoid with identity 1 and Y a left regular
band. If φ is a monoid homomorphism of U into End(Y ), then Y �φ U is a glrac
semigroup with unary operator

+ : Y �φ U → Y �φ U ; (y, u) 
→ (y, 1).

Proof Let (x, u), (y, v) ∈ Y �φ U . We have

(i) (x, u)+ ◦ (x, u) = (x, 1) ◦ (x, u) = (x(1 · x), u) = (xx, u) = (x, u).
(ii) (x, u)+ ◦ (y, v)+ ◦ (x, u)+ = (x, 1) ◦ (y, 1) ◦ (x, 1) = (xyx, 1) = (xy, 1) =

(x, 1) ◦ (y, 1) = (x, u)+ ◦ (y, v)+.
(iii) ((x, u) ◦ (y, v))+ = (x(u · y), uv)+ = (x(u · y), 1) = ((x, u) ◦ (y, 1))+ =

((x, u) ◦ (y, v)+)+.
(iv) (x, u)◦ (y, v)+ = (x, u)◦ (y, 1) = (x(u · y), u) = (x(u · y)x, u) = (x(u · y), 1)◦

(x, u) = (x(u · y), u)+ ◦ (x, u) = ((x, u) ◦ (y, v)+)+ ◦ (x, u).
(v) (x, u)+ = (x, 1) = (x, 1)+ = ((x, u)+)+.
(vi) ((x, u)+ ◦ (y, v))+ = ((x, 1) ◦ (y, v))+ = (xy, v)+ = (xy, 1) = (x(1 · y), 1) =

(x, 1) ◦ (y, 1) = (x, u)+ ◦ (y, v)+.

By definition, Y �φ U is a glrac semigroup. ��
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3 Permissible Subsets

In this section, we introduce the notion of permissible subsets in a glrac semigroup
and establish some properties of permissible subsets.

To begin with, we define permissible subsets.

Definition 4 Let S be a glrac semigroup. A nonempty subset P of S is said to be
permissible if

(PS1) P is a subset of some σS-class of S, where σS has the same meaning as in
Proposition 2;

(PS2) for any a ∈ S and b ∈ P , we have a+b, ba+ ∈ P; and
(PS3) for any a, b ∈ P , if a+ = b+, then a = b.

Corollary 2 Let S be a glrac semigroup. Then,

(i) P(S) is a permissible subset of S.
(ii) The set (a] = {x ∈ S : x = ea, e ∈ P(S)} is a permissible subset of S.
(iii) Let P be a permissible subset of S. If a, b ∈ P, then a+b = a+b+a.

Proof (i) It is obvious.
(ii) If x ∈ (a], then x = ea for some e ∈ P(S), so that x ∈ aσS since ex = ea, it

follows that (a] ⊆ aσS . For any s ∈ S and x = ea with e ∈ P(S), we have

s+x = s+ea ∈ (a] and xs+ = eas+ = e(as)+a ∈ (a],

yielding (PS2).
Let x, y ∈ (a] and x+ = y+, then there exist e, f ∈ P(S) such that x = ea and

y = f a, hence

ea+ = (ea)+ = x+ = y+ = ( f a)+ = f a+.

So,

x = ea = (ea+)a = ( f a+)a = f a = y.

It results (PS3). Therefore, (a] is a permissible subset of S.
(iii) Note that

(a+b)+ = a+b+ = a+b+a+ = (a+b+a)+

and a+b, a+b+a ∈ P , we can observe that a+b = a+b+a (by (PS3)). ��
Let S be a glrac semigroup. If A and B are subsets of S, then we write AB to mean

{ab : a ∈ A, b ∈ B}. Obviously, (AB)C = A(BC). As usual, AB is called the set
multiplication of A and B. We consider the set multiplication on C(S) = {P ⊆ S :
P is a permissible subset of S} .
Lemma 1 If S is a glrac semigroup, then C(S) is a semigroup with left identity P(S).
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Proof We need only to verify that C(S) is closed under set multiplication and P(S)

is a left identity of C(S).
Note that σS is a (2, 1)-congruence on S. To see that C(S) is closed under set

multiplication, it suffices to verify that AB satisfies Condition (PS3), for any A, B ∈
C(S). Indeed, if a, b ∈ A, x, y ∈ B and (ax)+ = (by)+, then (ax+)+ = (by+)+.
Together with ax+, by+ ∈ A, this shows that ax+ = by+ by (PS3). It follows that
ax = ax+x = by+x . Notice that

(y+x)+ = y+x+ = y+x+y+ = (y+x+y)+

and y+x, y+x+y ∈ B, (PS3) results that y+x = y+x+y. Therefore,

ax = by+x = by+x+y = (by+x+)+by = (ax)+(by+x+)+(by)

and (ax)+ = (ax)+(by+x+)+(by)+. Also, we have

ax = (ax)+(by+x+)+(by)+ · by = (ax)+(by) = (by)+(by) = by.

So, AB is a permissible subset of S.
Also, by (PS2), we have that P(S)A ⊆ A. Notice that a+a = a. We have A ⊆

P(S)A. So, P(S)A = A and P(S) is a left identity of C(S). ��
Lemma 2 Let S be a glrac semigroup and A ∈ C(S). Then, A+ := {a+ : a ∈ A} is a
permissible subset of S, and (A+)2 = A+.

Proof By Proposition 2, σe ⊇ P(S) for e ∈ P(S). Because A+ ⊆ P(S), A+ is a
subset of a σS-class of S. Notice that ea+ = (ea)+ and a+e = a+ea+ = (a+ea)+.
So, P(S)A+, A+P(S) ⊆ A+. For a, b ∈ A, if (a+)+ = (b+)+, then we have a+ =
(a+)+ = (b+)+ = b+, hence A+ satisfies Condition (PS3). Therefore, A+ ∈ C(S).

Notice that a+a+ = (a+a)+ = a+, we have A+ ⊆ (A+)2. But A+A+ ⊆
P(S)A+ ⊆ A+, now A+ = (A+)2. ��
Theorem 1 Let S be a glrac semigroup. OnC(S), define a unary operation as follows:

+ : C(S) → C(S); A 
→ A+.

The semigroup C(S) = (C(S), ·,+) is a left restriction semigroup.

Proof Let A, B ∈ C(S).

(i) A+A = A: By a = a+a, it is clear that A ⊆ A+A. Notice that A+A ⊆ P(S)A ⊆
A. Hence, A+A = A.

(ii) A+B+ = B+A+: By (PS2), A+B+ ⊆ P(S)B+ ⊆ B+ and similarly, A+B+ ⊆
A+. It follows that A+B+ ⊆ A+ � B+. Obviously, A+ � B+ ⊆ (A+ � B+)2 ⊆
A+B+. Thus, A+B+ = A+ � B+. So, A+B+ = A+ � B+ = B+A+.

(iii) (AB)+ = (AB+)+: is straightforward by the same condition in S.
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(iv) AB+ = (AB+)+A: For a, c ∈ A, b ∈ B, since ab+ = (ab+)+a, we have
AB+ ⊆ (AB+)+A. On the other hand, by Corollary2, we have a+c = a+c+a
and further

(ab+)+c = (a+ab+)+c = a+(ab+)+c
= a+(ab+)+ · a+c = a+(ab+)+ · a+c+a
= a+(ab+)+a+c+ · (ab+)+a = a+(ab+)+a+c+ · ab+

= a+(ab+)+a+c+a · b+

∈ AB+

so that (AB+)+A ⊆ AB+. Therefore, AB+ = (AB+)+A.

(v) (A+)+ = A+: is straightforward by the same condition in S.
(vi) A+B+ = (A+B)+: is immediate by the same condition in S.

Consequently, C(S) is a left restriction semigroup. ��
Corollary 3 Let S be a glrac monoid. Then, C(S) is a left restriction monoid with
identity P(S).

Proof ByLemma 1, it suffices to verify that AP(S) = A for any A ∈ C(S). Indeed, by
definition, AP(S) ⊆ A, and the reverse inclusion follows from that a = a1 ∈ AP(S)

for any a ∈ A. ��
For a glrac semigroup S, we denote

Ra+ = {x ∈ S : x+ = a+} (a ∈ S).

If, in addition, S is a monoid with identity 1, then R1 is a left reduced monoid; for,
for any a, b ∈ R1, we know a+ = 1 = b+, so that (ab)+ = (ab+)+ = a+ = 1, it
follows that ab ∈ R1, thus R1 is a left reduced monoid.

Proposition 4 Let S be a glrac monoid. Then,

RP(S) = {(a] ∈ C(S) : a ∈ R1}.

Proof If a ∈ R1, then a+ = 1 and (a]+ = (1] = P(S). It follows that (a] ∈ RP(S).
Conversely, if A ∈ RP(S), then A+ = P(S). Notice that P(S) = (1], we have a ∈ A
such that a+ = 1. So, (a] ⊆ A. On the other hand, for any x ∈ A, we have

x+ = x+1 = x+a+ = (x+a)+,

further by (PS3), x = x+a, therefore x ∈ (a]. Now, A = (a]. We complete the
proof. ��
Proposition 5 Let S be a glrac semigroup. Then,

RS := {A ∈ RP(S) : AP(S) = A}

is a left reduced (2, 1)-subsemigroup of C(S) with identity P(S).
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Proof We first verify that RS is closed under set multiplication. To the end, we let
A, B ∈ RS , then by Lemma 1,

AB = AP(S) · BP(S) = A · P(S)B · P(S) = AB · P(S),

as required. Therefore, RS is a subsemigroup of C(S). Furthermore, because A+ =
P(S) for any A ∈ RS , we know that P(S)A = A = AP(S). It follows that P(S) is
the identity of RS . Again by A+ = P(S), we have P(RS) = {P(S)}. Consequently,
RS is a left reduced (2, 1)-subsemigroup of C(S). We complete the proof. ��

Let T be a restriction semigroup. Recall that a nonempty subset U of T is a per-
missible subset of T (in sense of Gomes and Szendrei in [13]) if, for every a, b ∈ U ,
the following conditions are satisfied:

(i) a ≤ b ∈ U ⇒ a ∈ U , where a ≤ b if and only if a = a+b;
(ii) a, b ∈ U ⇒ a+b = b+a;
(iii) a, b ∈ U ⇒ ab∗ = ba∗.

We shall find that our permissible subsets coincide with permissible subsets in sense of
Gomes and Szendrei for a restriction semigroup. The following remark can illustrate
this version.

Remark 1 Let S be a left restriction semigroup. Then, A ∈ C(S) if and only if for any
a, b ∈ A,

(P1) a ≤ b ∈ A ⇒ a ∈ A, where a ≤ b if and only if a = a+b;
(P2) a, b ∈ A ⇒ a+b = b+a.

Indeed, assume that A satisfies Conditions (P1) and (P2). For x, y ∈ A,

(1) By hypothesis, we have x+y = y+x , so that

(x+y+)y = x+y = y+x = y+x+x = (x+y+)x .

This means that xσS y, therefore A is contained in some σS-class of S.
(2) If e ∈ P(S), then ex ≤ x and so ex ∈ A. Also, xe = (xe)+x , accordingly x f ≤ x ,

so that x f ∈ A. It results (PS2).
(3) Assume now that x+ = y+. By (P2), x+y = y+x . Obviously,

y = y+y = x+y = y+x = x+x = x .

So, A satisfies (PS3).

We have verified that A is a permissible subset of S. Conversely, assume that B ∈
C(S). Let a, b ∈ B and x ∈ S. By (PS2), it follows that B satisfies (P1). Notice
that (a+b)+ = a+b+ = b+a+ = (b+a)+ and a+b, b+a ∈ B. We observe that
a+b = b+a and whence B satisfies (P2).
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4 Almost Factorizable Glrac Semigroups

To begin with, we give two notions.

Definition 5 (i) A glracmonoid S is said to be (uniquely) factorizable if for any s ∈ S,
there exist (uniquely) e ∈ P(S), a ∈ R1 such that s = ea.

(ii) A glrac semigroup S is said to be (uniquely) almost factorizable if for every a ∈ S,
there exists (uniquely) A ∈ RS such that a ∈ A.

The next propositions give the relationships between the above two notions.

Proposition 6 Let S be a glrac monoid with identity 1. Then, S is (uniquely) factoriz-
able if and only if S is (uniquely) almost factorizable.

Proof (6.1) If S is factorizable, then for any a ∈ S, there exist e ∈ P(S), r ∈ R1 such
that a = er . It follows that a ∈ (r ] ∈ RP(S). But byCorollary 3,RP(S) = RS , now S is
almost factorizable.Conversely, support that S is almost factorizable.ByProposition 4,
for any A ∈ RP(S), there exists a ∈ R1 such that A = (a]. By definition, for any x ∈ S,
there exists a ∈ R1 such that x ∈ (a]. So x = f a for some f ∈ P(S). Therefore, S
is factorizable.

(6.2) With notations in (6.1), if S is uniquely factorizable, then by (6.1), S is factor-
izable. Now, let A ∈ RS such that a ∈ A, then as RP(S) = RS , we see that A = (s]
for some s ∈ R1. It follows that a = f s for some f ∈ P(S). By S is uniquely factor-
izable, we get r = s, e = f . This means that A = (s] = (r ]. Therefore, S is uniquely
almost factorizable. Conversely, support that S is uniquely almost factorizable, then
by (6.1), S is almost factorizable. We let t ∈ R1, h ∈ P(S) such that a = ht , then
a ∈ (r ], a ∈ (t]. But (r ], (t] ∈ RP(S) = RS , now (r ] = (t] by hypothesis that S is
uniquely almost factorizable. By Corollary 2, (r ] is a permissible subset of S. Together
with s+ = 1 = t+ and by (PS3), we know that s = t . Further,

e = e1 = er+ = (er)+ = (ht)+ = ht+ = h1 = h.

So, S is uniquely factorizable. ��
Proposition 7 Let S be a factorizable glracmonoid with identity 1. If for any a ∈ S′ :=
S\R1, there exists e ∈ P(S)\{1} such that a = ae, then S′ is almost factorizable.

Proof We first prove that S′ is a glrac semigroup.We claim: S′ is a subsemigroup of S;
for, if a, b ∈ S′, then ab /∈ R1. Indeed, if ab ∈ R1, we have 1 = (ab)+ = a+(ab)+,
so that a+ = 1, contrary to a /∈ R1. Clearly, S

′
is closed under +-operation. Therefore,

S′ is a glrac (2, 1)-subsemigroup of S. Obviously, P(S′) = P(S)\{1}.
Let r ∈ R1, then it is easy to know that (r ] ∈ C(S) implies that Ar = (r ] \

{r} ∈ C(S
′
). Obviously, A+

r = P(S) \ {1} = P(S
′
) and Ar ∈ RP(S′

)
. Moreover, by

Corollary 3, P(S′)Ar = Ar . By hypothesis, for any x ∈ Ar , there exists e ∈ P(S′)
such that x = xe. This shows that Ar P(S′) = Ar . Therefore, Ar ∈ RS′ . Notice that
S is factorizable, we observe that for any a ∈ S

′
, there is e ∈ P(S), r ∈ R1 such that

a = er ∈ (r ]. Thus, a ∈ Ar . Consequently, S′ is almost factorizable. ��
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Example 2 LetU be a monoid with identity 1U , and Y a left regular band with identity
1Y . Let φ : u 
→ φu be a monoid homomorphism of U into End(Y ) such that every
φu is a monoid endomorphism. Then, the semigroup Y �φU is a uniquely factorizable
glrac monoid with unary operation:

+ : Y �φ U → Y �φ U ; (y, u) 
→ (y, 1U ).

Proof It is routine to check that (1Y , 1U ) is the identity ofY�φU and that P(Y�φU ) =
Y × {1U }. So, Y �φ U is a glrac monoid. For (x, u) ∈ Y �φ U , since φ is a monoid
homomorphism, we have

(x, u) = (x(1U · 1Y ), u) = (x, 1U ) ◦ (1Y , u).

Also, we have (1Y , u) ∈ R(1Y ,1U ) since (1Y , u)+ = (1Y , 1U ), it follows that

{(1Y , u) ∈ Y �φ U : u ∈ U } ⊆ R(1Y ,1U ),

and the converse inclusion is clear. Thus,

R(1Y ,1U ) = {(1Y , u) ∈ Y �φ U : u ∈ U }.

Therefore, Y �φ U ⊆ P(Y �φ U ) · R(1Y ,1U ). The uniqueness of (x, 1U ) and (1Y , u)

is obvious. Consequently, Y �φ U is a uniquely factorizable glrac monoid. ��
Example 3 Let U be a monoid with identity 1 and Y a left regular band. Let φ : u →
End(Y ) be a homomorphism of U into End(Y ) such that

(UFA) for any y ∈ Y and u ∈ U , there is z ∈ Y such that y(u · z) = y.

Then, the semigroup Y �φ U is an almost factorizable glrac semigroup with unary
operation:

+ : Y �φ U → Y �φ U ; (y, u) 
→ (y, 1).

Proof Let i be a symbol not in Y . On Y i := Y � {i}, define a multiplication by: for
any x, y ∈ Y i ,

x ◦ y =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

xy if x, y ∈ Y ;
x if x ∈ Y , y = i;
y if x = i, y ∈ Y ;
i if x = i = y,

where xy is the product of x and y in Y . It is easy to check that Y i is a left regular
band with identity i .
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For any u ∈ U , we define ϕu as the monoid homomorphism of Y i into itself in
which the restriction of ϕu to Y is φu . Now, define

ϕ : U → End(Y i ); u 
→ ϕu .

By Example 2, Y i
�ϕ U is a uniquely factorizable glrac monoid with identity (i, 1).

Evidently, R(i,1) = {i} ×U and Y �φ U = (Y i
�ϕ U ) \ R(i,1).

Let (y, u) ∈ Y �φ U . By hypothesis, y(u · z) = y for some z ∈ Y . It follows that
(y, u) ◦ (z, 1) = (y(u · z), u) = (y, u). Notice that (z, 1) ∈ P(Y �φ U ). Now, by
Proposition 7, Y �φ U is almost factorizable. ��

By definition, V × U = V �φ U , where φu is the identity mapping of V onto
itself, for all u ∈ U . In this case, if V is a left regular band and U is a monoid, then φ

satisfies the condition (UFA), so that by Example 3, V ×U is an almost factorizable
glrac semigroup.

Let S and T be glrac semigroups. A (2, 1)-homomorphismφ from S into T is said to
be projection-separating if for any e, f ∈ P(S), eφ = f φ implies that e = f . More-
over, the (2, 1)-congruence induced by a projection-separating (2, 1)-homomorphism
is called to be projection-separating.

Proposition 8 Any projection-separating (2, 1)-homomorphic image of an almost fac-
torizable glrac semigroup is still an almost factorizable glrac semigroup.

Proof Let S and T be glrac semigroup, and let φ be a projection-separating (2, 1)-
homomorphism of S onto T . Then, P(T ) = P(S)φ. Indeed, for any f ∈ P(T ),
there is a ∈ S such that f = aφ, it follows that f = (aφ)+ = a+φ ∈ P(S)φ,
whence P(T ) ⊆ P(S)φ. The reverse inclusion follows from the computation: a+φ =
(aφ)+ ∈ P(T ), for a ∈ S. Therefore, P(T ) = P(S)φ. By Lemma 2, this shows that

(∗) For any a, b ∈ S, if (a, b) ∈ σS , then (aφ, bφ) ∈ σT .

We next prove that C(S)φ := {Aφ : A ∈ C(S)} ⊆ C(T ). To the end, we let
A ∈ C(S). To show that Aφ ∈ C(T ), by (∗), it suffices to verify that for any x, y ∈ A,
if

x+φ = (xφ)+ = (yφ)+ = y+φ,

then xφ = yφ. Indeed, since φ is projection-separating, x+φ = y+φ implies that
x+ = y+ and further by Definition 4 (PS3), x = y. Obviously, xφ = yφ. It follows
that Aφ ∈ C(T ) and whence C(S)φ ⊆ C(T ).

By definition, it is easy to see thatRSφ = {Aφ : A ∈ RS} ⊆ RT . For any aφ ∈ T
with a ∈ S, by S is almost factorizable, there is A ∈ C(S) such that a ∈ A. It follows
that aφ ∈ Aφ. But Aφ ∈ RT , so T is almost factorizable. ��
Corollary 4 Any projection-separating (2, 1)-homomorphic image of a factorizable
glrac monoid is still a factorizable glrac monoid.

Proof With notations in the proof of Proposition 8, we have P(S)φ = P(T ). If 1 is
the identity of S and S = P(S) ·R1, it is easy to check that 1φ is the identity of T and

T = Sφ = P(S)φ · R1φ = P(T ) · R1φ.
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Because φ is a (2, 1)-homomorphism, we have that (aφ)+ = a+φ for any a ∈ S. It
follows that R1φ ⊆ R1φ . For any aφ ∈ T with a ∈ S, by S is factorizable, there are
r ∈ R1, e ∈ P(S) such that a = (eφ)(rφ). But rφ ∈ R1φ , so T is factorizable. ��

5 Weakly Semidirect Products and Construction

We first introduce the definition of weakly semidirect products.
Let U be a semigroup and V a monoid with 1. Denote by End(U ) the monoid of

endomorphisms of U . Let

η : U × V → End(U ); (u, v) 
→ ηu,v

be a mapping. In what follows, we write aηu,v as (u, v)#a. Suppose that the following
condition holds:

(WSD) For any (u, x), (v, y) ∈ U × V , ηu,xηv,y = ηu·(u,x)#v,xy .
(ID) For any u ∈ U , ηu,1 = λu , where

λu : U → U ; v 
→ uv.

(I) For any (u, x) ∈ U × V , u ∈ Im(ηu,x ), where Im(ηu,x ) is the image of ηu,x .

On the set U × V , define

(u, x) ⊗ (v, y) = (u · (u, x)#v, xy).

Lemma 3 (U × V ,⊗) is a semigroup.

Proof Obviously,⊗ is well defined and closed. For any (u, x), (v, y), (w, z) ∈ U×V ,
we have

((u, x) ⊗ (v, y)) ⊗ (w, z) = (u · (u, x)#v, xy) ⊗ (w, z)

= (u · (u, x)#v · (u · (u, x)#v, xy)#w, xyz).

By (WSD), we have

(u, x)#((v, y)#w) = ηu,xηv,y(w) = ηu·(u,x)#v,xy(w)

= (u · (u, x)#v, xy)#w,

so that

((u, x) ⊗ (v, y)) ⊗ (w, z) = (u · (u, x)#v · (u, x)#((v, y)#w), xyz).
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Thus,

(u, x) ⊗ ((v, y) ⊗ (w, z)) = (u, x) ⊗ (v · (v, y)#w, yz)

= (u · (u, x)#(v · (v, y)#w), xyz)

= (u · (u, x)#v · (u, x)#((v, y)#w), xyz)

= ((u, x) ⊗ (v, y)) ⊗ (w, z).

Consequently, (U × V ,⊗) is a semigroup. ��
Definition 6 The above semigroup (U×V ,⊗) is called theweakly semidirect product
of V and U via η and denoted by U �

w
η V .

Proposition 9 If U is a left regular band and V is a left reduced monoid with identity
1, thenU�

w
η V is a uniquely almost factorizable glrac semigroup with unary operator

+ : U × V → U × V ; (u, x) 
→ (u, 1).

Proof Let (u, x), (v, y) ∈ U �
w
η V . We have

(i) (u, x)+ ⊗ (u, x) = (u, 1) ⊗ (u, x) = (u · (u, 1)#u, x) = (uuu, x) = (u, x).
(ii) (u, x)+ ⊗ (v, y)+ ⊗ (u, x)+ = (u, 1) ⊗ (v, 1) ⊗ (u, 1) = (uuv, 1) ⊗ (u, 1) =

(uvuvu, 1) = (uv, 1) = (u, 1) ⊗ (v, 1) = (u, x)+ ⊗ (v, y)+.
(iii) ((u, x)⊗(v, y))+ = (u ·(u, x)#v, xy)+ = (u ·(u, x)#v, 1) = ((u, x)⊗(v, 1))+ =

((u, x) ⊗ (v, y)+)+.
(iv) (u, x)⊗ (v, y)+ = (u, x)⊗ (v, 1) = (u · (u, x)#v, x) = (u · (u, x)#v ·u, x) = (u ·

(u, x)#v, 1)⊗ (u, x) = (u · (u, x)#v, x)+ ⊗ (u, x) = ((u, x)⊗ (v, y)+)+ ⊗ (u, x).
(v) ((u, x)+)+ = (u, 1)+ = (u, 1) = (u, x)+.
(vi) ((u, x)+ ⊗ (v, y))+ = ((u, 1) ⊗ (v, y))+ = (u · (u, 1)#v, y)+ = (uuv, 1) =

(u, 1) ⊗ (v, 1) = (u, x)+ ⊗ (v, y)+.

Consequently,U �
w
η V is a glrac semigroup. It is routine to check that P(U �

w
η V ) =

U × {1}.
We next show that U × {x} is a permissible subset of U �

w
η V , for any x ∈ V . Let

u0 ∈ U and (u, x) ∈ U × {x}, then (uu0, 1) ∈ P(U �
w
η V ) and

(uu0, 1) ⊗ (u, x) = (uu0uu0u, x) = (uu0, 1) ⊗ (u0, x).

This shows that U × {x} ⊆ (u0, x)σU�
w
η V . It follows that U × {x} satisfied (PS1). A

routine computation shows that U × {x} satisfies (PS2).
Let (e, x), ( f , x) ∈ U × {x}. If (e, 1) = (e, x)+ = ( f , x)+ = ( f , 1), then e = f

and further (e, x) = ( f , x). It results (PS3).
Consequently, U × {x} is a permissible subset of U �

w
η V .

By the foregoing proof, P(U�
w
η V ) = U×{1} andRP(U�

w
η V ) = {U×{v} : v ∈ V }.

For any (u, x) ∈ U × {x}, by (I), we have v ∈ U such that (u, x)#v = u. So,
(u, x) = (u, x) ⊗ (v, 1). It follows that U × {x} ⊆ (U × {x}) ⊗ P(U �

w
η V ). The

reverse inclusion is evident. Therefore, RU�
w
η V = {U × {x} : x ∈ V }.
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For any (v, y) ∈ U �
w
η V , we know thatU ×{y} ∈ RU�

w
η V and (v, y) ∈ RU�

w
η V .

If (v, y) ∈ U × {z} (∈ RU�
w
η V ), then y = z and so U × {y} = U × {z}. Therefore,

U �
w
η V is a uniquely almost factorizable glrac semigroup. ��

We arrive now at the structure theorem of uniquely almost factorizable glrac semi-
groups.

Theorem 2 If U is a left regular band and V is a left reduced monoid with identity 1,
then U �

w
η V is a uniquely almost factorizable glrac semigroup with unary operator

+ : U × V → U × V ; (u, x) 
→ (u, 1).

Conversely, any uniquely almost factorizable glrac semigroup can be constructed
in this way.

Proof By Proposition 9, we need only to verify the converse part. To the end, we let
S be a uniquely almost factorizable glrac semigroup, then P(S) is a left regular band
and by Proposition 5, RS is a left reduced monoid.

For any (u, A) ∈ P(S) × RS , we know that A is a permissible subset of S and
further by Definition 4, there exists uniquely a ∈ A such that a+ = u. We define

ζu,A : P(S) → P(S); v 
→ (av)+.

Then, ζu,A is a homomorphism. Indeed, if x, y ∈ P(S), then

ζu,A(xy) = (axy)+ = ((ax)+ay)+ = (ax)+(ay)+

= (ζu,Ax)(ζu,Ay)

so that ζu,A is a homomorphism, as required.
We next prove that the mapping

P(S) × RS → End(P(S)); (u, A) 
→ ζu,A

satisfies Condition (WSD). For any (u, A), (v, B) ∈ P(S) × RS , if t ∈ P(S), then

ζu,Aζv,B(t) = ζu,A(bt)+ = (a(bt)+)+ = (abt)+,

where b ∈ B and b+ = v. Also,

ζu·(u,A)#v,AB = ζu(av)+,AB = ζa+(av)+,AB

= ζ(av)+,AB = ζ(ab+)+,AB

= ζ(ab)+,AB
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since ζu,A(v) = (av)+. Notice that

u · (u, A)#v = a+ · (u, A)#b+ = a+(ab+)+

= (a+ab+)+ = (ab+)+

= (ab)+,

we observe that ζu·(u,A)#v,AB(t) = (abt)+ = ζ(ab)+,AB(t). Therefore, ζu,Aζv,B =
ζu·(u,A)#v,AB and (WSD) is valid.

Because AP(S) = A, there exist b ∈ A and f ∈ P(S) such that b f = a. Hence,
a f = a and ζu,A( f ) = (a f )+ = a+ = u. Therefore, (I) is valid.

It remains to show that the mapping

φ : S → P(S) �
w
ζ RS; s 
→ (s+, P),

where s ∈ P , is a (2, 1)-isomorphism. By definition, φ is well-defined. For any
(u, P) ∈ P(S) �

w
ζ RS , by definition, there is uniquely a ∈ P such that a+ = u. So

φ(a) = (a+, P) = (u, P), and whence φ is surjective. If (s+, P) = (t+, Q) where
s ∈ P and t ∈ Q, then s+ = t+, P = Q. By (PS3), we have s = t . Then, φ is
injective.

To see that φ is a homomorphism, we let s, t ∈ S and further P, Q ∈ RS with
s ∈ P and t ∈ Q. Then,

φ(s)φ(t) = (s+, P) ⊗ (t+, Q) = (s+(s+, P)#t+, PQ)

= (s+(st+)+, PQ) = ((st)+, PQ)

= φ(st),

as required.
Finally, we have

(φ(s))+ = (s+, P)+ = (s+, P(S)) = φ(s+)

and φ is a (2, 1)-isomorphism. We complete the proof. ��
Based on Theorem 2, we may give the structure theorem for uniquely factorizable

glrac monoids.

Theorem 3 Let U be a left regular band with identity e and V a left reduced monoid
with identity 1. If ηu,x (e) = u for any (u, x) ∈ U × V , then U �

w
η V is a uniquely

factorizable glrac monoid with unary operator

+ : U × V → U × V ; (u, x) 
→ (u, 1).

Conversely, any uniquely factorizable glrac monoid can be constructed in this way.
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Proof For the direct part, by Proposition 6 and Theorem 2, we need only to verify that
(e, 1) is the identity of U �

w
η V . For any (u, x) ∈ U �

w
η V , we have

(u, x) ⊗ (e, 1) = (u · (u, x)#e, x) = (uu, x) = (u, x)

since ηu,x (e) = u. Also,

(e, 1) ⊗ (u, x) = (e · (e, 1)#u, 1 · x) = (e · eu, x) = (u, x).

Therefore, (e, 1) is the identity of U �
w
η V .

To see the converse part, with notations in the proof of Theorem 2, it suffices to
verify that ζu,A(e) = u. Indeed, ζu,A(e) = (ae)+ = a+ = u.We complete the proof.��

A (2, 1)-subsemigroup T of a glrac semigroup S is full if P(S) ⊆ T . In this case,
it is obvious that P(T ) = P(S) and T is a glrac semigroup.

Based on Proposition 8 and Theorem 2, we may obtain the following theorem.

Theorem 4 Let S be a glrac semigroup. Then, S is an almost factorizable glrac semi-
group if and only if S is a projection-separating (2, 1)-homomorphic image of some
full (2, 1)-subsemigroup of a weakly semidirect product of a left regular band and a
left reduced monoid.

Proof By Propositions 8 and 9 , we need only to verify the direct part. For the direct
part, by Theorem 2, P(S) �

w
ζ RS is a uniquely almost factorizable glrac semigroup.

So, it suffices to verify that S is a projection-separating (2, 1)-homomorphic image of
P(S) �

w
ζ RS .

Let (u, A) ∈ P(S)×RS and since A+ = P(S), we have uniquely a ∈ A such that
a+ = u. Define

ψ : P(S) �
w
ζ RS → S; (u, A) 
→ a.

Obviously, ψ is well defined. For any s ∈ S, by S is an almost factorizable glrac
semigroup, there exists A ∈ RS such that s ∈ A. So by Definition 4, ψ(s+, A) = s
and whence ψ is surjective.

For (u, A), (v, B) ∈ P(S) �
w
ζ RS with ψ(u, A) = a, ψ(v, B) = b, we know that

b+ = v and a+ = u, accordingly

u(av)+ = a+(av)+ = (av)+ = (ab+)+ = (ab)+.

It follows that

ψ((u, A) ⊗ (v, B)) = ψ(u(u, A)#v, AB) = ψ(u(av)+, AB)

= ψ((ab)+, AB) = ab

= ψ(u, A) · ψ(v, B).

Also, ψ((u, A)+) = ψ(u, P(S)) = u = a+ = (ψ(u, A))+. So ψ is a (2, 1)-
homomorphism.
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For any (u, P(S)), (v, P(S)) ∈ P(P(S) �
w
ζ RS), if ψ(u, P(S)) = ψ(v, P(S)),

then by the foregoing proof, a = b and so u = a+ = b+ = v. It follows that
(u, P(S)) = (v, P(S)). Therefore,ψ is projection-separating.Notice that P(S)�w

ζ RS

is a full (2, 1)-subsemigroup of itself. We complete the proof. ��
Based on Corollary 4, and Theorems 3 and 4, wemay obtain the following theorem.

Theorem 5 Let S be a glrac monoid. Then, S is a factorizable glrac monoid if and
only if S is a projection-separating (2, 1)-homomorphic image of some full (2, 1)-
subsemigroup of a weakly semidirect product of a left regular band with identity and
a left reduced monoid.

Proof If S is a factorizable glrac monoid, then by Proposition 6, S is an almost
factorizable semigroup. Further by Theorem 4, S is a projection-separating (2, 1)-
homomorphic image of some full (2, 1)-subsemigroup of a weakly semidirect product
of a left regular band with identity and a left reduced monoid. Conversely, if S is a
projection-separating (2, 1)-homomorphic image of some full (2, 1)-subsemigroup of
a weakly semidirect product of a left regular band with identity and a left reduced
monoid, then by Theorem 4, S is an almost factorizable semigroup. But S is a monoid,
so by Proposition 6, S is a factorizable monoid. ��

6 Left Restriction Semigroups

Let us turn back to the weakly semidirect product U �
w
η V . By Proposition 9, it is

easy to know that

– P(U �
w
η V ) = U × {1}, isomorphic to U.

So, U �
w
η V is a left restriction semigroup if and only if U is a semilattice. Based on

this observation, the following theorems are easy consequences of Theorems 2, 3, 4
and 5 , respectively.

Theorem 6 If U is a semilattice and V is a left reduced monoid with identity 1,
then U �

w
η V is a uniquely almost factorizable left restriction semigroup with unary

operator

+ : U × V → U × V ; (u, x) 
→ (u, 1).

Conversely, any uniquely almost factorizable left restriction semigroup can be con-
structed in this way.

Theorem 7 Let U be a semilattice with identity e and V a left reduced monoid with
identity 1. If ηu,x (e) = u for any (u, x) ∈ U × V , then U �

w
η V is a uniquely

factorizable left restriction monoid with unary operator

+ : U × V → U × V ; (u, x) 
→ (u, 1).
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Conversely, any uniquely factorizable left restriction monoid can be constructed in
this way.

Theorem 8 Let S be a left restriction semigroup. Then, S is an almost factorizable left
restriction semigroup if and only if S is a projection-separating (2, 1)-homomorphic
image of some full (2, 1)-subsemigroup of a weakly semidirect product of a semilattice
and a left reduced monoid.

Theorem 9 Let S be a left restriction monoid. Then, S is a factorizable left restriction
monoid if and only if S is a projection-separating (2, 1)-homomorphic image of some
full (2, 1)-subsemigroup of a weakly semidirect product of a semilattice with identity
and a left reduced monoid.

7 Restriction Semigroups

In this section, we consider restriction semigroups. Let S be a restriction semigroup.
By Proposition 2, it is easy to see that

Observation 1 P(S) × P(S) � σS.

This shows that

Observation 2 σS is a (2, 1, 1)-congruence on S.

Based these observations, we know that S/σS is a reduced monoid. On the other
hand, by Remark 1, C(S) is a restriction monoid (see [28, Lemma 3.3]), hence

RS = {A ∈ C(S) : A+ = P(S)}.

So, we have the following observations:

Observation 3 S is a left factorizable restriction semigroup in sense of Szandrei in
[28] if and only if S is a factorizable glrac semigroup.

Observation 4 S is an almost left factorizable restriction semigroup in sense of Szan-
drei in [28] if and only if S is an almost factorizable glrac semigroup.

We now arrive at the structure theorem of uniquely almost factorizable restriction
semigroups.

Theorem 10 Let U be a semilattice and V a reduced monoid with identity 1. If for
any (u, x), (v, y) ∈ U �

w
η V , there exists an element (u, x)◦ ∈ U such that

(RS1) u · (u, x)#(u, x)◦ = u;
(RS2) (u · (u, x)#v, x)◦ = (u, x)◦v for all v ∈ U;
(RS3) (u, x)◦v = v · (v, y)#((u, x)◦v, y)◦;
(RS4) (u · (u, x)#v, xy)◦ = ((u, x)◦v, y)◦;
(RS5) (u, 1)◦ = u for any u ∈ U,
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then U �
w
η V is a uniquely almost left factorizable restriction semigroup with unary

operators

+ : U × V → U × V ; (u, x) 
→ (u, 1)

and

∗ : U × V → U × V ; (u, x) 
→ ((u, x)◦, 1).

Conversely, any uniquely almost left factorizable restriction semigroup can be con-
structed in this way.

Proof Necessity. By the arguments before Theorem 6, U �
w
η V is a left restriction

semigroup. Compute

(i) (u, x) ⊗ (u, x)∗ = (u, x) ⊗ ((u, x)◦, 1) = (u · (u, x)#(u, x)◦, x) = (u, x);
(ii) Indeed, we have

(u, x)∗ ⊗ (v, y)∗ = ((u, x)◦, 1) ⊗ ((v, y)◦, 1) = ((u, x)◦(v, y)◦, 1)
= ((v, y)◦(u, x)◦, 1) = ((v, y)◦, 1) ⊗ ((u, x)◦, 1)
= (v, y)∗ ⊗ (u, x)∗;

(iii) Applying (RS2), we may obtain that

((u, x) ⊗ (v, 1))∗ = (u · (u, x)#v, x)∗ = ((u · (u, x)#v, x)◦, 1)
= ((u, x)◦v, 1) = ((u, x)◦, 1) ⊗ (v, 1)

= (u, x)∗ ⊗ (v, 1);
(iv) For any (u, x), (v, y) ∈ U �

w
η V , we have

(u, x)∗ ⊗ (v, y) = ((u, x)◦, 1) ⊗ (v, y) = ((u, x)◦ · ((u, x)◦, 1)#v, y)

= ((u, x)◦(u, x)◦v, y) = ((u, x)◦v, y)

= (v · (v, y)#((u, x)◦v), y)◦, y) (by (RS3))

= (v, y) ⊗ ((u, x)◦v, y)◦, 1)
= (v, y) ⊗ ((u, x)◦v, y)∗

= (v, y) ⊗ ((u, x)∗ ⊗ (v, y))∗.

(v) By (RS4), we have

((u, x) ⊗ (v, y))∗ = (u · (u, x)#v, xy)∗ = ((u · (u, x)#v, xy)◦, 1)
= ((u, x)◦v, y)◦, 1) = ((u, x)◦v, y)∗

= ((u, x)◦(u, x)◦v, y)∗

= (((u, x)◦, 1) ⊗ (v, y))∗

= ((u, x)∗ ⊗ (v, y))∗.
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(vi) (u, x)∗ = ((u, x)◦, 1) = (((u, x)◦, 1)◦, 1) = ((u, x)◦, 1)∗ = ((u, x)∗)∗.
So, U �

w
η V is a right restriction semigroup. Again together with

(A) ((u, x)∗)+ = ((u, x)◦, 1)+ = ((u, x)◦, 1) = (u, x)∗;
(B) ((u, x)+)∗ = (u, 1)∗ = ((u, 1)◦, 1) = (u, 1) = (u, x)+,
we know that U �

w
η V is a restriction semigroup, and further by Observation 4, a

uniquely almost left factorizable restriction semigroup.
Sufficiency. Assume that S is a uniquely almost left factorizable restriction semi-

group. By Theorem 2, S is isomorphic to some U �
w
η V . For convenience, we shall

identify S with U �
w
η V . So, U �

w
η V is a restriction semigroup with

P(U �
w
η V ) = {(u, 1) : u ∈ U }.

For any (u, x), (v, y) ∈ U �
w
η V , if (u, x)σS(v, y), then there exists w ∈ U such that

(w, 1) ⊗ (u, x) = (w, 1) ⊗ (v, y) and by comparing the second components, x = y.
Conversely, if x = y, then

(uv, 1) ⊗ (u, x) = (uvu, x) = (uv, y) = (uv, 1) ⊗ (v, y),

and whence (u, x)σS(v, y). We have now verified that (u, x)σS(v, y) if and only
if x = y. This shows that the mapping defined by: (u, x)σS 
→ x is a (2, 1, 1)-
isomorphism of S/σS onto V . Notice that S/σS is a reduced monoid, we obtain that
V is a reduced monoid.

To the end, for any (u, x) ∈ U �
w
η V and v ∈ U , we let (u, x)∗ = ((u, x)◦, 1).

• Because U �
w
η V is a restriction semigroup, we have

(u, x) = (u, x) ⊗ (u, x)∗ = (u, x) ⊗ ((u, x)◦, 1) = (u · (u, x)#(u, x)◦, x),

so that u = u · (u, x)#(u, x)◦, resulting (RS1).
• Let v ∈ U . We have (v, 1) ∈ P(U �

w
η V ) and so

((u · (u, x)#v, x)◦, 1) = (u · (u, x)#v, x)∗ = ((u, x) ⊗ (v, 1))∗

= (u, x)∗ ⊗ (v, 1) = ((u, x)◦, 1) ⊗ (v, 1)

= ((u, x)◦ · ((u, x)◦, 1)#v, 1)

= ((u, x)◦v, 1).

It follows that (u · (u, x)#v, x)◦ = (u, x)◦v, and whence (RS2) holds.
• Let (v, y) ∈ U �

w
η V . Then,

((u, x)◦v, y) = ((u, x)◦ · ((u, x)◦, 1)#v, y) = ((u, x)◦, 1) ⊗ (v, y)

= (u, x)∗ ⊗ (v, y) = (v, y) ⊗ ((u, x)∗ ⊗ (v, y))∗

= (v, y) ⊗ ((u, x)◦v, y)∗

= (v, y) ⊗ (((u, x)◦v, y)◦, 1)
= (v · (v, y)#((u, x)◦v, y)◦, y),
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so that (u, x)◦v = v · (v, y)#((u, x)◦v, y)◦. So, (RS3) holds.
• Compute

(((u, x)◦v, y)◦, 1) = ((u, x)◦v, y)∗ = ((u, x)◦ · ((u, x)◦, 1)#v, y)∗

= ((u, x)◦, 1) ⊗ (v, y))∗ = ((u, x)∗ ⊗ (v, y))∗

= ((u, x) ⊗ (v, y))∗ = (u · (u, x)#v, xy)∗

= ((u · (u, x)#v, xy)◦, 1),

so that (u · (u, x)#v, xy)◦ = ((u, x)◦v, y)◦. This means that (RS4) is true.
• Because (u, 1) ∈ P(U �

w
η V ), we have (u, 1) = (u, 1)∗ = ((u, 1)◦, 1). It follows

that u = (u, 1)◦, resulting (RS5).

Notice that P(U �
w
η V ) = {(u, 1) : u ∈ U }, we easily know that the mapping:

(u, 1) → u is an isomorphism of P(U �
w
η V ) onto U . Therefore, U is a semilattice.

We complete the proof. ��

By the proof ofTheorem10,U�
w
η V is a restriction semigroupwheneverConditions

(RS1)-(RS5) are satisfied. We shall denote such a semigroup by RS(U �
w
η V ). On the

other hand, by the proof of Theorem 3, U �
w
η V is a monoid whenever ηu,x (e) = u

for any (u, x) ∈ U × V . So, the following theorem is immediate from Theorem 3 and
Observation 3.

Theorem 11 Let U be a semilattice with identity e and V a reduced monoid with
identity 1. If ηu,x (e) = u for any (u, x) ∈ U × V , then RS(U �

w
η V ) is a uniquely

left factorizable restriction monoid.
Conversely, any uniquely left factorizable restrictionmonoid is (2, 1, 1)-isomorphic

to some RS(U �
w
η V ).

Theorem 12 Let S be a restriction semigroup. Then, S is an almost left factorizable
restriction semigroup if and only if S is a projection-separating (2, 1, 1)-homomorphic
image of some full (2, 1, 1)-subsemigroup of some RS(U �

w
η V ).

Proof By Proposition 8, Observation 4 and Theorem 10, we need only to verify the
necessity. By Theorem 4, S is a projection-separating (2, 1)-homomorphic image
of P(S) �

w
ζ RS . On the other hand, P(S) is a semilattice since S is a restriction

semigroup. So, it suffices to verify that there exists an element (u, A)◦ ∈ P(S) such
that (RS1) − (RS5) are satisfied for any (u, A) ∈ P(S) �

w
ζ RS .

Let (u, A)◦ = a∗, where a is the unique element of A with a+ = u.

(i) u · (u, A)#(u, A)◦ = u · (u, A)#a∗ = u · (aa∗)+ = u · a+ = u. It results (RS1).
(ii) for all v ∈ P(S), we have

(u · (u, A)#v, A)◦ = (u · (av)+, A)◦ = ((av)+, A)◦ = (av)∗ = a∗v = (u, A)◦v,

and (RS2) holds.
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(iii) Notice that (u, A)◦ = a∗, (u, P(S))◦ = u and since S is a restriction semigroup,
we observe that

v · (v, B)#((u, A)◦v, B)◦ = v · (v, B)#(a∗v, B)◦ = v · (v, B)#(a∗b+, B)◦

= v · (v, B)#(a∗b)∗ = v(b(a∗b)∗)+ = b+(b(a∗b)∗)+

= (b+b(a∗b)∗)+ = (b(a∗b)∗)+ = (a∗b)+

= a∗b+ = a∗v
= (u, A)◦v

and (RS3) is satisfied.
(iv) For any (v, B) ∈ P(S) �

w
ζ RS ,

(u · (u, A)#v, AB)◦ = ((av)+, AB)◦ = ((ab+)+, AB)◦

= ((ab)+, AB)◦ = (ab)∗ = (a∗b)∗

= ((a∗b)+, B)◦

= ((u, A)◦v, B)◦,

where b+ = v. This shows (RS4).
(v) For any u ∈ P(S), we know that u is the unique element in P(S) such that u∗ = u.

Thus, (u, P(S))◦ = u, resulting (RS5).

Also, ψ((u, A)∗) = ψ((u, A)◦, P(S)) = ψ(a∗, P(S)) = a∗ = (ψ(u, A))∗.
Therefore,ψ is a (2, 1, 1)-homomorphism of RS(P(S)�w

ζ RS) onto S. Consequently,
S is a projection-separating (2, 1, 1)-homomorphic image of RS(P(S) �

w
ζ RS). ��

Theorem 13 Let S be a restriction monoid. Then, S is a left factorizable restriction
monoid if and only if S is a projection-separating (2, 1, 1)-homomorphic image of
some full (2, 1, 1)-subsemigroup of some RS(U �

w
η V ).

Proof It is immediate from Proposition 6 and Theorem 12. The proof is similar as
Theorem 5. ��

8 Left GC-lpp Semigroups

In this section, we shall establish the structure theorems of uniquely factorizable left
GC-lpp monoids and of uniquely almost factorizable left GC-lpp semigroups. Pointed
out as in Sect. 2, a left GC-lpp semigroup is just a glrac semigroup S in which aR∗a+
for any a ∈ S. So, the following lemma is the key to establishing the structure of
(uniquely) almost factorizable left GC-lpp semigroups.

Lemma 4 If U is a left regular band and V a right cancellative monoid with identity
1, then U �

w
η V is a left GC-lpp semigroup.
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Proof By Proposition 9, U �
w
η V is a glrac semigroup. So, U �

w
η V is a left GC-lpp

semigroup if and only if for any (u, v) ∈ U × V , (u, v)R∗(u, v)+ = (u, 1). So, it
suffices to verify that (u, v)R∗(u, 1). Obviously,

(u, 1) ⊗ (u, v) = (u, v)+ ⊗ (u, v) = (u, v).

We first prove that for (u1, v1), (u2, v2) ∈ U �
w
η V , if

(u1 · (u1, v1)
#u, v1v) = (u1, v1) ⊗ (u, v) = (u2, v2) ⊗ (u, v)

= (u2 · (u2, v2)
#u, v2v),

(5)

that is, u1 · (u1, v1)#u = u2 · (u2, v2)#u, then (u1, v1) ⊗ (u, 1) = (u2, v2) ⊗ (u, 1).
Indeed, if (5) holds, we have v1v = v2v, so that v1 = v2 since V is a right cancellative
monoid, it follows that

(u1 · (u1, v1)
#u, v1) = (u1, v1) ⊗ (u, 1) = (u2, v2) ⊗ (u, 1)

= (u2 · (u2, v2)
#u, v2),

as required. If (u1, v1) ⊗ (u, v) = (u, v), then

(u1, v1) ⊗ (u, v) = (u, v) = (u, 1) ⊗ (u, v),

and further by the foregoing proof,

(u1, v1) ⊗ (u, 1) = (u, 1) ⊗ (u, 1) = (u, 1).

We have now proved that for (u1, v1), (u2, v2) ∈ (U �
w
η V )1, if

(u1, v1) ⊗ (u, v) = (u2, v2) ⊗ (u, v),

then (u1, v1) ⊗ (u, 1) = (u2, v2) ⊗ (u, 1). Therefore, (u, v)R∗(u, 1). ��
By Lemma 4 and Theorem 2, we have the following theorem:

Theorem 14 Let U be a left regular band and V a right cancellative monoid. Then,
U �

w
η V is a uniquely almost factorizable left GC-lpp semigroup.

Conversely, any uniquely almost factorizable left GC-lpp semigroup can be con-
structed in this way.

Proof By Lemma 4 and Theorem 2, we need only to verify the converse part. To the
end, we assume that S is a uniquely almost factorizable left GC-lpp semigroup. By
Theorem 2, S is isomorphic to some U �

w
η V where U is a left regular band and V

is a left reduced monoid. Notice that σS is a right cancellative monoid congruence
whenever S is a left GC-lpp semigroup (see [17]). We get that (U �

w
η V )/σU�

w
η V is

a right cancellative monoid. By the foregoing proof of the sufficiency of Theorem 10,
we have verified that (u, v)σU�

w
η V = U × {v} for any (u, v) ∈ U �

w
η V .
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Define a mapping

ξ : (U �
w
η V )/σU�

w
η V → V ; (u, v)σU�

w
η V 
→ v.

It is easy to see that ξ is a surjective mapping. Also,

((u, v)σU�
w
η V · (x, y)σU�

w
η V )ξ = ((u · (u, v)#x, vy)σU�

w
η V )ξ = vy

= ((u, v)σU�
w
η V )ξ((x, y)σU�

w
η V )ξ.

Thus, ξ is an isomorphism. This implies that V is a right cancellative monoid. ��
Let us turn back to the proof of Theorems 2 and 14 . By the proof of Theorem 2,

S is isomorphic to P(S) �
w
ζ RS . Moreover, by the proof of Theorem 14, RS is

a right cancellative monoid with identity P(S). So, we have proved that RS is a
right cancellative monoid whenever S is a uniquely almost factorizable left GC-lpp
semigroup. Now, the following theorem is an immediate consequence of Theorems 14
and 3 .

Theorem 15 Let U be a left regular band with identity e and V a right cancellative
monoid with identity 1. If ηu,x (e) = u for any (u, x) ∈ U × V , then U �

w
η V is a

uniquely factorizable left GC-lpp monoid.
Conversely, any uniquely factorizable left GC-lpp monoid can be constructed in

this way.

By a left (right) ample semigroup, we mean a semigroup S satisfying the following
conditions:

(i) Every R∗- (L∗-)class of S contains exactly one idempotent.
(ii) The set E(S) of idempotents of S form a semilattice under the multiplication.
(iii) For any e ∈ E(S), a ∈ S, ae = (ae)†a (ea = a(ea)∗), where a† (a∗) denotes the

unique idempotent in the R∗- (L∗-)class of S containing a.

If S is both a left ample semigroup and a right ample semigroup, we call S an ample
semigroup. (Left; Right) ample semigroup is formerly called (left; right) type-A semi-
group. Of course, a left ample semigroup S may be regarded as a (2, 1)-algebra with
unary operator defined by

+ : S → S; a 
→ a†.

By definition, any left ample semigroup is a glrac semigroup satisfying the conditions:

• a+b+ = b+a+ for any a, b ∈ S;
• aR∗a+ for any a ∈ S.

Moreover, S is a left ample semigroup if and only if S is a left restriction semigroup
in which aR∗a+ for any a ∈ S; if and only if S is a left GC-lpp semigroup in which
P(S) is a semilattice. Dually, we know that a right ample semigroup may be regarded
as a right restriction semigroup with unary operator defined by:

∗ : S → S; a 
→ a∗
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and inwhichaL∗a∗ for any elementa. Therefore, an ample semigroupmaybe regarded
as a restriction semigroup in which a+R∗aL∗a∗ for any element a.

Based on the fact that a semigroup is a left ample semigroup if and only if it is a
left GC-lpp semigroup whose set of projections is a semilattice, it is easy to see that
wheneverU is a semilattice, Theorem 14 is the structure theorem for uniquely almost
factorizable left ample semigroups and that wheneverU is a semilattice with identity,
Theorem 15 is the structure theorem for uniquely factorizable left ample monoids. We
here omit the details.

Lemma 5 Let U be a semilattice and V a reduced monoid with identity 1. If for any
(u, x) ∈ U �

w
η V , there exists an element (u, x)◦ ∈ U satisfying Conditions (RS1)-

(RS5), then U �
w
η V is an ample semigroup if and only if

(C) V is a cancellative monoid;
(L) for any (u, x) ∈ U �

w
η V and v,w ∈ U, u · (u, x)#v = u · (u, x)#w implies that

(u, x)◦v = (u, x)◦w.

Proof Suppose thatU �
w
η V is an ample semigroup. Fountain in [8] pointed out that in

the semigroupU �
w
η V , the congruence σ is a cancellative monoid congruence, so that

U�
w
η V /σ is a cancellative monoid. But by the proof of Theorem 10,U�

w
η V /σ ∼= V ,

now V is a cancellative monoid.
Let (u, x) ∈ U �

w
η V and v,w ∈ U , u · (u, x)#v = u · (u, x)#w. By Theorem 10,

U �
w
η V /σ is a restriction semigroup. Notice that

(u, x) ⊗ (v, 1) = (u · (u, x)#v, x) = (u · (u, x)#w, x) = (u, x) ⊗ (w, 1)

and since (u, x)L∗(u, x)∗ = ((u, x)◦, 1) (by the argument before the lemma), we can
observe that

((u, x)◦v, 1) = ((u, x)◦, 1) ⊗ (v, 1) = (u, x)∗ ⊗ (v, 1) = (u, x)∗ ⊗ (w, 1)

= ((u, x)◦, 1) ⊗ (w, 1)

= ((u, x)◦w, 1),

thereby (u, x)◦v = (u, x)◦w, resulting (L).
Conversely, if the given conditions hold, then by Theorem 10, U �

w
η V /σ is a

restriction semigroup. Again by the proof of Lemma 4, (u, x)R∗(u, 1) = (u, x)+. On
the other hand, by the proof of Theorem10,we have proved that (u, x)∗ = ((u, x)◦, 1).
So, (u, x) ⊗ ((u, x)◦, 1) = (u, x). For any (v, y), (w, z) ∈ U �

w
η V , if

(u · (u, x)#v, xy) = (u, x) ⊗ (v, y) = (u, x) ⊗ (w, z) = (u · (u, x)#w, xz),

then u ·(u, x)#v = u ·(u, x)#w and xy = xz. The first equality implies that (u, x)◦v =
(u, x)◦w; the second one implies that y = z since V is cancellative. Therefore,

(u, x)∗ ⊗ (v, y) = ((u, x)◦, 1) ⊗ (v, y) = ((u, x)◦v, y) = ((u, x)◦w, z)

= ((u, x)◦, 1) ⊗ (w, z)

= (u, x)∗ ⊗ (w, z).

(6)
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And, if (u, x) ⊗ (v, y) = (u, x), then

(u, x) ⊗ (v, y) = (u, x) = (u, x) ⊗ ((u, x)◦, 1)

and by (6),

(u, x)∗ ⊗ (v, y) = (u, x)∗ ⊗ ((u, x)◦, 1) = (u, x)∗ ⊗ (u, x)∗ = (u, x)∗.

We have verified that for any (v, y), (w, z) ∈ (U �
w
η V )1, if (u, x) ⊗ (v, y) =

(u, x) ⊗ (w, z), then (u, x)∗ ⊗ (v, y) = (u, x)∗ ⊗ (w, z). Therefore, (u, x)L∗(u, x)∗.
Consequently, U �

w
η V is an ample semigroup. ��

The following theorem is immediate from Lemma 5 and Theorem 10.

Theorem 16 Let U be a semilattice and V a cancellative monoid. If for any
(u, x), (v, y) ∈ U �

w
η V , there exists an element (u, x)◦ ∈ U such that Condi-

tions (RS1)-(RS5), (C) and (L) are satisfied, then U �
w
η V is a uniquely almost left

factorizable ample semigroup.
Conversely, any uniquely almost left factorizable ample semigroup can be con-

structed in this way.

By Proposition 6, Lemma 5 and Theorem 11, we have

Theorem 17 Let U be a semilattice with identity e and V a cancellative monoid with
identity 1. If ηu,x (e) = u for any (u, x) ∈ U × V and if for any (u, x) ∈ U �

w
η V ,

there exists an element (u, x)◦ ∈ U such that Conditions (RS1)-(RS5), (C) and (L)

are satisfied, then U �
w
η V is a uniquely left factorizable ample monoid.

Conversely, any uniquely left factorizable ample monoid can be constructed in this
way.

9 Left Inverse Semigroups

In this section, we establish the structures of uniquely factorizable left inversemonoids
and uniquely almost factorizable left inverse semigroups.

To begin with, we give a characterization of weakly semidirect products.

Lemma 6 Let U be a left regular band and V a left reduced monoid. Then, U �
w
η V

is a left inverse semigroup if and only if

(RI1) V is a group;
(RI2) for any (u, v) ∈ U × V , there exists z ∈ U such that u · (u, v)#z = u.

Proof LetU�
w
η V be a left inverse semigroup, thenU�

w
η V is a left GC-lpp semigroup

and U �
w
η V /σ is a right cancellative monoid. Again by Theorem 10, U �

w
η V /σ is

isomorphic to V . Therefore, V is a right cancellative monoid. On the other hand, by
U �

w
η V is a regular semigroup, we know that for any (u, v) ∈ U × V , there exists
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(u′, v′) ∈ U × V such that (u, v) ⊗ (u′, v′) ⊗ (u, v) = (u, v) and (u′, v′) ⊗ (u, v) ⊗
(u′, v′) = (u′, v′). Denote z = u′ · (u′, v′)#u. Compute

(u, v) ⊗ (u′, v′) ⊗ (u, v) = (u, v) ⊗ (u′ · (u′, v′)#u, v′v)

= (u, v) ⊗ (z, v′v)

= (u · (u, v)#z, vv′v)

= (u, v),

hence u · (u, v)#z = u and vv′v = v. Also,

(u′, v′) ⊗ (u, v) ⊗ (u′, v′) = (u′ · (u′, v′)#u, v′v) ⊗ (u′, v′)
= (z, v′v) ⊗ (u′, v′)
= (z · (z, v′v)#u′, v′vv′)
= (u′, v′).

(7)

Hence, z · (z, v′v)#u′ = u′ and v′vv′ = v′. Therefore, vv′ and v′v are idempotents.
Hence, vv′ = v′v = 1V . This means that any element of V is a unit. Then, V is a
group.

To see the converse part, for any (u, v) ∈ U × V , we have

(u, v) ⊗ (z, v−1) ⊗ (u, v) = (u · (u, v)#z, 1V ) ⊗ (u, v)

= ((u · (u, v)#z) · (u · (u, v)#z, 1V )#u, 1V v)

= ((u · (u, v)#z)(u · (u, v)#z), v)

= (u, v)

where v−1 is an inverse of v in V and 1V is the identity of V . Hence, U �
w
η V is

regular. ��
Notice that a glrac semigroup is left inverse if and only if it is regular. So, by

Lemma 6 and Theorem 2, the following theorem is immediate.

Theorem 18 LetU be a left regular band and V a group. If Conditions (RI1) and (RI2)
are satisfied, then U �

w
η V is a uniquely almost factorizable left inverse semigroup.

Conversely, any uniquely almost factorizable left inverse semigroup can be con-
structed in this way.

The following theorem is an immediate consequence of Lemma 6 and Theorem 3.

Theorem 19 Let U be a left regular band with identity e and V a group with identity 1.
If ηu,x (e) = u for any (u, x) ∈ U × V , and Conditions (RI1) and (RI2) are satisfied,
then U �

w
η V is a uniquely factorizable left inverse monoid

Conversely, any uniquely factorizable left inverse monoid can be constructed in this
way.
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Remark 2 By definition, a left inverse semigroup is an inverse semigroup if and only if
its set of idempotents forms a semilattice under the multiplication. So, replacing “Let
U be a left regular band" by “LetU be a semilattice" in Theorem 18, we can obtain the
structure theorem of uniquely almost factorizable inverse semigroups. And, replacing
“Let U be a left regular band with identity" by “Let U be a semilattice with identity"
in Theorem 19, we can obtain the structure theorem of uniquely factorizable inverse
monoids. We here omit the details.
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