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Abstract
A permutation group G acting on a set � induces a permutation group on the power
set P(�) (the set of all subsets of �). Let G be a finite permutation group of degree
n and s(G) denote the number of orbits of G onP(�). It is an interesting problem to

determine the lower bound inf
(
log2 s(G)

n

)
over all groups G that do not contain any

alternating group A� (where � > t for some fixed t ≥ 4) as a composition factor.
The second author obtained the answer for the case t = 4 in Yang (J Algebra Appl
19:2150005, 2020). In this paper, we continue this investigation and study the cases

when t ≥ 5, and give the explicit lower bounds inf
(
log2 s(G)

n

)
for each positive integer

5 ≤ t ≤ 166.
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178 Y. Yan, Y. Yang

1 Introduction

A permutation group G acting on a set � induces a permutation group on the power
set P(�). It is an important subject in representation theory to study this particular
action. For example, Gluck [4] showed that if the group G is solvable and the action is
primitive, then G always has a regular orbit on the power set P(�) except for a few
exceptional cases. Later, Seress generalized this to arbitrary groups in [8]. We define
the orbits of this action to be set-orbits, and let s(G) denote the number of set-orbits
of G. Since sets of different cardinalities belong to different orbits, it is clear that
s(G) ≥ |�| + 1. Groups with the property s(G) = |�| + 1 (i.e., set transitive groups)
have been classified by Beaumont and Peterson in [2]. They showed that apart from
a few exceptional cases of degree at most 9, a set-transitive group of degree n always
contains the alternating group An .

Let G be a permutation group of degree n. In [1], Babai and Pyber showed that if
G has no large alternating composition factors then s(G) is exponential in n. More
precisely they proved the following result [1, Theorem 1]. Let G be a permutation
group of degree n. If G does not contain any A� (where � > t for some fixed t ≥ 4)
as a composition factor, then log2 s(G)

n ≥ c
t for some positive constant c (unspecified).

It appears that this result has many applications. In [5], Keller applied this result to
find a lower bound for the number of conjugacy classes of a solvable group. In [7],
Nguyen used this result to study the multiplicities of conjugacy class sizes of finite
groups.

In [1], Babai and Pyber also raised the following question: what is inf
(
log2 s(G)

n

)

over all solvable groupsG? This questionwas answered in a recent paper of the second
author in [9]. Clearly, a more interesting question is to answer the following: what is

inf
(
log2 s(G)

n

)
over all groups G that do not contain any A� (where � > t for some

fixed t ≥ 4) as a composition factor? The second author studied a special case of this
question in [10], and showed that when t = 4, the answer is

inf

(
log2 s(G)

n

)
= lim

k �→∞
log2 s(M24 � M12 �

k terms︷ ︸︸ ︷
S4 � · · · � S4)

24 · 12 · 4k .

In this paper, we continue this investigation and study the cases when t ≥ 5, and

give the explicit lower bounds inf
(
log2 s(G)

n

)
for each positive integer 5 ≤ t ≤ 166.

In fact, we show that

inf
(
log2 s(G)

n

)
= lim

k �→+∞
log2 s(M24�

kterms︷ ︸︸ ︷
St � · · · � St )
24·tk i f t ∈ [5, 16], and

inf
(
log2 s(G)

n

)
= lim

k �→+∞
log2 s(

kterms︷ ︸︸ ︷
St � · · · � St )

tk
i f t ∈ [17, 166].

123



Permutation Groups and Set-Orbits on the Power Set 179

We also ask some related questions at the end of the paper. Our main results are the
following.

Theorem 1.1 Let t be an integer with 5 ≤ t ≤ 16. Then

inf

(
log2 s(G)

n

)
= lim

k �→+∞
log2 s(M24 �

k terms︷ ︸︸ ︷
St � · · · � St )

24 · tk ,

where the infimum is taken over all permutation groups G not containing any compo-
sition factor A� with � > t , and n denotes the degree of G.

Theorem 1.2 Let t be an integer with 17 ≤ t ≤ 166. Then

inf

(
log2 s(G)

n

)
= lim

k �→+∞
log2 s(

k terms︷ ︸︸ ︷
St � · · · � St )
tk

,

where the infimum is taken over all permutation groups G not containing any compo-
sition factor A� with � > t , and n denotes the degree of G.

2 Preliminary Results

Some of the following definitions and lemmas appear in [10], we include those here
for the convenience of the reader.

Let T be a finite group and S a permutation group. We denote by T � S the wreath
product of T with S. Let G be a permutation group of degree n. We use s(G) to denote
the number of set-orbits of G and we denote rs(G) = log2 s(G)

n .
We recall some basic facts about the decompositions of transitive groups. Let G

be a transitive permutation group acting on a set �, where |�| = n. A system of
imprimitivity is a partition of �, invariant under G. A primitive group has no non-
trivial system of imprimitivity. Let {�1, . . . , �m} denote a system of imprimitivity of
G withmaximal block-size b (1 ≤ b < n; b = 1 if and only ifG is primitive; bm = n).
Let N be the intersection of the stabilizers of the blocks. ThenG/N is a primitive group
of degree m acting upon the set of blocks �i . If Gi denotes the permutation group of
degree b induced on �i by the set-wise stabilizer of �i in G, then the groups Gi are
permutationally equivalent transitive groups and N ≤ G1 × · · · × Gm ≤ Sym(�).

Let G be a transitive group of degree n and assume that G is not primitive. Let us
consider a system of imprimitivity of G that consists ofm ≥ 2 blocks of size b, where
b is maximal. Thus G can be embedded in K � P1, written G � K � P1, where K is a
permutation group of degree n/m and P1 is the primitive quotient group of G that acts
upon the m blocks. We may keep doing this, and after re-index for convenience, and
we can get that G � H � P1 � · · · � Pk , where H is a permutation group and the Pi are
all primitive groups. If this happens, we say that G is induced from the permutation
group H .
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180 Y. Yan, Y. Yang

In what follows, we need to make some preparations for the proof of Theorems 1.1
and 1.2, and we begin with two important lemmas.

Lemma 2.1 [1, Prop. 1] If H ≤ G ≤ Sym(�), then s(G) ≤ s(H) ≤ s(G) · |G : H |.
Lemma 2.2 [1, Prop. 2]Assume that G is intransitive on� and has orbits�1, . . . , �m.
Let Gi be the restriction of G to �i . Then

s(G) ≥ s(G1) × · · · × s(Gm).

In view of Lemma 2.2 and the fact that a+b
c+d ≥ min{ ac , b

d } for positive integers
a, b, c and d, it suffices to consider transitive permutation groups in order to find

inf
(
log2 s(G)

n

)
. To see this, assume that the action of G on � is not transitive, then

we may assume G has two blocks �1 and �2, where � is a disjoint union of �1 and
�2. We assume |�1| = m1 and |�2| = m2. Let Gi be the restriction of G to �i for
i = 1, 2. Then s(G) ≥ s(G1) · s(G2). We see that

rs(G) = log2 s(G)

m1 + m2
≥ log2 s(G1) + log2 s(G2)

m1 + m2
≥ min{rs(G1), rs(G2)}.

Lemma 2.3 is basic and also very useful to find inf
(
log2 s(G)

n

)
. This lemma and its

proof are almost identical to [1, Lemma 1].

Lemma 2.3 Let G be a transitive permutation group acting on a set� where |�| = n.
Let {�1, . . . , �m} denote a system of imprimitivity of G with maximal block-size b,
where 1 ≤ b < n and bm = n. In particular, b = 1 if and only if G is primitive.
Let N denote the normal subgroup of G stabilizing each of the blocks �i . Let Gi =
StabG(�i ) and s = s(G1). Then

(i) s(G) ≥ sm/|G/N |.
(ii) s(G) ≥ (s+m−1

s−1

)
. Moreover, the equality holds if G/N ∼= Sm.

Proof By Lemmas 2.1 and 2.2, it is easy to verify that part (i) follows.
Let A be a subset of� and let α j (0 ≤ j ≤ s) denote the number of intersections of

Awith�i that lie in the j-th orbit ofGi on the powerset of�i . Let B be another subset
of � with the number β j defined similarly. If A and B are in the same orbit of G, then
α j = β j for (0 ≤ j ≤ s). Therefore, s(G) is at least the number of partitions ofm into
s nonnegative integers (where the order of the summands is taken into consideration).
It is well-known that this number is

(
s + m − 1

s − 1

)

which proves the first part of (ii). Since Sm is set-transitive on all the subsets of the
same size, we know the equation will hold. 
�

We need the following estimates of the order of the primitive permutation groups.
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Permutation Groups and Set-Orbits on the Power Set 181

Table 1 The lower bounds and corresponding primitive groups

Degree n The lower bound of s(G) Corresponding primitive group

14 35 The bound 35 is attained by PrimitiveGroup(14,2)∼= PGL(2, 13)

15 46 The bound 46 is attained by PrimitiveGroup(15,4) ∼= PSL(4, 2)

16 32 The bound 32 is attained by PrimitiveGroup(16,11) ∼= 24.PSL(4, 2)

17 48 The bound 48 is attained by PrimitiveGroup(17,8) ∼= PGL(2, 24)

21 158 The bound 158 is attained by PrimitiveGroup(21,7) ∼= PGL(3, 4)

22 105 The bound 105 is attained if G ∼= M22 or M22.2

23 72 The bound 72 is attained if G ∼= M23

24 49 The bound 49 is attained if G ∼= M24

32 361 The bound 361 is attained by PrimitiveGroup(32,3)∼= ASL(5, 2)

Lemma 2.4 Let G be a primitive permutation group of degree n where G does not
contain An. Then

(i) |G| < 50 · n√
n.

(ii) |G| < 3n. Moreover, if n > 24, then |G| < 2n.
(iii) |G| ≤ 20.76n when n ≥ 25 and n = 32.

Proof Part (i) is from [6, Corollary 1.1 (ii)], and part (ii) is from [6, Corollary 1.2].
Part (iii) follows from part (i) for n ≥ 89, and we may check the remaining results
using Gap [3] for 25 ≤ n ≤ 88. 
�

Lemma 2.5 Let G be a primitive permutation group of degree n where G does not
contain any A� (� > 4) as a composition factor. If n ≤ 24 or n = 32, then the lower
bound of s(G) and corresponding primitive permutation group can be determined.

Proof The results can be easily checked by Gap [3]. For convenience, we list the
results in Table 1. We also need to mention the following cases which will be used in
Sects. 3 and 4.

If n = 23, the group with the largest order is G ∼= M23, and s(G) = 72. However,
the group with the second largest order has order 506 and s(G) ≥ 16770.

Ifn = 24, the groupwith the second largest order has order 12144 and s(G) ≥ 1674.
The group with the largest order is G ∼= M24 and s(G) = 49.

If n = 32, the group with the second largest order has order 29760 and s(G) ≥
144321. The group with the largest order is G ∼= PrimitiveGroup(32,3) ∼= ASL(5, 2),
and s(G) ≥ 361. We remark here that 361 is a lower bound obtained byGap [3] using
random search, but we do not get the best possible lower bound since the current one
works for our purpose. 
�

Remark 2.6. Using Gap [3], we can easily obtain the maximum order of primitive
groups of degree n which do not contain the simple group An as a composition factor.
For convenience, we list some results in Table 2.
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182 Y. Yan, Y. Yang

Table 2 The maximal order of primitive groups not containing An

Degree Maximal order Degree Maximal order Degree Maximal order Degree Maximal order

5 20 14 2184 23 10,200,960 31 9,999,360

6 120 15 20,160 24 244,823,040 32 319,979,520

7 168 16 322,560 25 28,800 33 163,680

8 1344 17 16,320 26 31,200 34 Does not exist

9 1512 18 4896 27 303,264 35 40,320

10 1440 19 342 28 1,451,520 36 1,451,520

11 7920 20 6840 29 812 37 1332

12 95,040 21 120,960 30 24,360 38 50,616

13 5616 22 887,040

3 Proof of Theorem 1.1

In this section, we shall give the explicit lower bounds inf
(
log2 s(G)

n

)
where G does

not contain A� with � > t for t ∈ [5, 16]) as a composition factor. In what follows, we
only provide the detailed proof for the case t = 5. The proof for the remaining cases
is analogous up to replacing a few numbers appropriately.

Proposition 3.1 We have the following equality

inf

(
log2 s(G)

n

)
= lim

k �→+∞
log2 s(M24 �

k terms︷ ︸︸ ︷
S5 � · · · � S5)

24 · 5k ,

where the infimum is taken over all permutation groups G not containing any compo-
sition factor A� with � > 5, and n denotes the degree of G.

To complete the proof of Proposition 3.1, we need a number of preparatory lemmas.
Set

ak = log2 s(M24 � S5 � · · · � S5)
24 · 5k wi th k ≥ 0 andM = lim

k→+∞ ak .

For convenience of notation, we first define a sequence {sk}k≥0, where

s0 = s(M24) = 49 and sk+1 =
(
sk + 4

5

)
f or k ≥ 0.

It is clear that the sequence {sk}k≥0 is strictly increasing. By the definition, ak = log2 sk
24·5k .

It is easy to see that ak > 0. Now, we consider the sequence {ak}k≥0. Since

ak+1 = log2
(sk+4

5

)

24 · 5k+1 =
log2

(
(sk+4)(sk+3)(sk+2)(sk+1)sk

120

)

24 · 5k+1 <
log2(sk)

5

24 · 5k+1 = ak,
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Permutation Groups and Set-Orbits on the Power Set 183

the sequence {ak}k≥0 is strictly decreasing, and so the lim
k �→∞ ak exists.

Applying Lemma 2.3, we calculate that

a0 ≈ 0.233946243505, a1 ≈ 0.178770507941, a2 ≈ 0.167259031994.

Lemma 3.2 Let G be a primitive permutation group of degree n. If G does not contain
any A� (� > 5) as a composition factor, then rs(G) ≥ a2.

Proof If n ≥ 25 and n = 32, then by Lemma 2.4 (ii), we have s(G) ≥ 2n/|G| ≥
2n/20.76n = 20.24n , and so rs(G) = log2 s(G)

n ≥ 0.24 ≥ a2.
If n ≤ 24, then s(G) ≥ n + 1. Thus rs(G) ≥ 0.193494007907 ≥ a2.
If n = 32, then by Table 1, we have s(G) ≥ 361. In this case, one has

rs(G) ≥ 0.265495469577 ≥ a2.

This completes the proof. 
�
Lemma 3.3 Let G be a transitive permutation group of degree n induced from a per-
mutation group H of degree m, where G does not contain any A� (� > 5) as a

composition factor. Let α1 = 120
1
4 . If log2 s(H)

m − log2 α1
m ≥ β, then rs(G) ≥ β.

Proof Wemay assume thatG � H �P1 �· · ·�Pz , where the Pi are primitive permutation
groups and deg(Pi ) = ki for 1 ≤ i ≤ z. Using Gap [3] and Lemma 2.4, it is
straightforward to verify that |P1| ≤ α

k1−1
1 . Since log2 s(H)

m − log2 α1
m ≥ β, we have

s(H) ≥ α1 · 2mβ . On the other hand, Lemma 2.3 implies

s(H � P1) ≥ s(H)k1/α
k1−1
1 ≥ α1 · 2mk1β.

Consequently,

log2 s(H � P1)
mk1

− log2 α1

mk1
≥ log2 α1 · 2mk1β

mk1
− log2 α1

mk1
= β.

Now, let K = H � P1. Then by Lemma 2.3, one has

s(K � P2) ≥ s(K )k2/α
k2−1
1 ≥ α1 · 2m(k1k2)β .

This implies that

log2 s(H � P1 � P2)
mk1k2

− log2 α1

mk1k2
≥ log2 α1 · 2m(k1k2)β

mk1k2
− log2 α1

mk1k2
= β.

In a similar fashion, one can prove log2 s(H �P1�···�Pz)
mk1···kz − log2 α1

mk1···kz ≥ β, where n =
mk1 · · · kz . Since G � H � P1 � · · · � Pz , we derive from Lemma 2.2 that s(G) ≥
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184 Y. Yan, Y. Yang

Table 3 f (H ,m, α1) (12 ≤ m ≤ 24 or m = 32)

m s(H) f (H ,m, α1) m s(H) f (H ,m, α1)

32 361 0.211535386812 24 1674 0.374265048485

23 72 0.193182710980 22 105 0.226705584944

21 158 0.265574195204 20 260 0.314782258206

19 1610 0.469795911795 18 113 0.282969795195

17 48 0.227955285401 16 32 0.204579834444

15 46 0.253122620477 14 35 0.243040026289

13 30 0.244628303593 12 14 0.173386022763

s(H � P1 � · · · � Pz), and thereby rs(G) ≥ log2 s(H �P1�···�Pz)
n ≥ β. This completes the

proof. 
�
Lemma 3.4 Let G be a transitive permutation group of degree n, which is induced
from a primitive permutation group H of degree m. If G does not contain any A�

(� > 5) as a composition factor, and H � M24, then rs(G) ≥ a2.

Proof In view of Proposition 3.3, it suffices to prove that:

log2 s(H)

m
− log2 α1

m
≥ a2. (1)

Suppose that m ≥ 25 and m = 32. By Lemma 2.4, we have |H | ≤ 20.76m . Since
s(H) ≥ 2m/|H |, it follows that

log2 s(H)

m
− log2 α1

m
≥ log2(2

m/20.76m)

m
− log2 120

4 · m ≥ 0.170931094044 ≥ a2.

In this case, inequality (1) follows.
Now, we denote by f (H ,m, α1) the number log2 s(H)

m − log2 α1
m . If 12 ≤ m ≤ 24 or

m = 32, then by Table 1, we can check all the minimum values of f (H ,m, α1) using
Table 3.

If 4 ≤ m ≤ 11, then s(H) ≥ m + 1, and thereby

log2 s(H)

m
− log2 α1

m
≥ log2(m + 1)

m
− log2 120

4m
≥ 0.168930895619 ≥ a2.

If m = 3 or 2, then by Lemma 3.2, we may assume that

G � H � P1 � P2 · · · � Pz, where deg(P1) = m1.

Let K = H � P1. By Proposition 3.3, it is sufficient to check that inequality (2) holds.
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log2 s(K )

mm1
− log2 α1

mm1
≥ a2. (2)

Denote by f (K ,m,m1, α1) the number log2 s(K )

mm1
− log2 α1

mm1
. Then we need to check

the inequality f (K ,m,m1, α1) ≥ a2 holds. In what follows, we distinguish two cases.

Case 1 m = 3. In this case, we know that s(H) ≥ 4. By Lemma 2.3, one has
s(K ) ≥ s(H)m1/|P1| ≥ 4m1/|P1|. Thus

f (K , 3,m1, α1) ≥ m1 log2 4 − log2 |P1|
3m1

− log2 120

12m1
.

If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K , 3,m1, α1) ≥ m1 log2 4 − log2 2
0.76m1

3m1
− log2 120

12m1
≥ 0.390310364681 ≥ a2.

If m1 ≤ 16, then by Lemma 2.3 (ii), we have s(K ) ≥ (3+m1
3

)
, and thereby

f (K , 3,m1, α1) ≥ log2
(3+m1

3

)

3m1
− log2 120

12m1
≥ 0.170700629302 ≥ a2.

If 17 ≤ m1 ≤ 24 or m1 = 32, then by Table 2, we can calculate the minimum
values of f (K , 3,m1, α1) as follows (Table 4).

Case 2 m = 2. In this case, we know that s(H) ≥ 3. By Lemma 2.3 (i), one has
s(K ) ≥ s(H)m1/|P1| ≥ 3m1/|P1|. Consequently,

f (K , 2,m1, α1) ≥ m1 log2 3 − log2 |P1|
2m1

− log2 120

8m1
.

If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K , 2,m1, α1) ≥ m1 log2 3 − log2 2
0.76m1

2m1
− log2 120

8m1
≥ 0.277946797383 ≥ a2.

Table 4 f (K , 3,m1, α1) (17 ≤ m1 ≤ 24 or m1 = 32)

m1 |P1| f (K , 3,m1, α1) m1 |P1| f (K , 3,m1, α1)

32 319979520 0.354373677316 24 244823040 0.255640461907

23 10200960 0.304218489247 22 887040 0.341130874456

21 120960 0.371255664000 20 6840 0.425558279022

19 342 0.488691663793 18 4896 0.407701657563

17 16320 0.358410272828
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186 Y. Yan, Y. Yang

If m1 ≤ 17, then by Lemma 2.3 (ii), we have s(K ) ≥ (2+m1
2

)
. Consequently

f (K , 2,m1, α1) ≥ log2
(2+m1

2

)

8m1
− log2 120

8m1
≥ 0.167386172529 ≥ a2.

If 18 ≤ m1 ≤ 24 or m1 = 32, then by Table 2, we can calculate the minimum
values of f (K , 2,m1, α1) as follows (Table 5).

Lemma 3.5 Let G � H � P1 � · · · � Pz be a transitive permutation group of degree n
which does not contain any A� (� > 5) as a composition factor, where H ∼= M24, and
all the Pi are primitive groups. If deg(P1) = 5, then rs(G) ≥ a2.

Proof By Table 1, we have s(H) = 49. Let K = H � P1, where deg(P1) = 5. By
Proposition 3.3, it suffices to prove that

log2 s(K )

24m1
− log2 α1

24m1
≥ a2.

Denote by f (K ,m1, α1) the number log2 s(K )

24m1
− log2 α1

24m1
. By Lemma 2.3 (i), we have

that s(K ) ≥ 49m1/|P1|, and thereby

f (K ,m1, α1) ≥ m1 log2 49 − log2 |P1|
24m1

− log2 120

96m1
.

If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K ,m1, α1) ≥ m1 log2 49 − log2 2
0.76m1

24m1
− log2 120

96m1
≥ 0.199401705757 ≥ a2.

If m1 = 2, then by Lemma 2.3 (ii), we have s(K ) ≥ (50
48

)
, and so

f (K , 2, α1) ≥ log2
(50
48

)

48
− log2 120

192
≥ 0.177746737187 ≥ a2.

If 3 ≤ m1 ≤ 24 or m1 = 32, then we apply Table 2 to calculate the minimum
values of f (K ,m1, α1) as follows (Table 6).

Table 5 f (K , 2,m1, α1) (18 ≤ m1 ≤ 24 or m1 = 32)

m1 |P1| f (K , 2,m1, α1) m1 |P1| f (K , 2,m1, α1)

32 319,979,520 0.323829325064 24 244,823,040 0.175941943221

23 10,200,960 0.248808984230 22 887,040 0.304177562044

21 120,960 0.349364746360 20 6840 0.430818668894

19 342 0.525518746050 18 4896 0.404033736705

123



Permutation Groups and Set-Orbits on the Power Set 187

Table 6 f (K ,m1, α1) (3 ≤ m1 ≤ 24 or m1 = 32)

m1 |P1| f (K ,m1, α1) m1 |P1| f (K ,m1, α1)

32 319,979,520 0.194909619836 24 244,823,040 0.182567967910

23 10,200,960 0.188640221327 22 887,040 0.193254269478

21 120,960 0.197019861714 20 6840 0.203807695049

19 342 0.211699368146 18 4896 0.201575617367

17 16,320 0.195414194275 16 322,560 0.181795382392

15 20,160 0.189429769429 14 2184 0.195793022984

13 5616 0.188490955462 12 95,040 0.170533153797

11 7920 0.178347730763 10 1440 0.183035511233

9 1512 0.177052886684 8 1344 0.170826243131

7 168 0.179666243078 6 120 0.173990595973

5 20 0.183540820640 4 20 0.168199523196

3 6 0.174061727538

This completes the proof of this proposition. 
�

Lemma 3.6 Let H ∼= M24 � S5 � · · · � S5 be a transitive permutation group of degree
24 · 5k with k ≥ 0. Let P1, . . . , P� be primitive permutation groups. If deg(P1) = 5,
then rs(H � S5 � S5) ≤ rs(H � P1 � · · · � P�).

Proof Let s(H) = A and n = deg(H) = 24 · 5k . Then A ≥ s(M24) = 49. Let
B = s(H � S5). By Lemma 2.3 (ii) we have B = (A+4

5

) = (A+4)(A+3)(A+2)(A+1)A
120 ,

and thus B + 4 ≤ (A+4)5

120 . Again using Lemma 2.3 (ii), one has

s(H � S5 � S5) =
(
B + 4

5

)
= (B + 4)(B + 3)(B + 2)(B + 1)B

120
,

and so s(H � S5 � S5) ≤ [ (A+4)5
120 ]5
120 . Thus, we have the following inequality

rs(H � S5 � S5) = log2 s(H � S5 � S5)
n · 52 ≤ log2

[ (A+4)5
120 ]5
120

n · 52
= log2(A + 4)

n
− log2 120

5n
− log2 120

25n
.

On the other hand, let deg(P1) = m1. By Lemma 2.3 (i), we have s(H � P1) ≥
s(H)m1/|P1| = Am1/|P1|, and hence

log2 s(H � P1)
nm1

− log2 α1

nm1
≥ log2(A)

n
− log2 |P1|

nm1
− log2 α1

nm1
.
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Table 7 f (P1,m1, α1) (2 ≤ m1 ≤ 24)

m1 |P1| f (K ,m1, α1) m1 |P1| f (K ,m1, α1)

24 244,823,040 1.089185060204 23 10,200,960 1.087344532260

22 887,040 1.976607376633 21 120,960 0.886233008001

20 6840 0.723325166934 19 342 0.533992500862

18 4896 0.776895027311 17 16,320 0.924769181515

16 322,560 1.251620666706 15 20,160 1.068395377819

14 2184 0.915677127844 13 5616 1.090926913016

12 95,040 1.521914155383 11 7920 1.334364305806

10 1440 1.221857574523 9 1512 1.345440563680

8 1344 1.514880008960 7 168 1.302720010240

6 120 1.438935540752 5 20 1.209730148758

4 20 1.512162685947 3 6 1.437228383208

2 2 1.363361324451

Let G = H � P1 � · · · � P�. Then it is enough to verify the following inequality:

log2(A + 4)

n
− log2 120

5n
− log2 120

25n
≤ log2(A)

n
− log2 |P1|

nm1
− log2 α1

nm1
. (3)

Consequently, (3) holds if and only if

log2 |P1|
m1

+ log2 α1

m1
≤ log2 120

5
+ log2 120

25
− log2(

A + 4

A
).

Since A ≥ 49, we have log2(
A+7
A ) ≤ 0.113210611045. Thus, we only need to

check the following inequality:

log2 |P1|
m1

+ log2 α1

m1
≤ 1.544443132498.

Denote by f (P1,m1, α1) the number log2 |P1|
m1

+ log2 α1
m1

. If m1 > 24, then by
Lemma 2.4 (ii), we have |P1| < 2m1 , and so

f (P1,m1, α1) <
log2 2

m1

m1
+ log2 α1

m1
< 1 + log2 120

24 × 4
≈ 1.071946777038.

If m1 ≤ 24, then by Table 2, we can check each minimum value of function
f (P1,m1, α1) using Table 7.
This completes the proof of this lemma. 
�
We are now ready to complete the proof of proposition 3.1.

Proof of Proposition 3.1: Note that ak = log2 s(M24�S5�···�S5 )

24·5k and M = lim
k→+∞ ak . Since

the sequence {ak}k≥0 is strictly decreasing, this implies that M < a2. IfG is primitive,
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then by Lemma 3.2, we have rs(G) ≥ a2. Now, ifG is not primitive, thenG is induced
from M24 by Lemma 3.4. Combining Lemma 3.5 and Lemma 3.6, one has

inf
( log2 s(G)

n

)
= lim

k→+∞
log2 s(M24 �

k terms︷ ︸︸ ︷
S5 � · · · � S5)

24 · 5k .

This completes the proof of this proposition. 
�

4 Proof of Theorem 1.2

In this section, we shall give the explicit lower bounds inf
(
log2 s(G)

n

)
where G does

not contain any alternating group A� with � > t for t ∈ [17, 166] as a composition
factor. We give the detailed proof for the case where t = 17. Essentially the identical
proof works in the remaining cases up to replacing a few numbers appropriately.

Proposition 4.1 We have

inf

(
log2 s(G)

n

)
= lim

k �→+∞
log2 s(

k terms︷ ︸︸ ︷
S17 � S17 � · · · � S17)

17k
.

where the infimum is taken over all permutation groups G not containing any compo-
sition factor A� with � > 17, and n denotes the degree of G.

For the remaining of section, we prove Proposition 4.1 by a series of lemmas. Let

bk = log2 s(S17 � S17 � · · · � S17)
17k

andM = lim
k→+∞ bk, wherek ≥ 1.

We first define a sequence {sk}k≥1 where s1 = s(S17) = 18 and sk+1 = (sk+16
17

)
for

k ≥ 1. Clearly the sequence {sk}k≥1 is strictly increasing. By the definition, we have
bk = log2 sk

17k
. It is easy to see bk > 0. Noting that

bk+1 = log2
(sk+16

17

)

17k+1 = log2(
(sk+16)(sk+15)···(sk+2)(sk+1)sk

17! )

17k+1 <
log2(sk)

17

17k+1 = bk,

the sequence {bk}k≥1 is strictly decreasing, and hence M exists.
Applying Lemma 2.3, we calculate that

b1 ≈ 0.245289705967 and b2 ≈ 0.107681363290.

Lemma 4.2 Let G be a primitive permutation group of degree n. If G does not contain
any A� (� > 17) as a composition factor, then rs(G) ≥ b2.
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Proof If n ≥ 25 and n = 32, then by Theorem 2.4 (ii), we have s(G) ≥ 2n/|G| ≥
20.24n , and so rs(G) = log2 s(G)

n ≥ 0.24 ≥ b2.
If n ≤ 24, then s(G) ≥ n + 1, and thus

rs(G) = log2 s(G)

n
≥ log2(n + 1)

n
≥ 0.193494007907 ≥ b2.

If n = 32, then by Table 1, we have s(G) ≥ 361. In this case, one has

rs(G) = log2 s(G)

32
≥ 0.265495469577 ≥ b2.

This completes the proof. 
�

Arguing as in Proposition 3.3, we have the following conclusion.

Lemma 4.3 Let G be a transitive permutation group of degree n induced from a per-
mutation group H of degree m, where G does not contain any A� (� > 17) as a

composition factor. Let α2 = (17!) 1
16 . If log2 s(H)

m − log2 α2
m ≥ β, then rs(G) ≥ β.

Lemma 4.4 LetG bea transitive permutation groupof degree n,which be induced from
a primitive permutation group H of degree m. If G does not contain any A� (� > 17)
as a composition factor, and H � S17, then rs(G) ≥ b2.

Proof In view of Lemma 4.3, it suffices to prove the following inequality:

log2 s(H)

m
− log2 α2

m
≥ b2. (4)

Suppose that m ≥ 25 and m = 32. By Lemma 2.4 (ii), we have |H | ≤ 20.76m .
Since s(H) ≥ 2m/|H |, one has

log2 s(H)

m
− log2 α2

m
≥ log2(2

m/20.76m)

m
− log2 17!

16m
≥ 0.119155991722 > b2.

In this case, inequality (4) follows.
Now, we use f (H ,m, α2) to denote

log2 s(H)

m − log2 α2
m . If 13 ≤ m ≤ 24 orm = 32,

then by Table 2, we can verify f (H ,m, α2) ≥ 0.108067068215, and so (4) holds.
If 2 ≤ m ≤ 12, then by Lemma 4.2, we may assume that G � H � P1 � P2 � · · · � Pk ,

where deg(P1) = m1. Let K = H � P1. By Lemma 3.3, it is enough to check the
following inequality:

log2 s(K )

mm1
− log2 α2

mm1
≥ b2. (5)
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Denote by f (K ,m,m1, α2) the number log2 s(K )

mm1
− log2 α2

mm1
. Then we only need to

check the following inequality:

f (K ,m,m1, α2) = log2 s(K )

mm1
− log2 17!

16mm1
≥ b2.

In what follows, we separate the argument into eleven cases.

Case 1 m = 9. In this case, we know that s(H) ≥ 10. By Lemma 2.3 (i), one has
s(K ) ≥ s(H)m1/|P1| ≥ 10m1/|P1|, and thereby

f (K , 9,m1, α2) ≥ m1 log2 10 − log2 |P1|
9m1

− log2 17!
144m1

.

If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K , 9,m1, α2) ≥ 0.27123156517 ≥ b2.

If m1 ≤ 21, then by Lemma 2.3 (ii), we have s(K ) ≥ (9+m1
9

)
, and thereby

f (K , 9,m1, α2) ≥ 0.109783771278 ≥ b2.

If 22 ≤ m1 ≤ 24 or m1 = 32, then by Table 2, we can check all the values of
f (K , 9,m1, α2) ≥ 0.226101898040, and so (5) follows.

Case 2 m = 8. In this case, we know that s(H) ≥ 10. By Lemma 2.3 (i), one has
s(K ) ≥ s(H)m1/|P1| ≥ 10m1/|P1|, and so

f (K , 8,m1, α2) ≥ m1 log2 10 − log2 |P1|
8m1

− log2 17!
128m1

.

If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K , 8,m1, α2) ≥ 0.305135510826 ≥ b2.

If m1 ≤ 24, then by Lemma 2.3 (ii), we have s(K ) ≥ (9+m1
9

)
, and so

f (K , 8,m1, α2) ≥ 0.115519620447 ≥ b2.

Case 3 m = 7. In this case, we know s(H) ≥ 10. By Lemma 2.3 (i), one has
s(K ) ≥ s(H)m1/|P1| ≥ 10m1/|P1|, and thus

f (K , 7,m1, α2) ≥ m1 log2 10 − log2 |P1|
7m1

− log2 17!
112m1

.
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If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K , 7,m1, α2) ≥ 0.348726298087 ≥ b2.

If m1 ≤ 24, then by Lemma 2.3 (ii), we have s(K ) ≥ (9+m1
9

)
, and thereby

f (K , 7,m1, α2) ≥ 0.132022423368 ≥ b2.

Case 4 m = 12. For this case, we know that s(H) ≥ 14. By Lemma 2.3 (i), one
has s(K ) ≥ s(H)m1/|P1| ≥ 14m1/|P1|, and consequently

f (K , 12,m1, α2) ≥ m1 log2 14 − log2 |P1|
12m1

− log2 17!
192m1

.

If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K , 12,m1, α2) ≥ 0.243875909482 ≥ b2.

If m1 ≤ 20, then by Lemma 2.3 (ii), we have s(K ) ≥ (13+m1
13

)
, and so

f (K , 12,m1, α2) ≥ 0.108638661215 ≥ b2.

If 21 ≤ m1 ≤ 24 or m1 = 32, then by Table 2, we can calculate

f (K , 9,m1, α2) = 0.210028659127 ≥ b2.

Case 5 m = 11. In this case, we have s(H) ≥ 14. By Lemma 2.3 (i), one has
s(K ) ≥ s(H)m1/|P1| ≥ 14m1/|P1|, and thus

f (K , 11,m1, α2) ≥ m1 log2 14 − log2 |P1|
11m1

− log2 17!
176m1

.

If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K , 11,m1, α2) ≥ 0.266046446707 ≥ b2.

If m1 ≤ 24, then by Lemma 2.3 (ii), we have s(K ) ≥ (13+m1
13

)
, and so

f (K , 11,m1, α2) ≥ 0.108746702344 ≥ b2.

Case 6 m = 10. In this case, we know that s(H) ≥ 14. By Lemma 2.3 (i), one has
s(K ) ≥ s(H)m1/|P1| ≥ 14m1/|P1|, and thus

f (K , 10,m1, α2) ≥ m1 log2 14 − log2 |P1|
10m1

− log2 17!
160m1

.
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If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K , 11,m1, α2) ≥ 0.292651091378 ≥ b2.

If m1 ≤ 24, then by Lemma 2.3 (ii), we have s(K ) ≥ (13+m1
13

)
, and so

f (K , 10,m1, α2) ≥ 0.119621372578 ≥ b2.

Case 7 m = 6. Then s(H) ≥ 8. By Lemma 2.3 (i), one has s(K ) ≥ s(H)m1/|P1| ≥
8m1/|P1|, and consequently

f (K , 6,m1, α2) ≥ m1 log2 8 − log2 |P1|
6m1

− log2 17!
96m1

.

If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K , 6,m1, α2) ≥ 0.353192665287 ≥ b2.

If m1 ≤ 24, then by Lemma 2.3 (ii), we have s(K ) ≥ (7+m1
7

)
, and so

f (K , 6,m1, α2) ≥ 0.127120125055 ≥ b2.

Case 8 m = 5. In this case, we know that s(H) ≥ 6. By Lemma 2.3 (i), one has
s(K ) ≥ s(H)m1/|P1| ≥ 6m1/|P1|, and thus

f (K , 5,m1, α2) ≥ m1 log2 6 − log2 |P1|
5m1

− log2 17!
80m1

.

If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K , 5,m1, α2) ≥ 0.340823698489 ≥ b2.

If m1 ≤ 24, then by Lemma 2.3 (ii), we have s(K ) ≥ (5+m1
5

)
, and so

f (K , 5,m1, α2) ≥ 0.115304404373 ≥ b2.

Case 9 m = 4. In this case, we know that s(H) ≥ 5. By Lemma 2.3 (i), one has
s(K ) ≥ s(H)m1/|P1| ≥ 5m1/|P1|, and so

f (K , 4,m1, α2) ≥ m1 log2 5 − log2 |P1|
4m1

− log2 17!
64m1

.

If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K , 4,m1, α2) ≥ 0.360271021652 ≥ b2.
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If m1 ≤ 24, then by Lemma 2.3 (ii), we have s(K ) ≥ (4+m1
4

)
, and thereby

f (K , 4,m1, α2) ≥ 0.117713287755 ≥ b2.

Case 10 m = 3. Then s(H) ≥ 4. By Lemma 2.3 (i), one has s(K ) ≥
s(H)m1/|P1| ≥ 4m1/|P1|, and so

f (K , 3,m1, α2) ≥ m1 log2 4 − log2 |P1|
3m1

− log2 17!
48m1

.

If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K , 3,m1, α2) ≥ 0.373051997241 ≥ b2.

If m1 ≤ 24, then by Lemma 2.3 (ii), we have s(K ) ≥ (3+m1
3

)
, and so

f (K , 3,m1, α2) ≥ 0.117960009756 ≥ b2.

Case 11 m = 2. Then s(H) ≥ 3. By Lemma 2.3 (i), one has s(K ) ≥
s(H)m1/|P1| ≥ 3m1/|P1|, and so

f (K , 2,m1, α2) ≥ m1 log2 3 − log2 |P1|
2m1

− log2 17!
32m1

.

If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K , 2,m1, α2) ≥ 0.352059246222 ≥ b2.

If m1 ≤ 24, then by Lemma 2.3 (ii), we have s(K ) ≥ (2+m1
2

)
, and consequently,

f (K , 2,m1, α2) ≥ 0.110899910437 ≥ b2.

This completes the proof of this lemma. 
�
Lemma 4.5 Let G � S17 � P1 � · · · � Pk be a transitive permutation group of degree n
which does not contain any A� (� > 17) as a composition factor, where all the Pi are
primitive groups. If deg(P1) = 17, then rs(G) ≥ b2.

Proof By Table 1, we know that s(H) = 18. Let K = S17 � P1, where deg(P1) = 17.
By Lemma 4.3, it suffices to prove that

log2 s(K )

17m1
− log2 α2

17m1
≥ b2.
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Denote by f (K ,m1, α2) the number log2 s(K )

17m1
− log2 α2

17m1
. By Lemma 2.3 (i), we have

s(K ) ≥ 18m1/|P1|, and so

f (K ,m1, α2) ≥ m1 log2 18 − log2 |P1|
17m1

− log2 17!
272m1

.

If m1 ≥ 25 and m1 = 32, then by Lemma 2.4 (iii), we have |P1| ≤ 20.76m1 , and so

f (K ,m1, α2) ≥ 0.193475352539 ≥ b2.

If m1 ≤ 13, then by Lemma 2.3 (ii), we have s(K ) ≥ (17+m1
17

)
, and so

f (K ,m1, α2) ≥ 0.107757777700 ≥ b2.

If 14 ≤ m1 ≤ 24 or m1 = 32, then by Table 2, we calculate

f (K ,m1, α2) ≥ 0.166906219845 ≥ b2.


�
Lemma 4.6 Let H ∼= S17 � S17 � · · · � S17 be a transitive permutation group of degree
17k with k ≥ 1. Let P1, . . . , P� be primitive permutation groups. If deg(P1) = 17,
then rs(H � S17 � S17) ≤ rs(H � P1 � · · · � P�).

Proof Let s(H) = A and n = deg(H) = 17k . Then A ≥ s(S17) = 18. Let B =
s(H � S17). By Lemma 2.3 (ii), we have B = (A+16

17

) = (A+16)(A+15)···(A+2)(A+1)A
17! ,

and so

B + 16 ≤ (A + 16)17

17! .

Again by Lemma 2.3 (ii), one has

s(H � S17 � S17) =
(
B + 16

17

)
= (B + 16)(B + 15) · · · (B + 2)(B + 1)B

17! ,

and thereby

s(H � S17 � S17) ≤ [ (A+16)17

17! ]17
17! .

Then we obtain the following inequality

rs(H � S17 � S17) = log2 s(H � S17 � S17)
n · 172 ≤ log2

[ (A+16)17

17! ]17
17!

n · 172
= log2(A + 16)

n
− log2 17!

17n
− log2 17!

289n
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On the other hand, let deg(P1) = m1. By Lemma 2.3 (i), we have s(H � P1) ≥
s(H)m1/|P1| = Am1/|P1|, and so

log2 s(H � P1)
nm1

− log2 α2

nm1
≥ log2 A

n
− log2 |P1|

nm1
− log2 α2

nm1

Let G = H � P1 � · · · � P�. It suffices to check the following inequality:

log2(A + 16)

n
− log2 17!

17n
− log2 17!

289n
≤ log2 A

n
− log2 |P1|

nm1
− log2 α2

nm1
(6)

Consequently, (6) follows if and only if

log2 |P1|
m1

+ log2 α2

m1
≤ log2 17!

17
+ log2 17!

289
− log2(

A + 16

A
).

Since A ≥ 18, it follows that log2(
A+16
A ) ≤ 0.917537839808. Therefore, we only

need to check the following inequality:

log2 |P1|
m1

+ log2 α2

m1
≤ 2.093108733204.

Denote by f (P1,m1, α2) the number log2 |P1|
m1

+ log2 α2
m1

. If m1 > 24, then by
Lemma 2.4 (ii), we know that |P1| < 2m1 , and so

f (P1,m1, α2) < 1.120844008278 < 2.093108733204.

If m1 ≤ 24, then by Table 2, we calculate

f (P1,m1, α2) ≤ 1.868687569222 < 2.093108733204.


�
We are now in a position to prove Proposition 4.1.

Proof of Proposition 4.1: Note that bk = log2 s(S17�S17�···�S17)
17k

andM = lim
k→+∞ bk . Since

the sequence {bk}k≥1 is strictly decreasing, it follows that M < b2. If G is primitive,
then rs(G) ≥ b2 by Lemma 4.2. Now, if G is not primitive, then G is induced from
S17 by Lemma 4.4. Combining Lemma 4.5 and Lemma 4.6, one has

inf
( log2 s(G)

n

)
= lim

k→+∞
log2 s(

k terms︷ ︸︸ ︷
S17 � S17 � · · · � S17)

17k
.

This completes the proof of this proposition. 
�
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5 Further Considerations

In this section, we first make some remarks on Proposition 3.1. For convenience, we
use the notation defined in Proposition 3.1.

Remark 5.1 Using the proof of Lemma 3.6, we can obtain a good estimate of the limit.
We first notice that

rs(M24 � S5 � S5 � · · · ) ≤ log2(
(53
5

) + 4)

24 · 5 − log2 120

24 · 52 − log2 120

24 · 53 − · · · .

This implies that

inf

(
log2 s(G)

n

)
≤ log2(

(53
5

) + 4)

24 · 5 − log2 120

24 · 5 (
1

5
+ 1

52
+ · · · ) ≈ 0.164381169292.

On the other hand, by Lemma 3.5 and the value a2, we obtain

inf

(
log2 s(G)

n

)
≥ 0.164381160912.

Taking into consideration the possible mistakes in the last two digits, the following
bound can be guaranteed,

0.164381160900 < inf

(
log2 s(G)

n

)
< 0.164381169300.

Wecompare the bound of inf
(
log2 s(G)

n

)
in Proposition 3.1with that of Proposition 4.1.

Now, we make the following remarks. For convenience, we use the notation defined
in Proposition 4.1.

Remark 5.2 By the proof of Lemma 4.6, one can obtain a good estimate of the limit.
We first observe that

rs(S17 � S17 � S17 � · · · ) ≤ log2(
(34
17

) + 16)

172
− log2 17!

173
− log2 17!

174
− · · · .

This implies that

inf

(
log2 s(G)

n

)
≤ log2(

(34
17

) + 16)

172
− log2 17!

172
(
1

17
+ 1

172
+ · · · ) ≈ 0.097227729390.

On the other hand, by Lemma 4.3 and the value b2, we obtain

inf

(
log2 s(G)

n

)
≥ 0.097227729356.
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Taking into consideration the possible mistakes in the last two digits, the bound can
be guaranteed

0.097227729300 < inf

(
log2 s(G)

n

)
< 0.097227729395.

Remark 5.3 One of the main difficulties of determining inf
(
log2 s(G)

n

)
is to identify

the group that achieves the lower bound. We found a range of the bound, but we still
do not know what the exact value of the above limit is. Although we conjecture this
limit is a rational number, we cannot prove this. Therefore, one interesting problem is
to determine whether the limit is a rational number or not.

Remark 5.4 A related problem would be to determine what is inf
(
log2 s(G)

n

)
where G

does not contain any A� with � > t ≥ 5 for any positive integer t . The second author
[10] answered this question for t = 4, and the work in this paper has answered this
question for 5 ≤ t ≤ 166. We believe the following is true.

Conjecture 5.5 Let G be a permutation group of degree n. If G does not contain any
A� with � > t for 167 ≤ t < ∞ as a composition factor, then

inf

(
log2 s(G)

n

)
= lim

k �→+∞
log2 s(St � St � · · · � St )

tk
.

Although it might be possible to go beyond t = 166 by tweaking the methods in
this paper, it seems that our method is not strong enough for a general proof of this.
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