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Abstract
This work deals with the study on the oscillatory behavior of solutions to a class of
nonlinear second-order functional differential equation with superlinear neutral terms.
It presents new sufficient conditions that ensure the oscillation of all solutions under
the assumptions that allow applications to differential equations with delayed and/or
advanced arguments. Illustrative examples are also provided to show applicability of
the results.
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1 Introduction

In this article, we restrict our attention to oscillation of a class of the second-order
functional differential equations of the form:

(
m

(
t
)
ω′(t)

)′ + q(t) f
(
x(ξ(t))

) = 0, t ≥ t0 > 0, (1.1)
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where the neutral part ω
(
t
)
is defined by

ω
(
t
) = x(t) + r̃(t)xθ

(
ν(t)

) + r(t)xθ
(
μ(t)

)
.

Without further mention, we assume that the following hypotheses hold throughout
the whole paper:

(i) θ is a quotient of two odd positive integers such that θ ≥ 1;
(ii) m ∈ C

([t0,∞), (0,∞)
)
, q ∈ C

([t0,∞), [0,∞)
)
and q does not vanish identi-

cally on any half-line of the form [tx ,∞), tx ≥ t0;
(iii) ν, μ, ξ ∈ C([t0,∞) ,R), ν(t) ≤ t ≤ μ(t), ν and μ are strictly increasing

functions and limt→∞ ν(t) = limt→∞ ξ(t) = ∞;
(iv) f ∈ C

(
R,R

)
and, there exists κ > 0 such that f (υ)/υλ ≥ κ for all υ �= 0,

where λ is a ratio of odd positive integers;
(v) r̃ , r ∈ C

([t0,∞), [0,∞)
)
with r (t) → ∞ as t → ∞.

The study of the oscillatory behavior of solutions of various classes of the second-
order or higher order neutral differential equations and neutral dynamic equations on
time scales is an active area that has been extensively studied in the literature, and
we refer the reader to the papers [1,2,4,5,7–10,13,14,16–22,24,25,29,31–34,36,38–
43] and the references therein as examples of recent results on this topic. However,
oscillation results for neutral differential equations with a nonlinearity in the neutral
term are relatively scarce; some results can be found, for example, in [3,11,12,27,
30,35,37] and the references contained therein. Meanwhile, in reviewing the related
literature, it is clearly seen that most of such results are concerned with the sublinear
case, i.e., under the assumption that 0 < θ ≤ 1.

Recently, Bohner et al. [6] considered the second-order neutral delay differential
equation

(
m

(
t
)(
x(t) + p(t)xα

(
τ(t)

))′)′ + q(t) f
(
x(σ (t))

) = 0, t ≥ t0 > 0, (E1)

under the conditions with τ(t) ≤ t , τ ′(t) > 0, and σ(t) ≤ t where limt→∞ τ(t) =
limt→∞ σ(t) = ∞, and they established some nice oscillation criteria for Eq. (E1),
for superlinear case α ≥ 1. One should also note that results reported by Bohner et al.
[6] do not apply to Eq. (E1) when τ(t) ≥ t and/or σ(t) ≥ t .

The main objective of this paper is to establish some new sufficient conditions for
the oscillatory behavior of solutions of the second-order mixed neutral differential
equation (1.1) in the case θ ≥ 1. Note that Eq. (1.1) contains both delayed and
advanced arguments in the neutral term, so obtained results in this paper extend and
generalize related results reported in the literature, please see Remark 4.1. It should
be also pointed out that our results allow applications to differential equations in the
case when σ(t) is an advanced argument as well as when σ(t) is a delayed argument,
please see Remark 4.2.

By a solution of Eq. (1.1), we mean a function x : [Tx ,∞) → R which has the
properties ω ∈ C1 ([Tx ,∞) ,R), m(ω′) ∈ C1 ([Tx ,∞) ,R) and satisfies (1.1) on
[Tx ,∞) where Tx ≥ t0. Without further mention, we will assume throughout that
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every solution x(t) of (1.1) under consideration here is continuable to the right and
nontrivial, i.e., x(t) is defined on some ray [Tx ,∞), for some Tx ≥ t0, and

sup{|x(t)| : t ≥ T } > 0 for all T ≥ Tx .

We make the standing hypothesis that (1.1) admits such solutions. Such a solution of
(1.1) is called oscillatory if it has arbitrarily large zeros on [Tx ,∞) and otherwise it
is called nonoscillatory. Equation (1.1) is said to be oscillatory if all its solutions are
oscillatory.

We establish sufficient conditions for oscillation of all solutions in which both
canonical and noncanonical cases, that is, in the cases

∫ ∞

t
m−1(η) dη = ∞; (1.2)

and

∫ ∞

t
m−1(η) dη < ∞. (1.3)

respectively.
For simplicity in what follows, we define the functions:

χ(t) :=
∫ ∞

t

dη

m(η)
, A(t) :=

∫ t

t1

dη

m(η)
,

where t1 is large enough. We also define that

ψ1(t) = 1

r(μ−1(t))

[
1 − r̃(μ−1(t))

r(μ−1(ν(μ−1(t))))
− 1

θr1/θ (μ−1(μ−1(t)))

(
1 + θ − 1

δ(μ−1(t))

) ]

and

ψ2(t) := 1

r(μ−1(t))

[
1 − r̃(μ−1(t))

r(μ−1(ν(μ−1(t)))

χ(μ−1(ν(μ−1(t)))

χ(μ−1(t))

− 1

θr1/θ (μ−1(μ−1(t)))

(
χ(μ−1(μ−1(t)))

χ(μ−1(t))
+ θ − 1

χ2(μ−1(t))

)]

where μ−1 denotes the inverse function of μ and the function δ is to be specified later.
Meanwhile, it is assumed that ψ1(t) > 0 and ψ2(t) > 0 for all sufficiently large t .

2 Preliminary Lemmas

First of all, we present some lemmas that will be used to prove our main results.
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Lemma 2.1 [15, Theorem 41] If ε is positive and 0 < β ≤ 1, then

εβ ≤ βε + (1 − β) . (2.1)

Lemma 2.2 Assume that (1.2) holds. If x(t) is a positive solution of Eq. (1.1) on
[t0,∞), then the corresponding ω(t) satisfies

ω(t) > 0, ω′(t) > 0 and (mω′)′(t) ≤ 0 (2.2)

for t ≥ t1 ∈ [t0,∞).

The proof of the above lemma is straightforward; hence, we omit the details.

Lemma 2.3 Let x(t) be an eventually positive solution (1.1) such that corresponding
ω(t) satisfies (2.2). If there exists a positive decreasing function δ(t) which is tending
to zero, then

xθ (t) ≥ ψ1(t)ω(μ−1(t)) (2.3)

for t ≥ t2 ≥ t1.

Proof From condition (v) and the definition of ω(t), we have ω(t) ≥ x(t) and ω(t) ≥
x(t) + r̃(t)xθ (ν(t)) for all t ≥ t1 ≥ t0. Meanwhile, we have

xθ (μ(t)) = ω(t)

r(t)
− x(t)

r(t)
− r̃(t)xθ (ν(t))

r(t)

= ω(t)

r(t)
− 1

r(t)

[
ω(μ−1(t))

r(μ−1(t))
− x(μ−1(t))

r(μ−1(t))
− r̃(μ−1(t))xθ (ν(μ−1(t)))

r(μ−1(t))

]1/θ

− r̃(t)

r(t)

[
ω(μ−1(ν(t)))

r(μ−1(ν(t)))
− x(μ−1(ν(t)))

r(μ−1(ν(t)))

− r̃(μ−1(ν(t)))xθ (ν(μ−1(ν(t))))

r(μ−1(ν(t)))

]

≥ ω(t)

r(t)
− 1

r(t)

ω1/θ (μ−1(t))

r1/θ (μ−1(t))

[
1 − x(μ−1(t)) + r̃(μ−1(t))xθ (ν(μ−1(t)))

ω(μ−1(t))

]1/θ

− r̃(t)ω(μ−1(ν(t)))

r(t)r(μ−1(ν(t)))
. (2.4)

If we apply Lemma 2.1 in (2.4), we obtain

xθ (μ(t)) ≥ ω(t)

r(t)
− ω1/θ (μ−1(t))

r(t)r1/θ (μ−1(t))

[
1 − 1

θ

x(μ−1(t)) + r̃(μ−1(t))xθ (ν(μ−1(t)))

ω(μ−1(t))

]

− r̃(t)ω(μ−1(ν(t)))

r(t)r(μ−1(ν(t)))
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≥ 1

r(t)

[
ω(t) − ω1/θ (μ−1(t))

r1/θ (μ−1(t))
− r̃(t)ω(μ−1(ν(t)))

r(μ−1(ν(t)))

]
.

Applying Lemma 2.1 in the last inequality again, we conclude that

xθ (t) ≥ 1

r(μ−1(t))

[
ω(μ−1(t)) − r̃(μ−1(t))ω(μ−1(ν(μ−1(t))))

r(μ−1(ν(μ−1(t))))

− 1

r1/θ (μ−1(μ−1(t)))

(
1

θ
ω(μ−1(μ−1(t))) + θ − 1

θ

)]
. (2.5)

On the other hand, from condition (i i i), we see that

μ−1(μ−1(t))) ≤ μ−1(t) (2.6)

and

μ−1(ν(μ−1(t))) ≤ μ−1(t). (2.7)

Since ω(t) is increasing, we obtain from (2.6) and (2.7) that

ω
(
μ−1(μ−1(t)))

)
≤ ω

(
μ−1(t)

)
(2.8)

and

ω
(
μ−1(ν(μ−1(t)))

)
≤ ω

(
μ−1(t)

)
, (2.9)

respectively. Using (2.8) and (2.9) in (2.5) gives

xθ (t) ≥
1 − r̃(μ−1(t))

r(μ−1(ν(μ−1(t))))
− 1

θr1/θ (μ−1(μ−1(t)))

[
1 + θ−1

ω(μ−1(t))

]

r(μ−1(t))
ω(μ−1(t)). (2.10)

Since ω(t) is increasing and δ(t) is decreasing and tending to zero, there exists a
t2 ≥ t1 such that

ω(t) ≥ δ(t)

for all t ≥ t2. Substituting the latter inequality in (2.10) and rearranging we obtain
(2.3), which completes the proof. 	

Lemma 2.4 Assume that (1.3) holds. If x(t) is a positive solution of (1.1), then the
corresponding ω(t) satisfies eventually one of the following two cases:

(I) ω > 0, ω′ > 0, (mω′)′ ≤ 0;
(II) ω > 0, ω′ < 0, (mω′)′ ≤ 0.

The proof of the above lemma is straightforward; hence, we omit the details.
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88 O. Özdemir, A. Kılıç

Lemma 2.5 Let x(t) be an eventually positive solution of (1.1) and suppose that (1.3)
holds and ω(t) satisfies Case (II) of Lemma 2.4. Then, there exists t2 ≥ t1 ≥ t0 such
that

xθ (t) ≥ ψ2(t)ω(μ−1(t)) (2.11)

for all t ≥ t2.

Proof Proceeding exactly as in the proof of Lemma 2.3, we again arrive at (2.5), (2.6)
and (2.7). Moreover, for η ≥ t , we have

ω′(η) ≤ m(t)ω′(t)
m(η)

and integrating the above inequality from t to �, we have

ω(�) ≤ ω(t) + m(t)ω′(t)
∫ �

t

dη

m(η)
.

Letting � → ∞, we obtain

0 ≤ ω(t) + χ(t)m(t)ω′(t),

and we conclude from the last inequality that

(
ω(t)

χ(t)

)′
≥ 0 (2.12)

for t ≥ t1. In view of (2.6) and (2.7), we obtain from (2.12) that

ω(μ−1(μ−1(t))) ≤ χ(μ−1(μ−1(t))]
χ(μ−1(t))

ω(μ−1(t)) (2.13)

and

ω(μ−1(ν(μ−1(t)))) ≤ χ(μ−1(ν(μ−1(t))))

χ(μ−1(t))
ω(μ−1(t)) (2.14)

respectively. Using (2.13) and (2.14) in (2.5) yields

xθ (t) ≥ 1

r(μ−1(t))

[
ω(μ−1(t)) − r̃(μ−1(t))

r(μ−1(ν(μ−1(t))))

χ(μ−1(ν(μ−1(t))))

χ(μ−1(t))
ω(μ−1(t))

− 1

θr1/θ (μ−1(μ−1(t))

[
χ(μ−1(μ−1(t)))

χ(μ−1(t))
ω(μ−1(t)) + θ − 1

] ]

= ω(μ−1(t))

r(μ−1(t))

[
1 − r̃(μ−1(t))

r(μ−1(ν(μ−1(t))))

χ(μ−1(ν(μ−1(t))))

χ(μ−1(t))
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− 1

θr1/θ (μ−1(μ−1(t))

[
χ(μ−1(μ−1(t)))

χ(μ−1(t))
+ θ − 1

ω(μ−1(t))

] ]
. (2.15)

Since ω(t)
χ(t) is positive and increasing and χ(t) is decreasing and tending to zero, there

exists a t2 ≥ t1 such that

ω(t)

χ(t)
≥ χ(t)

for all t ≥ t2. Substituting this last inequality in (2.15) gives (2.11) which completes
the proof. 	


3 Main Results

Now, we can give our first oscillation criterion.

Theorem 3.1 Assume that (1.2) holds, λ ≥ θ and ξ(t) ≤ μ(t). If there exists a positive
and nondecreasing function φ ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

∫ t

T

(
φ(η)q(η)ψ

λ/θ
1 (ξ(η))

Aλ/θ
(
μ−1(ξ(η))

)

Aλ/θ (η)
− m(η)

(
φ′(η)

)2
4κ1φ (η)

)
dη = ∞

(3.1)

for every constant κ1 > 0 and for all t > T ≥ t1 ∈ [t0,∞), then all solutions of
equation (1.1) are oscillatory.

Proof Let x (t) be a nonoscillatory solution of (1.1).Without loss of generality, wemay
assume that there exists t1 ∈ [t0,∞) such that x (t) > 0, x (ν(t)) > 0, x (μ(t)) > 0
and x (ξ (t)) > 0 for t ≥ t1. The proof if x(t) is eventually negative is similar, so we
omit the details of that case here as well as in the remaining proofs in this paper. It
follows from (1.1) and (2.3) that

(
m

(
t
)
ω′(t)

)′ + κq(t)ψλ/θ
1 (ξ (t)) ωλ/θ

(
μ−1 (ξ (t))

)
≤ 0, (3.2)

for t ≥ t2 ∈ [t1,∞). Since m
(
t
)
ω′(t) is decreasing on [t1,∞), we obtain

ω(t) = ω(t1) +
∫ t

t1

m
(
η
)
ω′(η)

m
(
η
) dη ≥ m

(
t
)
ω′(t)A(t). (3.3)

In view of (3.3), we see that

(
ω(t)

A(t)

)′
≤ 0 (3.4)
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for all t ≥ t2 ∈ [t1,∞). Using (3.4) and the fact that μ−1(ξ(t)) ≤ t , we get

ω
(
μ−1(ξ(t))

)

A
(
μ−1(ξ(t))

) ≥ ω(t)

A(t)
(3.5)

for t ≥ t2. In view of (3.5), inequality (3.2) can be written as:

(
m

(
t
)
ω′(t)

)′ + κq(t)ψλ/θ
1 (ξ (t))

Aλ/θ
(
μ−1(ξ(t))

)

Aλ/θ (t)
ωλ/θ (t) ≤ 0, (3.6)

for t ≥ t2. Define the Riccati-type substitution by

� (t) = φ (t)
m (t) ω′ (t)

ω (t)
for t ≥ t2. (3.7)

Obviously � (t) > 0 and from (3.6), we obtain

� ′ (t) = φ′ (t)
φ (t)

� (t) + φ (t)
(
m(t)ω′(t)

)′

ω (t)
− �2 (t)

φ (t)m (t)

≤ φ′(t)
φ(t)

�(t) − κφ(t)q(t)ψλ/θ
1 (σ (t))

Aλ/θ
(
μ−1(ξ(t))

)

Aλ/θ (t)

ωλ/θ (t)

ω(t)
− �2(t)

φ(t)m(t)
(3.8)

for t ≥ t2. Since ω(t) is positive and strictly increasing, there exists a C > 0 such
that ω(t) ≥ C > 0 for all t ≥ t2. Completing the square with respect to �, it follows
from (3.8) that

� ′ (t) ≤ −κ1φ(t)q(t)ψλ/θ
1 (ξ(t))

Aλ/θ
(
μ−1(ξ(t))

)

Aλ/θ (t)
+ m(t)

(
φ′ (t)

)2
4φ(t)

, (3.9)

where κ1 = κC (λ−θ)/θ . Integrating (3.9) from t2 to t yields

∫ t

t2

(
φ(η)q(η)ψ

λ/θ
1 (ξ(η))

Aλ/θ
(
μ−1(ξ(η))

)

Aλ/θ (η)
− m(η)

(
φ′ (η)

)2
4κ1φ(η)

)
dη ≤ � (t2) ,

which contradicts (3.1) and completes the proof. 	

From Theorem 3.1, we can establish different sufficient conditions for oscillation

of (1.1), using different choices of the function φ(t). For instance, letting φ(t) = 1
and φ(t) = tρ with ρ ≥ 1, we obtain the following corollaries, respectively.

Corollary 3.1 Suppose that (1.2) holds, λ ≥ θ and ξ(t) ≤ μ(t). If

lim sup
t→∞

∫ t

T
q(η)ψ

λ/θ
1 (ξ(η))

Aλ/θ
(
μ−1(ξ(η))

)

Aλ/θ (η)
dη = ∞ (3.10)
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for all t > T ≥ t1 ∈ [t0,∞), then Eq. (1.1) is oscillatory.

Corollary 3.2 Suppose that (1.2) holds, λ ≥ θ and ξ(t) ≤ μ(t). If

lim sup
t→∞

∫ t

T

(
ηρq(η)ψ

λ/θ
1 (ξ(η))

Aλ/θ
(
μ−1(ξ(η))

)

Aλ/θ (η)
− ρ2m(η)ηρ−2

4κ1

)
dη = ∞

(3.11)

for every constant κ1 > 0 and for all t > T ≥ t1 ∈ [t0,∞), then Eq. (1.1) is
oscillatory.

In the next theorem, we give an oscillation criterion for (1.1) by using the integral
averaging technique due to Philos [26]. First we need to introduce the function class
P .

Let S0 ≡ {(t, η) ∈ R
2 : t > η ≥ t0} and S ≡ {(t, η) ∈ R

2 : t ≥ η ≥ t0}. We say
that the function J ∈ C (S,R) belongs to the class P , denoted by J ∈ P if

(P1) J (t, t) = 0 for t ≥ t0 and J (t, η) > 0 on S0;
(P2) J (t, η) has a continuous and non-positive partial derivative on S0 with respect to

the second variable.

Theorem 3.2 Assume that (1.2) be fulfilled, λ ≥ θ and ξ(t) ≤ μ(t). Let j, J : S → R

be continuous functions such that J ∈ P and

− ∂ J

∂η
(t, η) = j(t, η)

√
J (t, η) forall (t, η) ∈ S0. (3.12)

If there exists a positive and nondecreasing function φ ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

1

J (t, T )

∫ t

T

[
J (t, η)φ(η)q(η)ψ

λ/θ
1 (ξ(η))

Aλ/θ
(
μ−1(ξ(η))

)

Aλ/θ (η)

− φ(η)m(η)�2 (t, η)

4κ1

]
dη = ∞ (3.13)

for every constant κ1 > 0 and for all t > T ≥ t1 ∈ [t0,∞), where

�(t, η) = − j(t, η) + φ′(η)

φ(η)

√
J (t, η), (3.14)

then every solution of equation (1.1) is oscillatory.

Proof Let x (t) be a nonoscillatory solution of (1.1).Without loss of generality, wemay
assume that there exists t1 ∈ [t0,∞) such that x (t) > 0, x (ν(t)) > 0, x (μ(t)) > 0
and x (ξ (t)) > 0 for t ≥ t1. Proceeding as in the proof of Theorem 3.1, we again
arrive at (3.8). It follows from (3.8) that

∫ t

t2
J (t, η)κ1φ(η)q(η)ψ

λ/θ
1 (ξ(η))

Aλ/θ
(
μ−1(ξ(η))

)

Aλ/θ (η)
dη ≤ −

∫ t

t2
J (t, η)� ′ (η) dη
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92 O. Özdemir, A. Kılıç

+
∫ t

t2
J (t, η)

φ′(η)

φ(η)
�(η) dη −

∫ t

t2
J (t, η)

�2(η)

φ(η)m(η)
dη (3.15)

for t > t2 ∈ [t1,∞). Using the integration by parts formula, we obtain

∫ t

t2
J (t, η)� ′ (η) dη = J (t, η)� (η)

∣∣∣
t

t2
−

∫ t

t2

∂ J

∂η
(t, η)� (η) dη

= −J (t, t2)� (t2) −
∫ t

t2

∂ J

∂η
(t, η)� (η) dη (3.16)

In view of (3.12) and (3.16), we have from (3.15) that

∫ t

t2
J (t, η)κ1φ(η)q(η)ψ

λ/θ
1 (ξ(η))

Aλ/θ
(
μ−1(ξ(η))

)

Aλ/θ (η)
dη ≤ J (t, t2)� (t2)

+
∫ t

t2

[
− j(t, η)

√
J (t, η) + J (t, η)

φ′(η)

φ(η)

]
�(η) dη

−
∫ t

t2
J (t, η)

�2(η)

φ(η)m(η)
dη. (3.17)

By completing the square with respect to �, it follows from (3.17) that

∫ t

t2
J (t, η)κ1φ(η)q(η)ψ

λ/θ
1 (ξ(η))

Aλ/θ
(
μ−1(ξ(η))

)

Aλ/θ (η)
dη

≤ J (t, t2)� (t2) + 1

4

∫ t

t2
φ(η)m(η)�2(t, η) dη. (3.18)

So, for all t > t2, we conclude that

1

J (t, t2)

∫ t

t2

[
J (t, η)φ(η)q(η)ψ

λ/θ
1 (ξ(η))

Aλ/θ
(
μ−1(ξ(η))

)

Aλ/θ (η)

− φ(η)m(η)�2 (t, η)

4κ1

]
dη ≤ �(t2),

which contradicts (3.13) and completes the proof. 	

Next, we give some oscillation results in the case when λ < θ .

Theorem 3.3 Assume that (1.2) holds, λ < θ and ξ(t) ≤ μ(t). If there exists a positive
and nondecreasing function φ ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

∫ t

T

(
φ(η)q(η)ψ

λ/θ
1 (ξ(η))

Aλ/θ
(
μ−1(ξ(η))

)

A (η)
− m(η)

(
φ′(η)

)2
4κ2φ (η)

)
dη = ∞

(3.19)
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for every constant κ2 > 0 and for all t > T ≥ t1 ∈ [t0,∞), then all solutions of
equation (1.1) are oscillatory.

Proof Let x (t) be a nonoscillatory solution of (1.1).Without loss of generality, wemay
assume that there exists t1 ∈ [t0,∞) such that x (t) > 0, x (ν(t)) > 0, x (μ(t)) > 0
and x (ξ (t)) > 0 for t ≥ t1. Proceeding as in the proof of Theorem 3.1, we again arrive
at (3.2)–(3.4) and (3.5). Since λ < θ and the function ω(t)/A(t) is non-increasing on
[t1,∞), there exists a C1 > 0 such that

(
ω(t)

A(t)

) λ−θ
θ ≥ 1

C
1− λ

θ

1

(3.20)

for t ≥ t2 ∈ [t1,∞). Using (3.20) and (3.5) in (3.2), we obtain

(
m

(
t
)
ω′(t)

)′ + κ2q(t)ψλ/θ
1 (ξ (t))

Aλ/θ
(
μ−1(ξ(t))

)

A (t)
ω (t) ≤ 0, (3.21)

where κ2 = κ

C
1− λ

θ
1

. The remainder of the proof is similar to that of Theorem 3.1, so

we omit the details here. The proof of this theorem is complete. 	

Theorem 3.4 Assume that (1.2) holds, λ < θ and ξ(t) ≤ μ(t). Let j, J : S → R be
continuous functions such that J ∈ P and (3.12) holds. If there exists a positive and
nondecreasing function φ ∈ C1 ([t0,∞),R) such that

lim sup
t→∞

1

J (t, T )

∫ t

T

[
J (t, η)φ(η)q(η)ψ

λ/θ
1 (ξ(η))

Aλ/θ
(
μ−1(ξ(η))

)

A (η)

− φ(η)m(η)�2 (t, η)

4κ2

]
dη = ∞ (3.22)

for every constant κ2 > 0 and for all t > T ≥ t1 ∈ [t0,∞), where �(t, η) is as in
(3.14), then Eq. (1.1) is oscillatory.

Proof The proof follows from Theorems 3.2 and 3.3. 	

Next, we give following oscillation theorem for noncanonical case, i.e., when (1.3)

holds.

Theorem 3.5 Assume that (1.3) holds and ξ(t) < μ(t). If the first-order delay differ-
ential inequality

z′(t) + κq(t)ψλ/θ
1 (ξ(t)) Aλ/θ

(
μ−1(ξ(t))

)
zλ/θ

(
μ−1(ξ(t))

)
≤ 0 (3.23)

has no positive solution, and

∫ ∞

T

1

m(t)

(∫ t

T
q(η)ψ

λ/θ
2 (ξ(η)) χλ/θ

(
μ−1(ξ(η))

)
dη

)
dt = ∞ (3.24)

123



94 O. Özdemir, A. Kılıç

for all t > T ≥ t1 ∈ [t0,∞), then all solutions of equation (1.1) are oscillatory.

Proof Suppose to the contrary that x(t) is a nonoscillatory solution of (1.1). Without
loss of generality, we may assume that there exists t1 ∈ [t0,∞) such that x(t) >

0, x(ν(t)) > 0, x(μ(t)) > 0 and x(ξ(t)) > 0 for t ≥ t1. Then, corresponding
ω(t) satisfies either Case (I) or Case (II) of Lemma 2.4. We will consider each case
separately.

Case I: Assume first that ω′(t) > 0 on [t1,∞). Proceeding as in the proof of
Theorem 3.1, we again arrive at (3.2) and (3.3). Define z(t) = m(t)ω′(t) for t ≥ t2. It
is clear to see that z(t) > 0. Using (3.3), it follows from (3.2) that

z′(t) + κq(t)ψλ/θ
1 (ξ(t)) Aλ/θ

(
μ−1(ξ(t))

)
zλ/θ

(
μ−1(ξ(t))

)
≤ 0

for t ≥ t2. Then, z is a positive solution of the inequality (3.23), which is a contradic-
tion.

Case II: Suppose now ω′(t) < 0 on [t1,∞). Proceeding as in the proof of
Lemma 2.5, we again arrive at (2.12). From (1.1) and (2.11), we have

(
m

(
t
)
ω′(t)

)′ + κq(t)ψλ/θ
2 (ξ (t)) ωλ/θ

(
μ−1(ξ(t))

)
≤ 0,

for t ≥ t2. Integrating the latter inequality from t2 to t , we obtain

κ

∫ t

t2
q(η)ψ

λ/θ
2 (ξ (η)) ωλ/θ

(
μ−1(ξ(η))

)
dη ≤ −m

(
t
)
ω′(t). (3.25)

On the other hand, since (2.12) indicates that the functionω(t)/χ(t) is non-decreasing
on [t1,∞), there exists a C2 > 0 such that

ω(t)

χ(t)
≥ C2 > 0 for all t ≥ t2 ∈ [t1,∞).

Hence, from (3.25), we conclude that

κCλ/θ
2

m(t)

∫ t

t2
q(η)ψ

λ/θ
2 (ξ (η)) χλ/θ

(
μ−1(ξ(η))

)
dη ≤ −ω′(t). (3.26)

Integrating (3.26) from t2 to t , and passing to the limit as t → ∞, we obtain a
contradiction to (3.24). This contradiction completes the proof. 	


Corollary 3.3 Suppose that (1.3) holds, λ = θ and ξ(t) < μ(t). If

lim inf
t→∞

∫ t

μ−1(ξ(t))
q(η)ψ1 (ξ(η)) A

(
μ−1(ξ(η))

)
dη >

1

eκ
(3.27)
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and

∫ ∞

T

1

m(t)

(∫ t

T
q(η)ψ2 (ξ(η)) χ

(
μ−1(ξ(η))

)
dη

)
dt = ∞, (3.28)

then all solutions of equation (1.1) are oscillatory.

Proof Suppose to the contrary that x(t) is a nonoscillatory solution of (1.1). Without
loss of generality, we may assume that there exists t1 ∈ [t0,∞) such that x(t) > 0,
x(ν(t)) > 0, x(μ(t)) > 0 and x(ξ(t)) > 0 for t ≥ t1. Then, corresponding ω(t)
satisfies either Case (I) or Case (II) of Lemma 2.4. The proof when Case (II) holds is
exactly the same as that of Case (II) of Theorem 3.5 with λ = θ .

Case I: Assume that ω′(t) > 0 on [t1,∞). Then, z is a positive solution of the
inequality (3.23). On the other hand, applying condition (3.27) to (3.23), one concludes
that (3.23) cannot have positive solutions by [18, Theorem 2.1.1]. This contradiction
completes the proof. 	

Corollary 3.4 Suppose that (1.3) holds, λ < θ and ξ(t) < μ(t). If

∫ ∞

T
q(t)ψλ/θ

1 (ξ(t)) Aλ/θ
(
μ−1(ξ(t))

)
dt = ∞, (3.29)

and (3.24) holds, then Eq. (1.1) is oscillatory.

Proof Suppose to the contrary that x(t) is a nonoscillatory solution of (1.1). Without
loss of generality, we may assume that there exists t1 ∈ [t0,∞) such that x(t) > 0,
x(ν(t)) > 0, x(μ(t)) > 0 and x(ξ(t)) > 0 for t ≥ t1. Then, corresponding ω(t)
satisfies either Case (I) or Case (II) of Lemma 2.4. The proof when Case (II) holds is
exactly the same as that of Case (II) of Theorem 3.5.

Case I: Assume that ω′(t) > 0 on [t1,∞). Then, z is a positive solution of the
inequality (3.23). On the other hand, if (3.29) holds, Eq. (3.23) cannot have positive
solutions by virtue of Kitamura and Kusano [23, Theorem 2]. The proof is complete
in view of this contradiction. 	

Corollary 3.5 Assume that (1.3) holds, λ > θ , ξ(t) = t − b, ν(t) = t − e and
μ(t) = t + d, where b, e, d > 0 are constants. If

lim inf
t→∞

[(
λ

θ

)− t
b+d

log
(
q(t)ψλ/θ

1 (t − b) Aλ/θ (t − b − d)
)]

> 0, (3.30)

and (3.24) holds, then Eq. (1.1) is oscillatory.

Proof Suppose to the contrary that x(t) is a nonoscillatory solution of (1.1). Without
loss of generality, we may assume that there exists t1 ∈ [t0,∞) such that x(t) > 0,
x(ν(t)) > 0, x(μ(t)) > 0 and x(ξ(t)) > 0 for t ≥ t1. Then, corresponding ω(t)
satisfies either Case (I) or Case (II) of Lemma 2.4. If Case (II) holds, the proof is
exactly the same as that of Case (II) of Theorem 3.5.

123



96 O. Özdemir, A. Kılıç

Case I: Assume that ω′(t) > 0 on [t1,∞). Then, from Sakamoto and Tanaka [28,
Lemma 2.2], the inequality (3.23) and the equation

z′(t) + κq(t)ψλ/θ
1 (t − b) Aλ/θ (t − b − d) zλ/θ (t − b − d) = 0 (3.31)

have a positive solution, for t ≥ t2. On the other hand, if (3.30) holds, Eq. (3.31)
cannot have positive solutions by virtue of Sakamoto and Tanaka [28, Corollary 1.2].
This contradiction completes the proof. 	


4 Examples and Remarks

Remark 4.1 If we take r̃(t) = 0 in Theorems 3.1–3.5 and Corollaries 3.1–3.5, then we
obtain sufficient conditions for the oscillation of all solutions of the equation

(
m

(
t
)(
x(t) + r(t)xθ

(
μ(t)

))′)′ + q(t) f
(
x(ξ(t))

) = 0, t ≥ t0 > 0, (4.1)

in the case when θ ≥ 1, μ(t) ≥ t and ξ(t) ≤ μ(t). It should be pointed out that
obtained results in this paper are new even for the second-order advanced neutral
differential equation (4.1) under conditions (i) − (v).

Remark 4.2 We point out versatility of the obtained results in this paper with respect to
the behavior of the functions μ(t) and ξ(t). Note that our conditions on the deviating
arguments are μ(t) ≥ t and ξ(t) ≤ μ(t). Therefore, ξ(t) can be a delayed or an
appropriate advanced argument.

Example 4.1 Consider the second-order neutral differential equation

(
e−t

[
x(t) + x3(t/2) + e3t x3(2t)

]′)′
+ �e3t x3(2t − 1) = 0. (4.2)

for t ≥ 2. Here, we have

• θ = λ = 3, m(t) = e−t , κ = 1 and q(t) = �e3t with � is a constant;
• ν(t) = t/2, μ(t) = 2t , ξ(t) = 2t − 1, r̃(t) = 1 and r(t) = e3t .

It is easy to see that conditions (i) − (v) and (1.2) hold, and A(t) = et − e2. If we
choose δ(t) = 4e−t/2, then δ(t) is a positive decreasing function such that tending to
zero as t → ∞. So, we see that

ψ1(t) = 5e5t/8 − 2e3t/8 − 6et/4

6e17t/8
> 0

for t ≥ T ≥ 2. Noting that μ−1(ξ(t)) = t − 1/2 < t , and taking φ(t) = 1, a direct
calculation shows that (3.10) is satisfied with � > 0 and t > T ≥ 2. Therefore,
Eq. (4.2) is oscillatory by Corollary 3.1, provided that � > 0.
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Example 4.2 Consider the second-order neutral differential equation

(
t2

[
x(t) + t x5/3(t − 1) + t5x5/3(t + 2)

]′)′
+ t5x(t + 1) = 0. (4.3)

for t ≥ 7. Here, we have

• θ = 5/3, λ = 1, m(t) = t2, κ = 1 and q(t) = t5;
• ν(t) = t − 1, μ(t) = t + 2, ξ(t) = t + 1, r̃(t) = t and r(t) = t5.

It is obvious that conditions (i) − (v) and (1.3) hold. Then,

A(t) = t − 7

7t
and χ(t) = 1

t
.

If we choose δ(t) = 4(t − 2)−1, then δ(t) is a positive decreasing function such that
tending to zero as t → ∞. On the other hand, we see that

ψ1(t) = 1

(t − 2)5

[
1 − t − 2

(t − 5)5
− 3

5(t − 4)3
− 1

10(t − 4)2

]
> 0

and

ψ2(t) = 1

(t − 2)5

[
1 − (t − 2)2

(t − 5)6
− 3

5(t − 4)3

(
t − 2

t − 4
+ 2(t − 2)2

3

)]
> 0

for t ≥ 7. Noting thatμ−1(ξ(t)) = t−1 < t , and taking φ(t) = 1, a direct calculation
shows that (3.24) and (3.29) are satisfied for t > T ≥ 7. Hence, Eq. (4.3) is oscillatory
by Corollary 3.4.

Remark 4.3 Assume that condition (v) is replaced by

(v∗) r̃ , r ∈ C
([t0,∞), [0,∞)

)
with r̃ (t) → ∞ as t → ∞.

In this case, if the functions ψ1(t) and ψ2(t) are replaced by

ψ3(t) := 1

r̃(ν−1(t))

[
1 − r(ν−1(t))

r̃(ν−1(μ(ν−1(t)))

A(ν−1(μ(ν−1(t)))

A(ν−1(t))

− 1

θ r̃1/θ (ν−1(ν−1(t)))

(
A(ν−1(ν−1(t)))

A(ν−1(t))
+ θ − 1

δ(ν−1(t))

) ]

and

ψ4(t) = 1

r̃(ν−1(t))

[
1 − r(ν−1(t))

r̃(ν−1(μ(ν−1(t)))
− 1

θ r̃1/θ (ν−1(ν−1(t)))

(
1 + θ − 1

χ2(ν−1(t))

) ]

respectively, then one canobtain newoscillation results forEq. (1.1) under assumptions
of (i) − (v∗), ξ(t) ≤ ν(t), ψ3(t) > 0 and ψ4(t) > 0. The details are left to the reader.
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Remark 4.4 It would also be of interest to study Eq. (1.1) with sub-linear neutral terms
and unbounded coefficients, i.e., under conditions of 0 < θ ≤ 1 and r (t) → ∞ and/or
r̃ (t) → ∞ as t → ∞.

Remark 4.5 It would also be of interest to study Eq. (1.1) for the cases where −∞ <

r , r̃ < 0 or −∞ < r , r̃ < −1 or −1 < r , r̃ < 0 with superlinear neutral terms θ ≥ 1.
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