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Abstract
This paper deals with the existence of positive radial solutions to the iterative system
of nonlinear elliptic equations of the form

�zj + (N − 2)2r2N−2
0

|x |2N−2 zj + ϕ(|x |)gj(zj+1) = 0, R1 < |x | < R2,

where j ∈ {1, 2, 3, · · ·, �}, z1 = z�+1, �z = div(�z), N > 2, 0 < r0 < π/2,
ϕ = ∏n

i=1 ϕi , each ϕi : (r0,+∞) → (0,+∞) is continuous, rN−1ϕ is integrable, and
gj : [0,+∞) → R is continuous, by an application of various fixed point theorems in
a Banach space. Further, we also establish uniqueness of the solution for the addressed
system by using Rus’s theorem in a complete metric space.

Keywords Nonlinear elliptic equation · Annulus · Positive radial solution · Fixed
point theorem · Banach space · Rus’s theorem · Metric space · Continuous functions

Mathematics Subject Classification 35J66 · 35J60 · 34B18 · 47H10
1 Introduction

The semilinear elliptic equation of the form

�z + g(|x |)z + h(|x |)zp = 0 (1)
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arises in various fields of pure and applied mathematics such as Riemannian geom-
etry, nuclear physics, astrophysics and so on. For more details of the background of
(1), see [9,10,19,24]. Study of nonlinear elliptic system of equations,

�zj + gj(zj+1) = 0 in �,

zj = 0 on ∂�,

}

(2)

where j ∈ {1, 2, 3, · · ·, �}, z1 = z�+1, and � is a bounded domain in R
N , has

an important applications in population dynamics, combustion theory and chemical
reactor theory. For the recent literature for the existence, multiplicity and uniqueness
of positive solutions for (2), see [1,3,7,12–14] and references therein.

In [6], Chrouda and Hassine established the uniqueness of positive radial solutions
to the following Dirichlet boundary value problem for the semilinear elliptic equation
in an annulus,

�z = g(z) on � = {x ∈ R
d : a < |x | < b},

z = 0 on z ∈ ∂�,

for any dimension d ≥ 1. In [8], Dong and Wei established the existence of radial
solutions for the following nonlinear elliptic equations with gradient terms in annular
domains,

�z + g
(|x |,z,

x

|x | · ∇z
) = 0 in �b

a,

z = 0 on ∂�b
a,

by using Schauder’s fixed point theorem and contraction mapping theorem. In [15],
R. Kajikiya and E. Ko established the existence of positive radial solutions for a
semipositone elliptic equation of the form,

�z + λg(z) = 0 in �,

z = 0 on ∂�,

where� is a ball or an annulus inR
N.Recently, Son andWang [22] established positive

radial solutions to the nonlinear elliptic systems,

�zj + λKj(|x |)gj(zj+1) = 0 in �E,

zj = 0 on |x | = r0,

zj → 0 as |x | → +∞,

wherej ∈ {1, 2, 3, ···, �},z1 = z�+1, λ > 0, N > 2, r0 > 0, and�E is an exterior of
a ball. Motivated by the above works, in this paper we study the existence of infinitely
many positive radial solutions for the following iterative system of nonlinear elliptic
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equations in an annulus,

�zj + (N − 2)2r2N−2
0

|x |2N−2 zj + ϕ(|x |)gj(zj+1) = 0, R1 < |x | < R2, (3)

with one of the following sets of boundary conditions:

zj = 0 on |x | = R1 and |x | = R2,

zj = 0 on |x | = R1 and
∂zj
∂r

= 0 on |x | = R2,

∂zj
∂r

= 0 on |x | = R1 and zj = 0 on |x | = R2,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(4)

where j ∈ {1, 2, 3, · · ·, �}, z1 = z�+1, �z = div(�z), N > 2, 0 < r0 < π/2,
ϕ = ∏n

i=1 ϕi , each ϕi : (R1,R2) → (0,+∞) is continuous, rN−1ϕ is integrable, by
an application of various fixed point theorems in a Banach space. Further, we also
study existence of unique solution by using Rus’s theorem in a complete metric space.

The study of positive radial solutions to (3) reduces to the study of positive solutions
to the following iterative system of two-point boundary value problems,

z′′
j(τ) + r20zj(τ) + ϕ(τ)gj(zj+1(τ)) = 0, 0 < τ < 1, (5)

where j ∈ {1, 2, 3, · · ·, �}, z1 = z�+1, 0 < r0 < π/2, and ϕ(τ) =
r20

(N−2)2
τ

2(N−1)
2−N

∏n
i=1 ϕi (τ), ϕi (τ) = ϕi (r0τ

1
2−N ) by a Kelvin-type transformation

through the change of variables r = |x | and τ =
(

r
r0

)2−N
.For the detailed explanation

of the transformation from equations (7) to (5), see [2,16,17]. By suitable choices of
nonnegative real numbers α,β,γ and δwith r20 ≤ αγ

βδ , the set of boundary conditions
(5) reduces to

{
αzj(0) − βz′

j(0) = 0,

γzj(1) + δz′
j(1) = 0,

(6)

we assume that the following conditions hold throughout the paper:

(H1) gj : [0,+∞) → [0,+∞) is continuous.
(H2) ϕi ∈ Lpi [0, 1], 1 ≤ pi ≤ +∞ for 1 ≤ i ≤ n.

(H3) There exists ϕ�
i > 0 such that ϕ�

i < ϕi (τ) < ∞ a.e. on [0, 1].
The rest of the paper is organized in the following fashion. In Sect. 2, we convert the
boundary value problem (5)–(6) into equivalent integral equation which involves the
kernel. Also, we estimate bounds for the kernel which are useful in our main results.
In Sect. 3, we develop criteria for the existence of at least one positive radial solution
by applying Krasnoselskii’s cone fixed point theorem in a Banach space. In Sect. 4,
we derive necessary conditions for the existence of at least two positive radial solution
by an application of Avery–Henderson cone fixed point theorem in a Banach space. In
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Sect. 5, we establish the existence of at least three positive radial solution by utilizing
Leggett-William cone fixed point theorem in a Banach space. Further, we also study
uniqueness of solution in the final section.

2 Kernel and Its Bounds

In order to study BVP (5), we first consider the corresponding linear boundary value
problem,

−(z′′
1(τ) + r20z1(τ)) = y(τ), 0 < τ < 1, (7)

{
αz1(0) − βz′

1(0) = 0,

γz1(1) + δz′
1(1) = 0,

(8)

where y ∈ C[0, 1] is a given function.

Lemma 1 Let ℘ = r20 (αδ + βγ) cos(r0) + r0(αγ − βδr20 ) sin(r0). For every y ∈
C(0, 1), the linear boundary value problem (7)–(8) has a unique solution

z1(τ) =
∫ 1

0
ℵr0(τ,s)y(s)ds, (9)

where

ℵr0 (τ,s) = 1

℘
{ (

α sin(r0τ) + βr0 cos(r0τ)
)(

γ sin(r0(1 − s)) + δr0 cos(r0(1 − s))
)
, 0 ≤ τ ≤ s ≤ 1,

(
α sin(r0s) + βr0 cos(r0s)

)(
γ sin(r0(1 − τ)) + δr0 cos(r0(1 − τ))

)
, 0 ≤ s ≤ τ ≤ 1.

Lemma 2 Let σ = max

{
α + βr0

βr0 cos(r0)
,

γ + δr0
δr0 cos(r0)

}

. The kernel ℵr0(τ,s) has the

following properties:

(i) ℵr0(τ,s) is nonnegative and continuous on [0, 1] × [0, 1],
(ii) ℵr0(τ,s) ≤ σℵr0(s,s) for τ,s ∈ [0, 1],

(iii) 1
σℵr0(s,s) ≤ ℵr0(τ,s) for τ,s ∈ [0, 1].

Proof Since r20 ≤ αγ
βδ , it follows that ℘ > 0. So, from the definition of kernel,

ℵr0(s,s) > 0 and continuous on [0, 1] × [0, 1]. This proves (i). To prove (i i),
consider
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ℵr0(τ,s)

ℵr0(s,s)
=

⎧
⎪⎪⎨

⎪⎪⎩

α sin(r0τ) + βr0 cos(r0τ)

α sin(r0s) + βr0 cos(r0s)
, 0 ≤ τ ≤ s ≤ 1,

γ sin(r0(1 − τ)) + δr0 cos(r0(1 − τ))

γ sin(r0(1 − s)) + δr0 cos(r0(1 − s))
, 0 ≤ s ≤ τ ≤ 1,

≤

⎧
⎪⎪⎨

⎪⎪⎩

α + βr0
βr0 cos(r0)

, 0 ≤ τ ≤ s ≤ 1,

γ + δr0
δr0 cos(r0)

, 0 ≤ s ≤ τ ≤ 1,

which proves (i i). Finally for (i i i), consider

ℵr0(τ,s)

ℵr0(s,s)
=

⎧
⎪⎪⎨

⎪⎪⎩

α sin(r0τ) + βr0 cos(r0τ)

α sin(r0s) + βr0 cos(r0s)
, 0 ≤ τ ≤ s ≤ 1,

γ sin(r0(1 − τ)) + δr0 cos(r0(1 − τ))

γ sin(r0(1 − s)) + δr0 cos(r0(1 − s))
, 0 ≤ s ≤ τ ≤ 1,

≥

⎧
⎪⎪⎨

⎪⎪⎩

βr0 cos(r0)

α + βr0
, 0 ≤ τ ≤ s ≤ 1,

δr0 cos(r0)

γ + σr0
, 0 ≤ s ≤ τ ≤ 1.

This completes the proof. ��
FromLemma1,we note that an �-tuple (z1,z2, ···,z�) is a solution of the boundary

value problem (5)–(6) if and only, if

z1(τ) =
∫ 1

0
ℵr0(τ,s1)ϕ(s1)g1

[ ∫ 1

0
ℵr0(s1,s2)ϕ(s2)g2

[ ∫ 1

0
ℵr0(s2,s3)ϕ(s3)g4 · · ·

g�−1

[ ∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

· · ·
]

ds3

]

ds2

]

ds1.

In general,

zj(τ) =
∫ 1

0
ℵr0(τ, s)ϕ(s)gj

(
zj+1(s)

)
ds, j = 1, 2, 3, · · ·, �,

z1(τ) =z�+1(τ).

We denote the Banach space C((0, 1), R) by B with the norm ‖z‖ = max
τ∈[0,1] |z(τ)|.

The cone E ⊂ B is defined by

E =
{
z ∈ B : z(τ) ≥ 0 on [0, 1] and min

τ∈[0, 1]z(τ) ≥ 1

σ2 ‖z‖
}
.

For any z1 ∈ E, define an operator P : E → B by
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(Pz1)(τ) =
∫ 1

0
ℵr0 (τ,s1)ϕ(s1)g1

[ ∫ 1

0
ℵr0 (s1,s2)ϕ(s2)g2

[ ∫ 1

0
ℵr0 (s2,s3)ϕ(s3)g4 · · ·

g�−1

[ ∫ 1

0
ℵr0 (s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

· · ·
]

ds3

]

ds2

]

ds1. (10)

Lemma 3 P(E) ⊂ E and P : E → E is completely continuous.

Proof Since gj(zj+1(τ)) is nonnegative for τ ∈ [0, 1], z1 ∈ E. Since ℵr0(τ, s), is
nonnegative for all τ,s ∈ [0, 1], it follows that P(z1(τ)) ≥ 0 for all τ ∈ [0, 1], z1 ∈
E Now, by Lemmas 1 and 2, we have

min
τ∈[0,1](Pz1)(τ)

= min
τ∈[0,1]

{∫ 1

0
ℵr0 (τ,s1)ϕ(s1)g1

[ ∫ 1

0
ℵr0 (s1,s2)ϕ(s2)g2

[ ∫ 1

0
ℵr0 (s2,s3)ϕ(s3)g4 · · ·

g�−1

[ ∫ 1

0
ℵr0 (s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

· · ·
]

ds3

]

ds2

]

ds1

}

≥ 1

σ

∫ 1

0
ℵr0 (s1,s1)ϕ(s1)g1

[ ∫ 1

0
ℵr0 (s1,s2)ϕ(s2)g2

[ ∫ 1

0
ℵr0 (s2,s3)ϕ(s3)g4 · · ·

g�−1

[ ∫ 1

0
ℵr0 (s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

· · ·
]

ds3

]

ds2

]

ds1

≥ 1

σ2

{ ∫ 1

0
ℵr0 (τ,s1)ϕ(s1)g1

[ ∫ 1

0
ℵr0 (s1,s2)ϕ(s2)g2

[ ∫ 1

0
ℵr0 (s2,s3)ϕ(s3)g4 · · ·

g�−1

[ ∫ 1

0
ℵr0 (s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

· · ·
]

ds3

]

ds2

]

ds1

}

≥ 1

σ2
max

τ∈[0,1] |Pz1(τ)|.

Thus, P(E) ⊂ E. Therefore, by the means of Arzela–Ascoli theorem, the operator P
is completely continuous. ��

3 Existence of at Least One Positive Radial Solution

In this section, we establish the existence of at least one positive radial solution for
the system (5)–(6) by an application of following theorems.

Theorem 1 [11] Let E be a cone in a Banach space B and let G, F be open sets with
0 ∈ G,G ⊂ F. Let P : E∩ (F\G) → E be a completely continuous operator such that

(i) ‖Pz‖ ≤ ‖z‖, z ∈ E ∩ ∂G, and ‖Pz‖ ≥ ‖z‖, z ∈ E ∩ ∂F, or
(ii) ‖Pz‖ ≥ ‖z‖, z ∈ E ∩ ∂G, and ‖Pz‖ ≤ ‖z‖, z ∈ E ∩ ∂F.

Then, P has a fixed point in E ∩ (F\G).
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Theorem 2 (Hölder’s) Let f ∈ Lpi [0, 1] with pi > 1, for i = 1, 2, · · · , n and
n∑

i=1

1

pi
= 1. Then,

∏n
i=1 fi ∈ L1[0, 1] and

∥
∥
∏n

i=1 fi
∥
∥
1 ≤ ∏n

i=1 ‖fi‖pi . Further, if

f ∈ L1[0, 1] and g ∈ L∞[0, 1]. Then, fg ∈ L1[0, 1] and ‖fg‖1 ≤ ‖f‖1‖g‖∞.

Consider the following three possible cases for ϕi ∈ Lpi [0, 1] :
n∑

i=1

1

pi
< 1,

n∑

i=1

1

pi
= 1,

n∑

i=1

1

pi
> 1.

Firstly, we seek positive radial solutions for the case
n∑

i=1

1

pi
< 1.

Theorem 3 Suppose (H1)–(H3) hold. Further, assume that there exist two positive
constants a2 > a1 > 0 such that

(H4) gj(z(τ)) ≤ Q2a2 for all 0 ≤ τ ≤ 1, 0 ≤ z ≤ a2, where Q2 =
[

σr20
(N − 2)2

‖ℵ̂r0‖q
n∏

i=1

‖ϕi‖pi

]−1

and ℵ̂r0(s) = ℵr0(s,s)s
2(N−1)
2−N .

(H5) gj(z(τ)) ≥ Q1a1 for all 0 ≤ τ ≤ 1, 0 ≤ z ≤ a1, where Q1 =
[

r20
σ(N − 2)2

n∏

i=1

ϕ�
i

∫ 1

0
ℵr0(s,s)s

2(N−1)
2−N ds

]−1

.

Then, iterative system (5)–(6) has at least one positive radial solution (z1,z2, · · ·,z�)

such that a1 ≤ ‖zj‖ ≤ a2, j = 1, 2, · · ·, �.
Proof Let G = {z ∈ B : ‖z‖ < a2}. For z1 ∈ ∂G, we have 0 ≤ z ≤ a2 for all
τ ∈ [0, 1]. It follows from (H4) that for s�−1 ∈ [0, 1],
∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds� ≤ σ

∫ 1

0
ℵr0(s�,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

≤ σQ2a2

∫ 1

0
ℵr0(s�,s�)ϕ(s�)ds�

≤ σQ2a2
r20

(N − 2)2

∫ 1

0
ℵr0(s�,s�)s

2(N−1)
2−N

�

n∏

i=1

ϕi (s�)ds�.

There exists a q > 1 such that
n∑

i=1

1

pi
+ 1

q
= 1. By the first part of Theorem 2, we

have

∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds� ≤ Q2a2

σr20
(N − 2)2

‖ℵ̂r0‖q
n∏

i=1

‖ϕi‖pi

≤ a2.
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It follows in similar manner for 0 < s�−2 < 1,

∫ 1

0
ℵr0(s�−2,s�−1)ϕ(s�−1)g�−1

[ ∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

ds�−1

≤ σ

∫ 1

0
ℵr0(s�−1,s�−1)ϕ(s�−1)g�−1(a2)ds�−1

≤ Q2a2
σr20

(N − 2)2
‖ℵ̂r0‖q

n∏

i=1

‖ϕi‖pi

≤ a2.

Continuing with this bootstrapping argument, we reach

(Pz1)(t) =
∫ 1

0
ℵr0 (τ,s1)ϕ(s1)g1

[ ∫ 1

0
ℵr0 (s1,s2)ϕ(s2)g2

[ ∫ 1

0
ℵr0 (s2,s3)ϕ(s3)g4 · · ·

g�−1

[ ∫ 1

0
ℵr0 (s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

· · ·
]

ds3

]

ds2

]

ds1

≤ a2.

Since G = ‖z1‖ for z1 ∈ E ∩ ∂G, we get

‖Pz1‖ ≤ ‖z1‖. (11)

Next, let F = {z ∈ B : ‖z‖ < a1}. For z1 ∈ ∂F, we have 0 ≤ z ≤ a1 for all
τ ∈ [0, 1]. It follows from (H5) that for s�−1 ∈ [0, 1],

∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds� ≥ 1

σ

∫ 1

0
ℵr0(s�,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

≥ Q1a1
σ

∫ 1

0
ℵr0(s�,s�)ϕ(s�)ds�

≥ Q1a1
r20

σ(N − 2)2

∫ 1

0
ℵr0(s�,s�)s

2(N−1)
2−N

�

n∏

i=1

ϕi (s�)ds�

≥ Q1a1
r20

σ(N − 2)2

n∏

i=1

ϕ�
i

∫ 1

0
ℵr0(s�,s�)s

2(N−1)
2−N

� ds�

≥ a1.
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It follows in similar manner for 0 < s�−2 < 1,

∫ 1

0
ℵr0(s�−2,s�−1)ϕ(s�−1)g�−1

[ ∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

ds�−1

≥ 1

σ

∫ 1

0
ℵr0(s�−1,s�−1)ϕ(s�−1)g�−1(a1)ds�−1

≥ Q1a1
σ

∫ 1

0
ℵr0(s�−1,s�−1)ϕ(s�−1)ds�−1

≥ Q1a1
r20

σ(N − 2)2

∫ 1

0
ℵr0(s�−1,s�−1)s

2(N−1)
2−N

�−1

n∏

i=1

ϕi (s�−1)ds�−1

≥ Q1a1
r20

σ(N − 2)2

n∏

i=1

ϕ�
i

∫ 1

0
ℵr0(s�−1,s�−1)s

2(N−1)
2−N

�−1 ds�−1

≥ a1.

Continuing with bootstrapping argument, we get

(Pz1)(τ) =
∫ 1

0
ℵr0 (τ,s1)ϕ(s1)g1

[ ∫ 1

0
ℵr0 (s1,s2)ϕ(s2)g2

[ ∫ 1

0
ℵr0 (s2,s3)ϕ(s3)g4 · · ·

g�−1

[ ∫ 1

0
ℵr0 (s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

· · ·
]

ds3

]

ds2

]

ds1

≥ a1.

Thus, for z1 ∈ E ∩ ∂F, we have

‖Pz1‖ ≥ ‖z1‖. (12)

It is clear that 0 ∈ F ⊂ F ⊂ G and by Lemma 3, P : E ∩ (F\G) → E is completely
continuous operator. Also from (11) and (12) thatP satisfies (i) of Theorem 1. Hence,
from Theorem 1, P has a fixed point z1 ∈ E ∩ (

F\G)
such that z1(τ) ≥ 0 on (0, 1).

Next setting z�+1 = z1, we obtain infinitely many positive solutions (z1,z2, · · ·,z�)

of (5)–(6) given iteratively by

zj(τ) =
∫ 1

0
ℵr0(τ, s)ϕ(s)gj(zj+1(s))ds, j = 1, 2, · · ·, � − 1, �,

z�+1(τ) = z1(τ), τ ∈ (0, 1).

This completes the proof. ��
For

∑n
i=1

1
pi

= 1 and
∑n

i=1
1
pi

> 1, we have following results.

Theorem 4 Suppose (H1)–(H3) hold. Further, assume that there exist two positive
constants b2 > b1 > 0 such that gj (j = 1, 2, · · ·, �) satisfies (H5) and
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(H6) gj(z(τ)) ≤ N2b2 for all 0 ≤ τ ≤ 1, 0 ≤ z ≤ b2,

whereN2 =
[

σr20
(N − 2)2

‖ℵ̂r0‖∞
n∏

i=1

‖ϕi‖pi

]−1

and ℵ̂r0(s) = ℵr0(s,s)s
2(N−1)
2−N .

Then, iterative system (5)–(6) has at least one positive radial solution (z1,z2, · · ·,z�)

such that b1 ≤ ‖zj‖ ≤ b2, j = 1, 2, · · ·, �.
Theorem 5 Suppose (H1)–(H3) hold. Further, assume that there exist two positive
constants c2 > c1 > 0 such that gj (j = 1, 2, · · ·, �) satisfies (H5) and

(H7) gj(z(τ)) ≤ M2c2 for all 0 ≤ τ ≤ 1, 0 ≤ z ≤ c2,

whereM2 =
[

σr20
(N − 2)2

‖ℵ̂r0‖∞
n∏

i=1

‖ϕi‖1
]−1

and ℵ̂r0(s) = ℵr0(s,s)s
2(N−1)
2−N .

Then, iterative system (5)–(6) has at least one positive radial solution (z1,z2, · · ·,z�)

such that c1 ≤ ‖zj‖ ≤ c2, j = 1, 2, · · ·, �.
Example 1 Consider the following nonlinear elliptic system of equations,

�zj + (N − 2)2r2N−2
0

|x |2N−2 zj + ϕ(|x |)gj(zj+1) = 0, 1 < |x | < 2, (13)

zj = 0 on |x | = 1 and |x | = 2,

zj = 0 on |x | = 1 and
∂zj
∂r

= 0 on |x | = 2,

∂zj
∂r

= 0 on |x | = 1 and zj = 0 on |x | = 2,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(14)

where r0 = 1, N = 3, j ∈ {1, 2}, z3 = z1, ϕ(τ) = 1
τ4

∏2
i=1 ϕi (τ), ϕi (τ) = ϕi

( 1
τ

)
,

in which

ϕ1(t) = 1

t2 + 2
and ϕ2(t) = 1√

t + 2
,

then it is clear that

ϕ1, ϕ2 ∈ Lp[0, 1] and
2∏

i=1

ϕ∗
i = 2

√
2.

Let g1(z) = 1 + 1
3 sin(1 + z) + 1

1+z , g2(z) = 1 + 2
5 cos(

√
1 + z) + 1

1+z2
. Let

α = β = γ = 1, δ = 1
2 , then 1 = r20 < 2 = αγ

βδ , ℘ = 3
2 cos(1) + 1

2 sin(1) ≈
1.231188951,

ℵr0(τ,s) = 2

3 cos(1) + sin(1)
{(

sin(τ) + cos(τ)
)(
sin(1 − s) + 1

2 cos(1 − s)
)
, 0 ≤ τ ≤ s ≤ 1,

(
sin(s) + cos(s)

)(
sin(1 − τ) + 1

2 cos(1 − τ)
)
, 0 ≤ s ≤ τ ≤ 1,
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and σ = 3
cos(1) . Also,

Q1 =
[

r20
σ(N − 2)2

n∏

i=1

ϕ�
i

∫ 1

0
ℵr0(s,s)s

2(N−1)
2−N ds

]−1

≈ 0.4811486562 × 10−2.

Let p1 = 2,p2 = 3 and q = 6, then 1
p1

+ 1
p2

+ 1
q = 1 and

Q2 =
[

σr20
(N − 2)2

‖ℵ̂r0‖q
n∏

i=1

‖ϕi‖pi

]−1

≈ 0.996201 × 10−5.

Choose a1 = 0.5 and a2 = 106. Then,

g1(z) = 1 + 1

3
sin(1 + z) + 1

1 + z
≤ 2.34 ≤ 9.96201 = Q2a2, z ∈ [0, 106],

g1(z) = 1 + 1

3
sin(1 + z) + 1

1 + z
≥ 0.6 ≥ 0.00240574 = Q1a1, z ∈ [0, 0.5],

and

g2(z) = 1 + 2

5
cos(

√
1 + z) + 1

1 + z2
≤ 2.4 ≤ 9.96201 = Q2a2, z ∈ [0, 106],

g2(z) = 1 + 2

5
cos(

√
1 + z) + 1

1 + z2
≥ 0.6 ≥ 0.00240574 = Q1a1, z ∈ [0, 0.5].

Therefore, by Theorem 3, the boundary value problem (13)–(14) has at least one
positive solution (z1,z2) such that 0.5 ≤ ‖zj‖ ≤ 106 for j = 1, 2.

4 Existence of at Least Two Positive Radial Solutions

In this section, we establish the existence of at least two positive radial solutions for the
system (5)–(6) by an application of following Avery–Henderson fixed point theorem.

Let ψ be a nonnegative continuous functional on a cone E of the real Banach space
B. Then, for a positive real numbers a′ and c′, we define the sets

E(ψ, c′) = {z ∈ E : ψ(z) < c′},

and

Ea′ = {z ∈ E : ‖z‖ < a′}.
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Theorem 6 (Avery–Henderson [5]) Let E be a cone in a real Banach space B. Suppose
ß1 and ß2 are increasing, nonnegative continuous functionals on E and ß3 is nonnega-
tive continuous functional on E with ß3(0) = 0 such that, for some positive numbers c′
and k, ß2(z) ≤ ß3(z) ≤ ß1(z) and ‖z‖ ≤ kß2(z), for all z ∈ E(ß2, c′). Suppose that
there exist positive numbers a′ and b′ with a′ < b′ < c′ such that ß3(λz) ≤ λß3(z),

for all 0 ≤ λ ≤ 1 and z ∈ ∂E(ß3, b′). Further, let P : E(ß2, c′) → E be a completely
continuous operator such that

(a) ß2(Pz) > c′, for all z ∈ ∂E(ß2, c′),
(b) ß3(Pz) < b′, for all z ∈ ∂E(ß3, b′),
(c) E(ß1, a′) �= ∅ and ß1(Pz) > a′, for all ∂E(ß1, a′).

Then, P has at least two fixed points 1z, 2z ∈ P(ß2, c′) such that a′ < ß1(1z) with
ß3(1z) < b′ and b′ < ß3(2z) with ß2(2z) < c′.

Define the nonnegative, increasing, continuous functional ß2, ß3, and ß1 by

ß2(z) = min
τ∈[0,1]z(τ), ß3(z) = max

τ∈[0,1]z(τ), ß1(z) = max
τ∈[0,1]z(τ).

It is obvious that for each z ∈ E,

ß2(z) ≤ ß3(z) = ß1(z).

In addition, by Lemma 1, for each z ∈ P,

ß2(z) ≥ 1

σ2 ‖z‖.

Thus,

‖z‖ ≤ σ2ß2(z) for all z ∈ E.

Finally, we also note that

ß3(λz) = λß3(z), 0 ≤ λ ≤ 1 and z ∈ E.

Theorem 7 Assume that (H1)–(H3) hold and Suppose there exist real numbers a′, b′
and c′ with 0 < a′ < b′ < c′ such that gj(j = 1, 2, · · ·, �) satisfies

(H8) gj(z) > c′
�1

, for all c′ ≤ z ≤ σ2c′,

where �1 = r20
σ(N−2)2

∏n
i=1 ϕ�

i

∫ 1
0 ℵr0(s,s)s

2(N−1)
2−N ds,

(H9) gj(z) < b′
�2

, for all 0 ≤ z ≤ σ2b′, where �2 = σr20
(N−2)2

‖ℵ̂r0‖q
∏n

i=1 ‖ϕi‖pi ,

(H10) gj(z) > a′
�1

, for all a′ ≤ z ≤ σ2a′.
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Then, the boundary value problem (5)–(6) has at least two positive radial solutions
{(1z1, 1z2, · · ·, 1z�)} and {(2z1, 2z2, · · ·, 2z�)} satisfying

a′ < ß1
(1zj

)
with ß3

(1zj
)

< b′, j = 1, 2, · · ·, �,

and

b′ < ß3
(2zj

)
with ß2

(2zj
)

< c′, j = 1, 2, · · ·, �.

Proof Webegin by defining the completely continuous operatorP by (10). So it is easy
to check thatP : E(ß2, c′) → E. Firstly, we shall verify that condition (a) of Theorem
6 is satisfied. So, let us choose z1 ∈ ∂E(ß2, c′). Then, ß2(z1) = minτ∈[0,1] z1(τ) = c′
this implies that c′ ≤ z1(τ) for τ ∈ [0, 1]. Since ‖z1‖ ≤ σ2ß2(z1) = σ2c′. So we
have

c′ ≤ z1(τ) ≤ σ2c′, τ ∈ [0, 1].

Let s�−1 ∈ [0, 1]. Then, by (H8), we have

∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds� ≥ 1

σ

∫ 1

0
ℵr0(s�,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

≥ c′

σ�1

∫ 1

0
ℵr0(s�,s�)ϕ(s�)ds�

≥ c′r20
σ(N − 2)2�1

∫ 1

0
ℵr0(s�,s�)s

2(N−1)
2−N

�

n∏

i=1

ϕi (s�)ds�

≥ c′r20
σ(N − 2)2�1

n∏

i=1

ϕ�
i

∫ 1

0
ℵr0(s�,s�)s

2(N−1)
2−N

� ds�

≥ c′.
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It follows in similar manner for 0 < s�−2 < 1,

∫ 1

0
ℵr0(s�−2,s�−1)ϕ(s�−1)g�−1

[ ∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

ds�−1

≥ 1

σ

∫ 1

0
ℵr0(s�−1,s�−1)ϕ(s�−1)g�−1(c

′)ds�−1

≥ c′

σ�1

∫ 1

0
ℵr0(s�−1,s�−1)ϕ(s�−1)ds�−1

≥ c′r20
σ(N − 2)2�1

∫ 1

0
ℵr0(s�−1,s�−1)s

2(N−1)
2−N

�−1

n∏

i=1

ϕi (s�−1)ds�−1

≥ c′r20
σ(N − 2)2�1

n∏

i=1

ϕ�
i

∫ 1

0
ℵr0(s�−1,s�−1)s

2(N−1)
2−N

�−1 ds�−1

≥ c′.

Continuing with bootstrapping argument, we get

ß2 (Pz1) = min
τ∈[0,1]

∫ 1

0
ℵr0(τ,s1)ϕ(s1)g1

[ ∫ 1

0
ℵr0(s1,s2)ϕ(s2)g2

[ ∫ 1

0
ℵr0(s2,s3)ϕ(s3)g4 · · ·

g�−1

[ ∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

· · ·
]

ds3

]

ds2

]

ds1

≥ c′.

This proves (i) of Theorem 6. We next address (i i) of Theorem 6. So, we choose z1 ∈
∂E(ß3, b′). Then, ß3(z1) = maxτ∈[0,1] z1(τ) = b′ this implies that 0 ≤ z1(τ) ≤ b′
for τ ∈ [0, 1]. Since ‖z1‖ ≤ σ2ß2(z1) ≤ σ2ß3(z1) = σ2b′. So we have

0 ≤ z1(τ) ≤ σ2b′, τ ∈ [0, 1].

Let 0 < s�−1 < 1. Then, by (H9), we have

∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds� ≤ σ

∫ 1

0
ℵr0(s�,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

≤ σb′

�2

∫ 1

0
ℵr0(s�,s�)ϕ(s�)ds�

≤ σb′r20
(N − 2)2�2

∫ 1

0
ℵr0(s�,s�)s

2(N−1)
2−N

�

n∏

i=1

ϕi (s�)ds�.
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There exists a q > 1 such that
n∑

i=1

1

pi
+ 1

q
= 1. By the first part of Theorem 2, we

have

∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds� ≤ σb′r20

(N − 2)2�2
‖ℵ̂r0‖q

n∏

i=1

‖ϕi‖pi

≤ b′.

Continuing with this bootstrapping argument, we get

ß3 (Pz1) = max
τ∈[0,1]

∫ 1

0
ℵr0(τ,s1)ϕ(s1)g1

[ ∫ 1

0
ℵr0(s1,s2)ϕ(s2)g2

[ ∫ 1

0
ℵr0(s2,s3)ϕ(s3)g4 · · ·

g�−1

[ ∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

· · ·
]

ds3

]

ds2

]

ds1

≤ b′.

Hence, condition (b) is satisfied. Finally, we verify that (c) of Theorem 6 is also sat-
isfied. We note that z1(τ) = a′/4, τ ∈ [0, 1] is a member of E(ß1, a′) and a′/4 < a′.
So E(ß1, a′) �= ∅. Now let z1 ∈ E(ß1, a′). Then, a′ = ß1(z1) = maxτ∈[0,1] z1(τ) =
‖z1‖ = σ2ß2(z1) ≤ σ2ß3(z1) = σ2ß1(z1) = σ2a′, i.e., a′ ≤ z1(τ) ≤ σ2a′ for
τ ∈ [0, 1]. Let 0 < s�−1 < 1. Then, by (H10), we have

∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds� ≥ 1

σ

∫ 1

0
ℵr0(s�,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

≥ a′

σ�1

∫ 1

0
ℵr0(s�,s�)ϕ(s�)ds�

≥ a′r20
σ(N − 2)2�1

∫ 1

0
ℵr0(s�,s�)s

2(N−1)
2−N

�

n∏

i=1

ϕi (s�)ds�

≥ a′r20
σ(N − 2)2�1

n∏

i=1

ϕ�
i

∫ 1

0
ℵr0(s�,s�)s

2(N−1)
2−N

� ds�

≥ a′.
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Continuing with this bootstrapping argument, we get

ß1 (Pz1) = max
τ∈[0,1]

∫ 1

0
ℵr0(τ,s1)ϕ(s1)g1

[ ∫ 1

0
ℵr0(s1,s2)ϕ(s2)g2

[ ∫ 1

0
ℵr0(s2,s3)ϕ(s3)g4 · · ·

g�−1

[ ∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

· · ·
]

ds3

]

ds2

]

ds1

≥ min
τ∈[0,1]

∫ 1

0
ℵr0(τ,s1)ϕ(s1)g1

[ ∫ 1

0
ℵr0(s1,s2)ϕ(s2)g2

[ ∫ 1

0

ℵr0(s2,s3)ϕ(s3)g4 · · ·
g�−1

[ ∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

· · ·
]

ds3

]

ds2

]

ds1

≥ a′.

Thus, condition (c) of Theorem 6 is satisfied. Since all hypotheses of Theorem 6 are
satisfied, the assertion follows. ��
For

∑n
i=1

1
pi

= 1 and
∑n

i=1
1
pi

> 1, we have following results.

Theorem 8 Assume that (H1)–(H3) hold and Suppose there exist real numbers a′, b′
and c′ with 0 < a′ < b′ < c′ such that gj(j = 1, 2, · · ·, �) satisfies (H8), (H10) and

(H′
9) gj(z) < b′

�3
, for all 0 ≤ z ≤ σ2b′, where �3 = σr20

(N−2)2
‖ℵ̂r0‖∞

∏n
i=1 ‖ϕi‖pi .

Then, the boundary value problem (5)–(6) has at least two positive radial solutions
{(1z1, 1z2, · · ·, 1z�)} and {(2z1, 2z2, · · ·, 2z�)} satisfying

a′ < ß1
(1zj

)
with ß3

(1zj
)

< b′, j = 1, 2, · · ·, �,

and

b′ < ß3
(2zj

)
with ß2

(2zj
)

< c′, j = 1, 2, · · ·, �.

Theorem 9 Assume that (H1)–(H3) hold and Suppose there exist real numbers a′, b′
and c′ with 0 < a′ < b′ < c′ such that gj(j = 1, 2, · · ·, �) satisfies (H8), (H10) and

(H′′
9) gj(z) < b′

�4
, for all 0 ≤ z ≤ σ2b′, where �4 = σr20

(N−2)2
‖ℵ̂r0‖∞

∏n
i=1 ‖ϕi‖1.

Then, the boundary value problem (5)–(6) has at least two positive radial solutions
{(1z1, 1z2, · · ·, 1z�)} and {(2z1, 2z2, · · ·, 2z�)} satisfying

a′ < ß1
(1zj

)
with ß3

(1zj
)

< b′, j = 1, 2, · · ·, �,

and

b′ < ß3
(2zj

)
with ß2

(2zj
)

< c′, j = 1, 2, · · ·, �.
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Example 2 Consider the following nonlinear elliptic system of equations,

�zj + (N − 2)2r2N−2
0

|x |2N−2 zj + ϕ(|x |)gj(zj+1) = 0, 1 < |x | < 2, (15)

zj = 0 on |x | = 1 and |x | = 2,

zj = 0 on |x | = 1 and
∂zj
∂r

= 0 on |x | = 2,

∂zj
∂r

= 0 on |x | = 1 and zj = 0 on |x | = 2,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(16)

where r0 = 1, N = 3, j ∈ {1, 2}, z3 = z1, ϕ(τ) = 1
τ4

∏2
i=1 ϕi (τ), ϕi (τ) = ϕi

( 1
τ

)
,

in which

ϕ1(t) = 1

t + 1
and ϕ2(t) = 1√

t2 + 9
,

then it is clear that

ϕ1, ϕ2 ∈ Lp[0, 1] and
2∏

i=1

ϕ∗
i = 3.

Let g1(z) = g2(z) = 1 + 1√
1+z2

. Let α = δ = γ = 1,β = 1
2 , then 1 = r20 < 2 =

αγ
βδ , ℘ = 3

2 cos(1) + 1
2 sin(1) ≈ 1.231188951,

ℵr0(τ,s) = 2

3 cos(1) + sin(1)
{(

sin(τ) + 1
2 cos(τ)

)(
sin(1 − s) + cos(1 − s)

)
, 0 ≤ τ ≤ s ≤ 1,

(
sin(s) + 1

2 cos(s)
)(
sin(1 − τ) + cos(1 − τ)

)
, 0 ≤ s ≤ τ ≤ 1,

and σ = 3
cos(1) . Also,

�1 = r20
σ(N − 2)2

n∏

i=1

ϕ�
i

∫ 1

0
ℵr0(s,s)s

2(N−1)
2−N ds ≈ 1.248429695 × 108.

Let p1 = 6,p2 = 2 and q = 3, then 1
p1

+ 1
p2

+ 1
q = 1 and

�2 = σr20
(N − 2)2

‖ℵ̂r0‖q
n∏

i=1

‖ϕi‖pi ≈ 9.113677218 × 106.
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Choose a′ = 103, b′ = 2 × 107 and c′ = 108. Then,

g1(z) = g2(z) = 1 + 1√
1 + z2

≥ 0.8010062593 = c′

�1
, z ∈ [108, 30.8 × 108],

g1(z) = g2(z) = 1 + 1√
1 + z2

≤ 2.194503878 = b′

�2
, z ∈ [0, 61.6 × 107],

g1(z) = g2(z) = 1 + 1√
1 + z2

≥ 0.000008 = a′

�1
, z ∈ [103, 30.8 × 103].

Therefore, by Theorem 3, the boundary value problem (15)–(16) has at least two
positive radial solutions (jz1, jz2), j = 1, 2 such that

103 < max
τ∈[0,1]

jz1(τ) with max
τ∈[0,1]

jz1(τ) < 2 × 107, for j = 1, 2,

2 × 107 < max
τ∈[0,1]

jz2(τ) with min
τ∈[0,1]

jz2(τ) < 108, for j = 1, 2.

5 Existence of at Least Three Positive Radial Solutions

In this section, we establish the existence of at least three positive radial solutions
for the system (5)–(6) by an application of following Leggett-William fixed point
theorem. Let a′, b′ be two real numbers such that 0 < a′ < b′ and k a nonnegative,
continuous, concave functional on E. We define the following convex sets,

Ea′ = {z ∈ E : ‖z‖ < a′},
E(k, a′, b′) = {z ∈ E : a′ ≤ k(z), ‖z‖ < b′}.

Theorem 10 (Leggett-William [18]) Let E be a cone in a Banach space B. Let k a
nonnegative, continuous, concave functional on E satisfying for some c′ > 0 such that
k(z) ≤ ‖z‖ for all z ∈ Ec′ . Suppose there exists a completely continuous operator
P : Ec′ → Ec′ and 0 < a′ < b′ < d ′ ≤ c′ such that

(a) {z ∈ E(k, b′, d ′) : k(z) > a′} �= ∅ and k(Pz) > b′ for z ∈ E(k, b′, d ′),
(b) ‖Pz‖ < a′ for ‖z‖ < a′,
(c) k(Pz) > b′ for z ∈ E(k, a′, c′), with ‖Pz‖ > d ′

Then, P has at least three fixed points 1z, 2z, 3z ∈ Ec′ satisfying ‖1z‖ < a′, b′ <

k(2z) and ‖3z‖ > a′ and k(3z) < b′.

Theorem 11 Assume that (H1)–(H3) hold. Let 0 < a′ < b′ < c′ and suppose that
gj, j = 1, 2, · · ·, � satisfies the following conditions,

(H11) gj(z) < a′
O1

for 0 ≤ z ≤ a′, where O1 = σr20
(N−2)2

‖ℵ̂r0‖q
∏n

i=1 ‖ϕi‖pi .

(H12) gj(z) > b′
O2

for b′ ≤ z ≤ c′,

where O2 = r20
σ(N−2)2

∏n
i=1 ϕ�

i

∫ 1
0 ℵr0(s,s)s

2(N−1)
2−N ds.
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(H13) gj(z) < c′
O1

for 0 ≤ z ≤ c′.

Then, the iterative system (5)–(6) has at least three positive radial solutions
(1z1, 1z2, · · ·, 1z�), (2z1, 2z2, · · ·, 2z�) and (3z1, 3z2, · · ·, 3z�) with ‖jz1‖ < a′,
b′ < k(jz2), ‖jz3‖ > a′ and k(jz3) < b′ for j = 1, 2, · · ·, �.

Proof From Lemma 3, P : E → E is a completely continuous operator. If z1 ∈ Ec′ ,
then ‖z1‖ ≤ c′ and for 0 < s�−1 < 1 and by (H13), we have

∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds� ≤ σ

∫ 1

0
ℵr0(s�,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

≤ σc′

O1

∫ 1

0
ℵr0(s�,s�)ϕ(s�)ds�

≤ σc′r20
(N − 2)2O1

∫ 1

0
ℵr0(s�,s�)s

2(N−1)
2−N

�

n∏

i=1

ϕi (s�)ds�.

There exists a q > 1 such that
n∑

i=1

1

pi
+ 1

q
= 1. By the first part of Theorem 2, we

have

∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds� ≤ σc′r20

(N − 2)2O1
‖ℵ̂r0‖q

n∏

i=1

‖ϕi‖pi

≤ c′.

Continuing with this bootstrapping argument, we get

‖Pz1‖ = max
τ∈[0,1]

∫ 1

0
ℵr0(τ,s1)ϕ(s1)g1

[ ∫ 1

0
ℵr0(s1,s2)ϕ(s2)g2

[ ∫ 1

0
ℵr0(s2,s3)ϕ(s3)g4 · · ·

g�−1

[ ∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

· · ·
]

ds3

]

ds2

]

ds1

≤ c′.

Hence, P : Ec′ → Ec′ . In the same way, if z1 ∈ Ea′ , then P : Ea′ → Ea′ . Therefore,
condition (b) of Theorem 10 satisfied. To check condition (a) of Theorem 10, choose
z1(τ) = (b′ + c′)/2, τ ∈ [0, 1]. It is easy to see that z1 ∈ E(k, b′, c′) and k(z1) =
k((b′ + c′)/2) > b′. So, {z1 ∈ E(k, b′, c′) : k(z1) > b′} �= ∅. Hence, if z1 ∈
E(k, b′, c′) then b′ < z1(τ) < c′, τ ∈ [0, 1]. Let 0 < s�−1 < 1. Then, by (H12), we
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have

∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds� ≥ 1

σ

∫ 1

0
ℵr0(s�,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

≥ b′

σO2

∫ 1

0
ℵr0(s�,s�)ϕ(s�)ds�

≥ b′r20
σ(N − 2)2O2

∫ 1

0
ℵr0(s�,s�)s

2(N−1)
2−N

�

n∏

i=1

ϕi (s�)ds�

≥ b′r20
σ(N − 2)2O2

n∏

i=1

ϕ�
i

∫ 1

0
ℵr0(s�,s�)s

2(N−1)
2−N

� ds�

≥ b′.

Continuing with this bootstrapping argument, we get

min
τ∈[0,1] (Pz1) = min

τ∈[0,1]

∫ 1

0
ℵr0(τ,s1)ϕ(s1)g1

[ ∫ 1

0
ℵr0(s1,s2)ϕ(s2)g2

[ ∫ 1

0
ℵr0(s2,s3)ϕ(s3)g4 · · ·

g�−1

[ ∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

· · ·
]

ds3

]

ds2

]

ds1

≥ b′.

Therefore, we have

k(Pz1) > b′, for z1 ∈ E(k, b′, c′).

This implies that condition (a) of Theorem 10 is satisfied.
Finally, ifz1 ∈ E(k, b′, c′), thenwhatwe have already proved,k(Pz1) > b′,which

proves the condition (c) of Theorem 10. To sum up, all the conditions of Theorem
10 are satisfied. Therefore, P has at least three fixed points, that is, problem (5)–
(6) has at least three positive solutions (1z1, 1z2, · · ·, 1z�), (2z1, 2z2, · · ·, 2z�) and
(3z1, 3z2, · · ·, 3z�) with ‖jz1‖ < a′, b′ < k(jz2), ‖jz3‖ > a′ and k(jz3) < b′ for
j = 1, 2, · · ·, �. ��
For

∑n
i=1

1
pi

= 1 and
∑n

i=1
1
pi

> 1, we have following results.

Theorem 12 Assume that (H1)–(H3) hold. Let 0 < a′ < b′ < c′ and suppose that
gj, j = 1, 2, · · ·, � satisfies (H12), (H13) and

(H14) gj(z) < a′
O3

for 0 ≤ z ≤ a′, where O3 = σr20
(N−2)2

‖ℵ̂r0‖∞
∏n

i=1 ‖ϕi‖pi .

Then, the iterative system (5)–(6) has at least three positive solutions (1z1, 1z2, · ·
·, 1z�), (2z1, 2z2, · · ·, 2z�) and (3z1, 3z2, · · ·, 3z�) with ‖jz1‖ < a′, b′ < k(jz2),
‖jz3‖ > a′ and k(jz3) < b′ for j = 1, 2, · · ·, �.
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Theorem 13 Assume that (H1)–(H3) hold. Let 0 < a′ < b′ < c′ and suppose that
gj, j = 1, 2, · · ·, � satisfies (H12), (H13) and

(H15) gj(z) < a′
O4

for 0 ≤ z ≤ a′, where O4 = σr20
(N−2)2

‖ℵ̂r0‖∞
∏n

i=1 ‖ϕi‖1.

Then, the iterative system (5)–(6) has at least three positive solutions (1z1, 1z2, · ·
·, 1z�), (2z1, 2z2, · · ·, 2z�) and (3z1, 3z2, · · ·, 3z�) with ‖jz1‖ < a′, b′ < k(jz2),
‖jz3‖ > a′ and k(jz3) < b′ for j = 1, 2, · · ·, �.

Example 3 Consider the following nonlinear elliptic system of equations,

�zj + (N − 2)2r2N−2
0

|x |2N−2 zj + ϕ(|x |)gj(zj+1) = 0, 1 < |x | < 2, (17)

zj = 0 on |x | = 1 and |x | = 2,

zj = 0 on |x | = 1 and
∂zj
∂r

= 0 on |x | = 2,

∂zj
∂r

= 0 on |x | = 1 and zj = 0 on |x | = 2,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(18)

where r0 = 1, N = 3, j ∈ {1, 2}, z3 = z1, ϕ(τ) = 1
τ4

∏2
i=1 ϕi (τ), ϕi (τ) = ϕi

( 1
τ

)
,

in which

ϕ1(t) = 1√
t + 1

and ϕ2(t) = 1√
t2 + 16

,

then it is clear that

ϕ1, ϕ2 ∈ Lp[0, 1] and
2∏

i=1

ϕ∗
i = 4.

Let

g1(z) = g2(z) =
{
51, z ≥ 1,

50z2 + 1, z < 1.

Let α = 2,β = γ = δ = 1, then 1 = r20 < 2 = αγ
βδ , ℘ = 2 cos(1) + sin(1) ≈

1.922075596,

ℵr0(τ,s) = 1

2 cos(1) + sin(1)
{(

2 sin(τ) + cos(τ)
)(
sin(1 − s) + cos(1 − s)

)
, 0 ≤ τ ≤ s ≤ 1,

(
2 sin(s) + cos(s)

)(
sin(1 − τ) + cos(1 − τ)

)
, 0 ≤ s ≤ τ ≤ 1,
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and σ = 3
cos(1) . Also,

O1 = r20
σ(N − 2)2

n∏

i=1

ϕ�
i

∫ 1

0
ℵr0(s,s)s

2(N−1)
2−N ds ≈ 1.732057708 × 108.

Let p1 = 6,p2 = 3 and q = 2, then 1
p1

+ 1
p2

+ 1
q = 1 and

O2 = σr20
(N − 2)2

‖ℵ̂r0‖q
n∏

i=1

‖ϕi‖pi ≈ 1.266858405 × 1012.

Choose a′ = 1010, b′ = 1012 and c′ = 1013. Then,

g1(z) = g2(z) ≤ 57.73479691 = a′

O1
, z ∈ [0, 1010],

g1(z) = g2(z) ≥ 0.789354197 = b′

O2
, z ∈ [1012, 1013],

g1(z) = g2(z) ≤ 57734.79691 = c′

O1
, z ∈ [0, 1013].

Therefore, by Theorem 3, the boundary value problem (15)–(16) has at least two
positive radial solutions (jz1, jz2), j = 1, 2 such that

max
τ∈[0,1]

jz1(τ) < 1010, 1012 < min
τ∈[0,1]

jz2(τ) < max
τ∈[0,1]

jz2(τ) < 1013, for j = 1, 2,

1010 < max
τ∈[0,1]

jz3(τ) < 1013, min
τ∈[0,1]

jz3(τ) < 1012, for j = 1, 2.

6 Existence of Unique Positive Radial Solution

In the next, for the existence of unique solution to the boundary value problem (5)–(6)
where we employ two metrics under Rus’s theorem (see [4,20,23] for more details).
In this regard, consider the set of real valued functions that are defined and continuous
on [0, 1] and denote this space by X = C([0, 1]). For functions y1,y2 ∈ X, consider
the following two metrics on X :

d(y1,y2) = max
t∈[0,1] |y1(t) − y2(t)|, (19)

	(y1,y2) =
[∫ 1

0
|y1(t) − y2(t)|pdt

] 1
p

, p > 1. (20)

For d in (19), the pair (C([0, 1]),d) forms a complete metric space. For 	 in (20), the
pair (C([0, 1]), 	) forms a metric space. The relationship between the two metrics on
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X is given by

	(y1,y2) ≤ d(y1,y2) for all y1,y2 ∈ X. (21)

Theorem 14 (Rus [21]) Let X be a nonempty set and let d and 	 be two metrics on
X such that (X,d) forms a complete metric space. If the mapping � : X → X is
continuous with respect to d on X and

d(�y1, �y2) ≤ c1	(y1,y2), (22)

for some c1 > 0 and for all y1,y2 ∈ X,

	(�y1, �y2) ≤ c2	(y1,y2), (23)

for some 0 < c2 < 1 for all y1,y2 ∈ X, then there is a unique y∗ ∈ X such that
�y∗ = y∗.

Denote 
(s) = ℵr0(s,s)s
2(N−1)
2−N

∏n
i=1 ϕi (s)ds.

Theorem 15 Assume that (H1), (H3) and the following condition are satisfied.

(H14) there exists a number K > 0 such that

|gj(z) − gj(y)| ≤ K|z − y| for z,y ∈ X.

Further, assume that there are constants p > 1 and q > 1 such that 1/p + 1/q = 1
with

[
σKr20

(N − 2)2

]�+1 [∫ 1

0
|
(s)|ds

]� [∫ 1

0
|
(s)|qds

] 1
q

< 1, (24)

then the boundary value problem (5)–(6) has a unique positive radial solution in X.
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Proof Let z1,y1 ∈ C([0, 1]) and s ∈ [0, 1]. Then, by Hölder’s inequality, we have
∣
∣
∣
∣

∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds� −

∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
y1(s�)

)
ds�

∣
∣
∣
∣

≤
∫ 1

0
|ℵr0(s�−1,s�) ϕ(s�)||g�

(
z1(s�)

) − g�

(
y1(s�)

)|ds�

≤ σ

∫ 1

0
|ℵr0(s�,s�) ϕ(s�)|K|z1(s�) − y1(s�)|ds�

≤ σKr20
(N − 2)2

∫ 1

0
|
(s�)||z1(s�) − y1(s�)|ds�

≤ σKr20
(N − 2)2

[∫ 1

0
|
(s�)|qds�

] 1
q

[∫ 1

0
|z1(s�) − y1(s�)|pds�

] 1
p

≤ σKr20
(N − 2)2

[∫ 1

0
|
(s�)|qds�

] 1
q

	(z1,y1)

≤ c�
1	(z1,y1),

where

c�
1 = σKr20

(N − 2)2

[∫ 1

0
|
(s�)|q

] 1
q

.

It follows in similar manner for 0 < s�−2 < 1,

∣
∣
∣
∣

∫ 1

0
ℵr0(s�−2,s�−1)ϕ(s�−1)g�−1

[ ∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

ds�−1

−
∫ 1

0
ℵr0(s�−2,s�−1)ϕ(s�−1)g�−1

[ ∫ 1

0
ℵr0(s�−1,s�)ϕ(s�)g�

(
z1(s�)

)
ds�

]

ds�−1

∣
∣
∣
∣

≤ σKr20
(N − 2)2

∫ 1

0
|
(s�−1)|c1	(z1,y1)ds�−1

≤ ĉ1c�
1	(z1,y1),

where

ĉ1 = σKr20
(N − 2)2

∫ 1

0
|
(s)|ds.

Continuing with bootstrapping argument, we get

|�z1(s) − �y1(s)| ≤ ĉ�
1c

�
1	(z1,y1).
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we see that

d(�z1, �y1) ≤ c1	(z1,y1), (25)

for some c1 = ĉ�
1c

�
1 > 0 for all z1,y1 ∈ X, and so the inequality (22) of Theorem

14 holds. Now, for all z1,y1 ∈ X, we may apply (21) to (25) to obtain

d(�z1, �y1) ≤ c1	(z1,y1) ≤ c1d(z1,y1).

Thus, given any ε > 0 we can choose η = ε/c1 so that d(�z1, �y1) < ε, whenever
d(z1,y1) < η. Hence, � is continuous on X with respect to the metric d. Finally,
we show that � is contractive on X with respect to the metric 	. From (25), for each
z1,y1 ∈ X consider

[ ∫ 1

0
|(�z1)(s) − (�y1)(s)|pds

] 1
p ≤

[∫ 1

0

∣
∣
∣̂c�

1c
�
1	(z1,y1)

∣
∣
∣
p

ds

] 1
p

≤
[

σKr20
(N − 2)2

]�+1 [∫ 1

0
|
(s)|ds

]� [∫ 1

0
|
(s)|qds

] 1
q

	(y1,y2).

That is

	(�z1, �y1) ≤
[

σKr20
(N − 2)2

]�+1 [∫ 1

0
|
(s)|ds

]� [∫ 1

0
|
(s)|qds

] 1
q

	(y1,y2).

From the assumption (24), we have

	(�y1, �y2) ≤ c2	(y1,y2)

for some c2 < 1 and all y1,y2 ∈ X. Thus, Theorem 14, the operator � has a unique
fixed point inX.Also, we note that the operator� is positive fromLemma 3. Therefore,
the boundary value problem (2) has a unique positive radial solution. ��
Example 4 Consider the following nonlinear elliptic system of equations,

�zj + (N − 2)2r2N−2
0

|x |2N−2 zj + ϕ(|x |)gj(zj+1) = 0, 1 < |x | < 2, (26)

zj = 0 on |x | = 1 and |x | = 2,

zj = 0 on |x | = 1 and
∂zj
∂r

= 0 on |x | = 2,

∂zj
∂r

= 0 on |x | = 1 and zj = 0 on |x | = 2,

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(27)

where r0 = 1, N = 3, j ∈ {1, 2}, z3 = z1, ϕ(τ) = 1
τ4

∏2
i=1 ϕi (τ), ϕi (τ) = ϕi

( 1
τ

)
,

in which ϕ1(t) = ϕ2(t) = 1
t+1 , then

∏2
i=1 ϕ∗

i = 1. Let g1(z) = 1
1010

sin(z), g2(z) =
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z
1010(1+z)

and α = β = δ = 1, γ = 2, then 1 = r20 < 2 = αγ
βδ , ℘ = 2 cos(1) +

sin(1) ≈ 1.922075596,

ℵr0(τ,s) = 1

2 cos(1) + sin(1)
{(

sin(τ) + cos(τ)
)(
2 sin(1 − s) + cos(1 − s)

)
, 0 ≤ τ ≤ s ≤ 1,

(
sin(s) + cos(s)

)(
2 sin(1 − τ) + cos(1 − τ)

)
, 0 ≤ s ≤ τ ≤ 1,

and σ = 3
cos(1) . Then,

|g1(z) − g1(y)| = | sin(z) − sin(y)|
1010

≤ 1

1010
|z − y|,

and

|g2(z) − g2(y)| = 1

1010

∣
∣
∣
∣

z

1 + z
− y

1 + y

∣
∣
∣
∣ ≤ 1

1010
|z − y|.

So, K = 1
1010

. Let � = 2 and p = q = 2. Then,

[
σKr20

(N − 2)2

]�+1 [∫ 1

0
|
(s)|ds

]� [∫ 1

0
|
(s)|qds

] 1
q

≈ 0.8595804542 < 1.

Therefore, from Theorem 15, the iterative system of boundary value problems (26)–
(27) has a unique positive radial solution.
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