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Abstract
This paper deals with the existence of positive radial solutions to the iterative system
of nonlinear elliptic equations of the form

2,.2N—2
(N — 2)%r2

Azj + |x|2N—2

z5 +(Ix))g3(z541) =0, Ry < |x| <R,

where j € {1,2,3,---,¢}, z1 = 2¢41, Az = div(Vz),N > 2,0 < rg < /2,
@ =[1_, @i, each ¢; : (ro, +00) — (0, +00) is continuous, rN~1y isintegrable, and
g5 : [0, +00) — Ris continuous, by an application of various fixed point theorems in
a Banach space. Further, we also establish uniqueness of the solution for the addressed
system by using Rus’s theorem in a complete metric space.

Keywords Nonlinear elliptic equation - Annulus - Positive radial solution - Fixed
point theorem - Banach space - Rus’s theorem - Metric space - Continuous functions
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1 Introduction

The semilinear elliptic equation of the form

Az +g(lxDz +h(xDz° =0 ey
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arises in various fields of pure and applied mathematics such as Riemannian geom-
etry, nuclear physics, astrophysics and so on. For more details of the background of
(1), see [9,10,19,24]. Study of nonlinear elliptic system of equations,

Az +95(z541) =0 in Q,

2
z5 =0 on 9%, @

where j € {1,2,3,---,€}, z1 = z¢4+1, and 2 is a bounded domain in RY, has
an important applications in population dynamics, combustion theory and chemical
reactor theory. For the recent literature for the existence, multiplicity and uniqueness
of positive solutions for (2), see [1,3,7,12—14] and references therein.

In [6], Chrouda and Hassine established the uniqueness of positive radial solutions
to the following Dirichlet boundary value problem for the semilinear elliptic equation
in an annulus,

Az =g(z) on Q={x€Rd:a<|x|<b},
z=0 on z € 9%,

for any dimension d > 1. In [8], Dong and Wei established the existence of radial
solutions for the following nonlinear elliptic equations with gradient terms in annular
domains,

)C . b
AZ+9(|x|vZ, ﬁ 'VZ) =0 in £,
X
z=0 on 92,

by using Schauder’s fixed point theorem and contraction mapping theorem. In [15],
R. Kajikiya and E. Ko established the existence of positive radial solutions for a
semipositone elliptic equation of the form,

Az +Ag(z) =0 in Q,
z =0 on 0%,

where Q is a ball or an annulus in RN, Recently, Son and Wang [22] established positive
radial solutions to the nonlinear elliptic systems,

AZj =+ ?\Kj (|x|)gj (Zj+1) =01in Qg,
z5 = 0on |x| = ro,
z5 —> Oas x| = +o0o,
where j € {1,2,3,---, €}, z1 = z¢+1, A > 0, N > 2, rg > 0, and Qg is an exterior of
a ball. Motivated by the above works, in this paper we study the existence of infinitely

many positive radial solutions for the following iterative system of nonlinear elliptic
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equations in an annulus,

(N —2)%rg" 2
Azg + sz +o(x)g5(z541) =0, Ry < |x| <Ry, 3)

with one of the following sets of boundary conditions:

z; =0 on |x| =Rjand |x| = Ry,

=0 —ryand 223 — 0 =R

z; =0 on |x| =R an o = on |x| = Ry, 4)
02
8—:0 on |x| =Rjand zy =0on |x| =Ry,
,

where j € {1,2,3,---, €}, z1 = z¢4+1, Az = div(Vz), N > 2,0 < rg < 1/2,

¢ = H?:l @i, each ¢; : (R1, Rp) — (0, +00) is continuous, pN-l @ 1is integrable, by
an application of various fixed point theorems in a Banach space. Further, we also
study existence of unique solution by using Rus’s theorem in a complete metric space.

The study of positive radial solutions to (3) reduces to the study of positive solutions
to the following iterative system of two-point boundary value problems,

24(0) + 1325 (0) + (Vg3 (z541(1) =0, 0 < T < 1, 5)

whezzrej; le {1,2,3,- - ¢}, z1 = z¢+1, 0 < 19 < m/2, and (1) =
-1 1

(N:_02)2T N [T, @i (D), ¢i(t) = @i(roT>V) by a Kelvin-type transformation

through the change of variables r = |x|and T = (%) . For the detailed explanation

of the transformation from equations (7) to (5), see [2,16,17]. By suitable choices of
nonnegative real numbers «, 3,y and 6 with ré < %, the set of boundary conditions
(5) reduces to
«z5(0) — Bz}(0) =0,
’ ) ©)
Y25 (1) + 825 (1) =0,

we assume that the following conditions hold throughout the paper:

(H1) g5 : [0, +00) — [0, +00) is continuous.
(H2) @i € LP[0,1],1 <p; < +ooforl <i <n.
(H3) There exists ¢* > 0 such that ¢ < ¢;(T) < oo a.e. on [0, 1].

The rest of the paper is organized in the following fashion. In Sect. 2, we convert the
boundary value problem (5)—(6) into equivalent integral equation which involves the
kernel. Also, we estimate bounds for the kernel which are useful in our main results.
In Sect. 3, we develop criteria for the existence of at least one positive radial solution
by applying Krasnoselskii’s cone fixed point theorem in a Banach space. In Sect. 4,
we derive necessary conditions for the existence of at least two positive radial solution
by an application of Avery—Henderson cone fixed point theorem in a Banach space. In
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Sect. 5, we establish the existence of at least three positive radial solution by utilizing
Leggett-William cone fixed point theorem in a Banach space. Further, we also study
uniqueness of solution in the final section.

2 Kernel and Its Bounds

In order to study BVP (5), we first consider the corresponding linear boundary value
problem,

—(Z{(t) +rgz1(1) = y(1), 0 < T < 1, (7
ioczl(O)— Bz (0) =0,

vzi(1) 4 8z} (1) =0, ®

where y € C[0, 1] is a given function.

Lemmal Let p = rg(océ + By) cos(rg) + ro(xy — (fyérg) sin(rg). For every y €
C(0, 1), the linear boundary value problem (7)—(8) has a unique solution

1
21(7) = fo N, (T, 8)y(s)ds. ©)

where

1
Nr()(Ta s)=—
&

(oc sin(rgT) + Bro cos(roT)) (y sin(rg(1 — s)) + drg cos(rg(1 — s))), 0<t<s<l,
(oc sin(rgs) + Pro cos(ros))(y sin(rg(1 — 1)) + drg cos(ro(1 — T))), O0<s=<T1T<l1.

o+ Bro v + drg
Brocos(rg)’ drocos(rg)

Lemma2 Let 0 = max { } . The kernel X, (T, s) has the

following properties:
(i) R, (T, s) is nonnegative and continuous on [0, 1] x [0, 1],

(i) R, (T,8) < oR, (s, s) forT,s € [0, 1],
(iii) LR, (s,8) <Ry (T, 8) forT, s € [0, 1].

Proof Since rg < %‘—g, it follows that o > 0. So, from the definition of kernel,
R,,(s,s) > 0 and continuous on [0, 1] x [0, 1]. This proves (i). To prove (ii),
consider
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ocsin(roT) + Procos(roT)

Ry (T,8) | asin(ros) + Procos(ros)’

Ry, (s, 5) ") ysin(rg(1 — 1)) + drg cos(ro(1 — T))

vsin(ro(1 — s)) + drg cos(rp(1 — s))’
o+ Pro

Brocos(ro)’
Y + Org

drg cos(rg)’

IA

which proves (i7). Finally for (ii7), consider

asin(rgT) + Bro cos(roT)

R (T.8) ) asin(ros) + Pro cos(rgs)’

Ry (s,8) | vsin(ro(l — 1)) 4 drg cos(ro(l — 1))
v sin(rg(1 — s)) + drg cos(ro(1 — s))’

cos
M O S T S S S l7
_ ] «+Bro
dro cos(ro) O<s<t<l
Y + org
This completes the proof. O
From Lemma 1, we note that an £-tuple (z1, z2, -+, Z¢) is a solution of the boundary

value problem (5)—(6) if and only, if

1 1 1
z1(7) =f0 Ry (T, Sl)¢(81)91[/0 R, (s1, Sz)(ﬂ(52)gz[/0 Ry (s2, 83)0(s3)g4 - - -

1
go—1 [/0 Ry (se-1, Stz)(p(Se)gz(Zl(Se))dSe} e }d53]d82}d51.

In general,

1
Zj(T) = /(; Nro(T’ S)‘P(S)gj (Zj+1(s))dsv J = 1’ 23 3’ ) ev
z1(T) = z¢41(D.

We denote the Banach space C((0, 1), R) by B with the norm ||z|| = m[%xl] |z (7).
Tel,
The cone E C B is defined by

E:{ZGB 2() 2 0on [0, 1] and_min z(1) > — ||z||}

For any z; € E, define an operator P : E — B by
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1

1 1
(7’21)(T)=/0 Nro(Tvsl)(P(Sl)gl[/(; Nm(Shsz)w(Sz)gz[/o Ry (s2, s3)9(s3)g4 - - -

i
ge—1 [/0 Ry (se—1, Se)w(Se)gz(Zl(Se))dSz] e ]d53}d82]d81- (10)

Lemma3 P(E) C Eand P : E — E is completely continuous.
Proof Since g;(z4+1(7)) is nonnegative for T € [0, 1], z; € E. Since R, (T, 5), is

nonnegative for all T, s € [0, 1], it follows that P(z1(1)) > Oforallt € [0, 1], 2z €
E Now, by Lemmas 1 and 2, we have

Tgf(l)r,lu(pzl ) (D)

1 1 1
= min {/ NrO(T,S1)<p(S1)g1[/ Nr0(81,82)¢(Sz)gz[/ Ry (s2,83)9(s3)gq - -+
Te[0,1] | Jo 0 0

I
ngl[/(; Vo (se—1. Sz)w(sz)gz(m(se))dSe] -~~]dsa]dsz]d51}

v

1 ! 1 1
*/ Ry (s1, Sl)‘P(Sl)gl[/ Ny (st Sz)(ﬂ(sz)gz[/ Ry (s2,83)9(s3)g4 - -+
o Jo 0 0

1
gz-l[fo Nro(se—1, Sz)w(Sz)gz(m(Se))dSz] -~-]d53]dsz]d51

v

1 1 1 1
7{/0 Nro(T,Sl)¢(Sl)gl[/o Nro(ShSz)w(Sz)gz[/O Ry (s2,83)9(s3)g4 -+

2
!
gz-1[/0 Nro(s¢—1, Sz)w(Sz)gz(Zl(Se))dSz] ~--]d53]d52]d81}
> ! [Pz (7
—= mnax 4 .
~ 02 1el0,1] !

Thus, P(E) C E. Therefore, by the means of Arzela—Ascoli theorem, the operator P
is completely continuous. O

3 Existence of at Least One Positive Radial Solution

In this section, we establish the existence of at least one positive radial solution for
the system (5)—(6) by an application of following theorems.

Theorem 1 [11] Let E be a cone in a Banach space B and let G, F be open sets with
0€G,GCF.Let P: EN(F\G) — E be acompletely continuous operator such that

(i) IPzll < llzll, z € ENIG, and |Pz|| > ||z|l, z € ENIF, or
(ii) Pzl = lizl, z € ENIG, and |Pz| < ||z, z € ENJF.

Then, P has a fixed point in E N (F\G).
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Theorem 2 (Holder’s) Let £ € LPi[0,1] withp; > 1, fori = 1,2,--- ,n and

n

1 .
> o = L. Then, [T/_; £ € L0, 11 and [T, £, < T1/=; I £illy, . Further; if
i=1""!

£ e L0, 11and g € L*°[0, 1]. Then, £g € L0, 1] and | £gli < [I£]1]9]lc-

Consider the following three possible cases for ¢; € LP[0, 1] :

1 = 1
Z—<1, ggzl, = 5>1

i=1

n

. . . . 1
Firstly, we seek positive radial solutions for the case E — < 1.
Di
i=1

Theorem 3 Suppose (H1)—(H3) hold. Further, assume that there exist two positive
constants ay > ay > 0 such that
(H4) gj(z(T)) < Qapy forall 0 < T < 1,0 < z < ay, where 0o =

2(N—1)

-1
(N 2)2 I ro”ql_[”‘pl”p,j| and ¥, (s) = Ry, (s, 5)s 7% .

(Hs) g](z(T)) > Quaj forall 0 < 1 < 1,0 < z < aji, where Q1 =

71
G z)zl_[w,f e s)szNN”ds] -

Then, iterative system (5)—(6) has at least one positive radial solution (z1, z2, - -+, z¢)
suchthatay; < ||z5|| < a2, 3 =1,2,---, L.

Proof Let G = {z € B : ||z|| < a»}. For z; € 3G, we have 0 < z < a» for all
€ [0, 1]. It follows from (H4) that for s;_; € [0, 1],

1 1
/o Ry (se—1, s0)@(s0)ge(z1(se))dse < 0/0 Ny (se, sO)@(se)ge(z1(se))dse

IA

1
6022 / N (Se. s0)p(se)dse
0

rg 1 2w-1 M
= GQzazm/ R, (s¢, Sg)S(2 N l_[(p,(Sg)ng
i=1

1 1
There exists a g > 1 such that Z + — = 1. By the first part of Theorem 2, we
Di gq

have

! or o~ -
| Mot sownen(i0)ds: < oS Il [ ol
i=1
< ap.
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It follows in similar manner for 0 < s;_2 < 1,

1 1
/(;NrO(SZZ»SEI)(P(SKI)gZ][/O NrO(Se1,Sz)fp(Se)ge(Zl(Se))dSe]dSe1
1
< (7/ Ry (se—1, se—1D@(se-1)ge—1(az)ds¢—1
0

07'2 ~ "

0 | |
< a ———— N . .
< Qap (N 2)2 ” ro”qi ; ||§0l ”p,

= az.

Continuing with this bootstrapping argument, we reach

1 1 1
(7321)(t)=/0 Nm(nsw(p(sug][fo Nm(ShSz)w(Sz)gz[/o Ryo(s2,83)9(s3)g94 - - -

I
ngl[/(; Rro(se—1. Sz)w(Sz)gz(Zl(se))dSe] : ~~]dsa]dsz]d81

Since G = ||z || for z; € EN 3G, we get

1Pzl < llz1ll. (11

Next, let F = {z € B : ||z|| < a1}. For z; € dF, we have 0 < z < q; for all
€ [0, 1]. It follows from (Hs) that for s;_; € [0, 1],

1 1 1
/(; Ry (se—1, s0)@(s0)ge(z1(se))dse > E/o ¥y (se. sO)@(se)ge(z1(se))dse

Qar (!
> =1 /ONrO(Sz,Se)w(Sl)dsl

o
2

1 2w—1 1

o / 2-N
> 014 —————— N, (sy, s¢)s | | i(sp)ds
> Q1 10‘(N—2)2 A r0(Se, S¢) ¢ i:1‘Pl( dsy

’,2 2(N—1)

n 1
0 * 2—N
> a—ll ’ R, (s¢, s¢)s ds
=0 Yo —2)? izl(p’/o n(S6 803, ‘

>aj.

@ Springer



Positive Solutions for an Iterative... 253

It follows in similar manner for 0 < s;_2 < 1,

1 1
/0Nm(SZ—z,Sz-1)<ﬂ(8e—1)ge—1[/0 Nro(Se—LSe)(p(Se)ge(Zl(Se))dSz]dSe—1

1 1
> (—7/ Rio(se—1, se—1)@(se—1)ge—1(a1)dse—1
0
Qia; (!
> - Ryo(se—1,s0-1)@(s¢—1)ds¢—1
0

2 2m—1 "

1
"o 2
> Qiai G(N_2)2/(; Ry (se-1,se-0)s, 2 [[eise-ndse

i=1

r§ n 1 2(N-1)

* 2—
leal—z)znwi/ Ry (se—1.8e-1)8,7" dse—1
—2)°: 0
i=1

o(N

> ai.

Continuing with bootstrapping argument, we get

1 1 1
(Pz1)(T) =[0 Nro(T,Sl)w(Sl)gl[/o NrO(SLSz)w(Sz)gz[/o Ny (52, 83)9(s3)g4 - -+

1
9671[‘/0 Ryo(sg—1s Se)w(Se)ge(Zl(Se))dSe] --~]d83]d82}d31

>ai.

Thus, for z; € EN JF, we have
Pzill = llz1l- (12)

Itisclearthat 0 € F C F C G and by Lemma 3, P : EN (F\G) — E is completely
continuous operator. Also from (11) and (12) that P satisfies (i) of Theorem 1. Hence,
from Theorem 1, P has a fixed point z; € EN (f\G) such that z{(t) > 0 on (0, 1).
Next setting z¢+1 = z1, we obtain infinitely many positive solutions (z1, z2, - - -, Z¢)
of (5)-(6) given iteratively by

1
z5(T) :f Rro (T, )9(s)g3(z541(s)ds, 3 =1,2,-- -, £ = 1,¢,
0
ze+1(1) = z1(D), T€ (0, 1).
This completes the proof. O

For !, é =land )/, é > 1, we have following results.

Theorem 4 Suppose (H1)—(H3) hold. Further, assume that there exist two positive
constants by > by > 0 such that g5 (3 = 1, 2, - - -, £) satisfies (Hs) and
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(He) 93(z(1)) < Maby forall0 <t <1,0=<2z=<by,
-1
org e . a 205-1)
where My = | 05 18l ]J lgillp | andRyy(s) =Ry (s, s)s 77 .
Then, iterative system (5)—(6) has at least one positive radial solution (z1, z3, -+, Z¢)
such that by < ||z5|| < b2, 3 =1,2,--+ L.

Theorem 5 Suppose (H1)—(H3) hold. Further, assume that there exist two positive
constants ¢ > c¢1 > 0 such that g5 (3 =1, 2, - - -, ) satisfies (Hs) and

(H7) g5(z(0) =Mz forall0 <t =<1,0=<z <c,

-1
O-rg o~ n o~ 2(N—1)
where My = mllNrollool_[ lgilli | andRy (s) = Ry (s, s)s 2=
i=1
Then, iterative system (5)—(6) has at least one positive radial solution (z1, z, - -+, Z¢)
such thatcy < ||z5]| <c2, 3 =1,2,---, L.
Example 1 Consider the following nonlinear elliptic system of equations,
™ —2)%rg" 2
Azg+ g2 4 +e(xDgi(z5+1) =0, 1 < |x] <2, (13)
z5 =0 on |x| =1and |x| =2,
=0 —1and 25 ¢ =2
z3 =0 on |x| =1an o = on |x| =2, (14)
0z
8_20 on [x|=1and zy =0on [x| =2,
r

whererg = 1, N =3, 5 €{1,2}, z3 = z1, (D) = [TFoi 91D, @i (0 = g1 (£),
in which

1
p1(t) = a5 and  ¢(t) =

1
+2 Vi+2

then it is clear that
2

¢1.92 € LP[0,1] and [ ]ef =2v2.

i=1

Let gi(z) = 1 + §sin(l + 2) + 45, 92(z) = 1 + Fcos(vT+2) + rlz Let

a=B=y=1086=13Ltenl=r<2= e = 3 cos(1) + 1sin(1) ~
1.231188951,

2
3cos(1) + sin(1)
(sin(t) +cos(D))(sin(1 —s) + scos(l —5)), O0=<T<s<=<I,
(sin(s) + cos(s))(sin(1 — 1) + %cos(l -1), 0<s=<-t

Nro (T’ S) =
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_ 3
and 0 = TR Also,

i ﬁ */IN (s.8)s 5 d B 04811486562 x 102
Qr=|——"=5 Q; S,8)s 2N ds ~ 0. X .
O_(N _ 2)2 P 1 0 ro

Letp1:2,p2=3andq:6,thenp—ll+piz+é=1and

_1
2 n
ory  ~ s
= ———|IN | | i|lo ~ 0.996201 x 107,
Q2 |:(N—2)2 I ro”qi:1 llpi ||p,:| X

Choose a; = 0.5 and ay = 10°. Then,

1 1
gi(z) =1+ 3 sin(l1 + z) + 152 <234 <9.96201 = Qyay, z € [0, 10°],
z

1 1
gi(z) =1+ 3 sin(1 + z) + T > 0.6 > 0.00240574 = Qqay, z €[0,0.5],
z
and

o7 = 245996201 = ar, z €0, 1007,
Z

T2 > 0.6 > 0.00240574 = Qqa;, z €[0,0.5].
z

2
grx(z) =1+ gcos(«/l +z)+

2
gr(z) =1+ gcos(vl +z)+

Therefore, by Theorem 3, the boundary value problem (13)—(14) has at least one
positive solution (z1, z2) such that 0.5 < [z5| < 10° forj =1,2.

4 Existence of at Least Two Positive Radial Solutions
In this section, we establish the existence of at least two positive radial solutions for the
system (5)—(6) by an application of following Avery—Henderson fixed point theorem.

Let 1 be a nonnegative continuous functional on a cone E of the real Banach space
B. Then, for a positive real numbers ¢’ and ¢/, we define the sets

EW, ) ={z e E:(z) <},
and

Eyx={z€E:|z|| <d}
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Theorem 6 (Avery—Henderson [S]) Let E be a cone in a real Banach space B. Suppose
B1 and By are increasing, nonnegative continuous functionals on E and B3 is nonnega-
tive continuous functional on E with B3(0) = 0 such that, for some positive numbers c’
and k, B2(z) < B3(z) < B1(z) and || z|| < kBy(2), forall z € E(By, ¢’). Suppose that
there exist positive numbers a’ and b’ with a’ < b’ < ¢ such that B3(Az) < AB3(z),
forall0 <\ < 1and z € 9E(B3, D). Further, let P : E(B,, ¢’) — E be a completely
continuous operator such that

(a) B2(Pz) >, forall z € d0E®By, ),
(b) B3(Pz) < b/, for all z € 9E(®Bs, b),
(¢) EBy,a") # B and B (Pz) > d’, for all BE(By, a’).

Then, P has at least two fixed points 'z, %z € P(B, ¢') such that a’ < By('z) with
B3('z) < b’ and b’ < B3(Pz) with Br(>z) < ¢’.

Define the nonnegative, increasing, continuous functional B,, 33, and ; by

B2(z) = Tg%g,lu z(1), B3(z) = max, z(1), Bi(z) = Jmax, z(7).

It is obvious that for each z € E,
Ba2(z) < B3(z) = Bi(z).

In addition, by Lemma 1, for each z € P,

B2(2) 2 5zl
Thus,
Izl < 0?By(z) forall z € E.
Finally, we also note that

B3(Az) =AB3(z), 0<A <1 and z € E.

Theorem 7 Assume that (H)—(H3) hold and Suppose there exist real numbers a’, b’
and ¢’ with0 < a’ < b' < ¢ such that g5(3 = 1,2, - - -, £) satisfies

(Hg) g5(z) > E;/I,for all¢ < z < a2c/,
2 1 2m-1)
where €1 = = T, ot fi N(s, 8)5 55 ds,

’ 2 ~
(M) g3(z) < &, forall 0 < z < ', where by = 78 8yl TT7y il

(Hio0) gj(z) > ﬁ'—;,forall a <z <oad.
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Then, the boundary value problem (5)—(6) has at least two positive radial solutions
{(1 Z1, 1227 R lzl)} and {(221’ 2227 R 226)} Satis.fying

a < Bl(IZj) with 33(123') <b,3=1,2,---, ¢,
and
b < 33(223') with Bz(zzj-) <cd,3=1,2,---,¢.

Proof We begin by defining the completely continuous operator P by (10). So itis easy
to check that P : E(B;, ¢’) — E. Firstly, we shall verify that condition (a) of Theorem
6is satisfied. So, let us choose z| € IE(B2, ¢). Then, B2(z1) = mineo,1] 21(T) = ¢’
this implies that ¢’ < z(7) for T € [0, 1]. Since ||z1|| < 0%B2(z1) = 0°¢’. So we
have

¢ <zi(t) <o*d, Te[0,1].

Let s¢—1 € [0, 1]. Then, by (Hg), we have

1 1 1
fo Ry (se—1, s0)@(s0)ge(z1(se))dse > E/o Ry (se, sO)@(se)ge(z1(se))dse

C/ 1
> f Ny (se. sO@(s0)dse
ol

e gp
Sy, S¢)S s¢)ds
Z S 2, / Rro(se, se)s, ll_!%( edse
CI"O / 2(21\:\]1)
> S¢, Se)s ds
e — 2)2E1 nfﬂ, Rr(se. so)s, ¢
> (.
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It follows in similar manner for 0 < s;_2 < 1,

1 1
/ONro(Slzz,SzO(ﬂ(Sel)gzl[/o NrO(Se1,Sz)(ﬁ(Se)ge(Zl(Sz))dSz]dSe1

1 1
> 5/ Rro(se—1, se—1)@(se—1)ge—1(Nds¢—1
0

/

1
C
> /Nro(Se—l,Se-l)(ﬂ(Sz—l)dSe—l
oy
c'r2 1 200-1) n
0
> —— S (se-1,80-1)8,27" [ eilse-Ddse
— 2 R Py
o — 2)2(; Pl
erg / 2
> N (se—1, S¢e—1)s ds_
Z oo 2)2811_[% ro(Se—1,8¢-1)8,71 dse-1
Zc/.

Continuing with bootstrapping argument, we get

1
B2 (Pz1) = min / R0 (T, sDe(s1)a1
Tel0,11 Jo

1 1
[/0 Ry (s1, Sz)w(sz)gz[/o Ry (s2, 3)9(s3)g4 - - -
1
92—1[/(; Ryo(se-1, Sz)cﬂ(se)ge(zl(sz))dsz} - }

dS3]dszi|dS1
> (.
This proves (i) of Theorem 6. We next address (ii) of Theorem 6. So, we choose z| €
9E(B3, b'). Then, B3(z1) = maxreo,1] z1(T) = b’ this implies that 0 < z; (1) < b’
for T € [0, 1]. Since || z1]| < 0%B2(z1) < 02B3(z1) = 02b’. So we have
0<z(1) <0?b, Te0,1].

Let 0 < s¢— < 1. Then, by (Hg), we have

1 1
fo Ny (Se—1. s0)p(s0ge(z1(s0)dse < 0 /0 N (50, 509(s0ge(21(50)dse

O_b/ 1
T /0 Ry (se, sp)p(sedsy

ob'rg a-p 2
< — 5 N (se,s0)s,” ™ | |(/71(SE)dSZ
—7)2 ro V4
™ —2)2C, Jo P
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1
There exists a g > 1 such that Z + — = 1. By the first part of Theorem 2, we
Li gq

have

’ 2

1 b'r
/0 Su(semt s0v(Ene (1(s0)ds, < b ||xm||q1"[||ga,||p,

<0
Continuing with this bootstrapping argument, we get

B3 (Pz1) = max
€[0,1]

1 1 1
/ONrO(T,S1)<ﬂ(S1)g1[/O Nr0(81,sz)¢(sz)gz[fo Rrp(s2, 83)9(s3)gs - -+

1
gz{/o Ry (se-1, Sz)(ﬂ(Sz)gz(Zl(Sz))dSe} e }d53]d82:|d81

<b'.

Hence, condition (/) is satisfied. Finally, we verify that (c¢) of Theorem 6 is also sat-

isfied. We note that z|(T) = a’/4, T € [0, 1] is a member of E(B;, a’) anda’/4 < a'.

So E(By,a’) # ¥. Now let z; € E(By,a’). Then, @’ = B1(z1) = maxeo,1] z1(T) =

||z1|| = 02By(z1) < 02B3(z1) = 02B1(z1) = o%d/, ie.,d < zi(1) < o2d for
€ [0,1]. Let 0 < s¢—1 < 1. Then, by (H19p), we have

1 1 1
/(; Ry (se—1, s0)@(s0)ge(z1(se))dse > E/o ¥y (se. sO)@(se)ge(z1(se))dse

a/ 1
> / Rro(se, sp)o(se)dsy
oy

’.2 1 2(N 1) n

ar,
>—290 _ | R,(sq, se)s, " Hcﬂz(se)dse
o™ —2)2C; Jo
a'ry o
> R, (s¢, s¢)s ds
e — 2)2[311_[%/ ro(se. se)s, ¢
>d.
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Continuing with this bootstrapping argument, we get
1
B1 (Pz1) = max / Ry (T, sD@(s1)g1
Tel0,11 Jo
1 1
[/0 Nro(ShSz)(ﬂ(Sz)gz[/o Ryo(s2, 83)9(s3)g4 - - -

1
g€1|:/0 Ry (se-1, Se)¢(Sz)gz(Z1(Sz))dSe:| e }d53]d82:|d81

1 1 1
> min /0 Nm(T,S1)¢(S1)91[/O NrO(Shsz)@(sz)gz[/O

el0,1]
Ri(s2, 83)9(s3)g4 - - -

1
ge-l[/o Ry (se-1, S£)¢(S£)g£(zl(54))dsz:| e :|d53j|ds2i|dsl

> 4.

Thus, condition (c) of Theorem 6 is satisfied. Since all hypotheses of Theorem 6 are
satisfied, the assertion follows. O

For Y7, pl[ =land )], é > 1, we have following results.

Theorem 8 Assume that (H)—(H3) hold and Suppose there exist real numbers a’, b’
and ¢’ with0 < a’ < b’ < ¢’ suchthat g5(3 = 1,2, - - -, £) satisfies (Hg), (H10) and

/ 2~
(Hy) g5(2) < ¢ forall 0 < z < ', where b3 = 7555 18y lloo TTE il -

Then, the boundary value problem (5)—(6) has at least two positive radial solutions
{(1 Z1, 1227 R lzl)} and {(221’ 2227 R 226)} Satis.fying

a < Bl(IZj) with B3(IZ3‘) <b,3=1,2,---, ¢,
and
b < B3(*z5) with By(*z5) </, 3 =1,2,---, L.

Theorem 9 Assume that (H)—(H3) hold and Suppose there exist real numbers a’, b’
and ¢’ with0 < a’ < b’ < ¢’ suchthatg5(3 = 1,2, - -, £) satisfies (Hg), (H10) and

’ 2~
(Hg) g3(2) < ¢ forall 0 < z < ', where By = 755118y lloo TTiz i1

Then, the boundary value problem (5)—(6) has at least two positive radial solutions
{(z1, 20, T z0)y and {21, 222, - - -, 22¢)} satisfying

d <Bi('zy) with B3('z5) <b', 5=1,2,-- ¢,
and

b < B3(*z5) with By(*z5) </, 3 =1,2,---, L.
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Example 2 Consider the following nonlinear elliptic system of equations,

(9 —2)2 22

Az + X2 z5 +o(x])g;(z541) =0, 1 < |x] <2, (15)
z; =0 on |x| =1and |x] =2,
=0 —1and 25— =2
Z4 = on |x|— an W— on|x|— y (16)

%:0 on |[x|=1andz; =0on |x] =2,
.

whererg = 1. N =3, 3 € {12}, z3 =z1. (D) = L [I7-; i (D. 0i(D) = ¢ (1)
in which

1
1) =—— and @) =

1
r+1 NZET)

then it is clear that

2

@1, 92 € LP[0,1] and l_[(p;k =3.
i=1

Letgl(z)—gz(z)—l—i—\/% Lletx=0=y = 1,(3:%,thenl =r§ <2=
135 o= 2cos(l) +3 Lsin(1) ~ 1.231188951,

2
3cos(1) + sin(1)
(sin(T) + %cos(T))(sin(l —s) +cos(l — s)), 0<t=<s<l,
{ (sin(s) + 5 cos(s))(sin(1 —1) +cos(1 —1)), O0<s<T=<I,

Nro (t,8) =

and 0 = Cos(l) Also,

2 n 1
__ "o [ ol ds ~ 8
C] = O'(N——2)2 11 @i /0' N,O(S, S)S 2N ds &~ 1.248429695 x 10°.

Let p; :6,p2=2andq=3,then$+plz+g—l=1and

00

L= )

—0_ ||x,0||q]_[ l@ille; ~ 9.113677218 x 10°.
i=1
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Choose @’ = 103, b’ =2 x 107 and ¢’ = 108. Then,

/

1
g1(z) = ga(z) = 1 + ———— > 0.8010062593 = —, z < [10%,30.8 x 10%],

V14 z2 Cy
1 b

g1(z) = g2(z) =1 + ——— <2.194503878 = —, z € [0, 61.6 x 1077,
V1 + z2 EZ

/

_a 3 3
> 0.000008 = —, =z €[107,30.8 x 10°].

g1(z) =g2(z) =1+ C
1

1
1+ 22
Therefore, by Theorem 3, the boundary value problem (15)—(16) has at least two
positive radial solutions (?z1, 7z2), j = 1, 2 such that

10> < max jzl(”r) with max jzl('t) <2 x 107, for j =1,2,
Tel0,1] el0,1]

2x 10" < max Jz,(1) with min Fz>(t) < 108, for § =1, 2.
Tel0,1] T€e(0,1]

5 Existence of at Least Three Positive Radial Solutions

In this section, we establish the existence of at least three positive radial solutions
for the system (5)—(6) by an application of following Leggett-William fixed point
theorem. Let a’, b’ be two real numbers such that 0 < a’ < b" and k a nonnegative,
continuous, concave functional on E. We define the following convex sets,

Es={z€E:|z| < a’},
Ek,d,b)={zeE:d <k(z), |z| <b'}.

Theorem 10 (Leggett-William [18]) Let E be a cone in a Banach space B. Let k a
nonnegative, continuous, concave functional on E satisfying for some ¢’ > 0 such that
k(z) < ||z| for all z € E.. Suppose there exists a completely continuous operator
P:Ev > Esand0 < a < b <d < such that

(a) {z € Ek,b,d) :k(z) >dad'} #0andk(Pz) > b for z € E(k, b, d"),

) 1Pzl <a for||z|l < d',

(¢) k(Pz) > b for z € E(k, a’, "), with |Pz| > d’

Then, ‘P has at least three fixed points 12,22,3z ¢ Eo satisfying Izl <d, b <

k(z) and |’z|| > a' and k(z) < b'.

Theorem 11 Assume that (H1)—(H3) hold. Let 0 < a’ < b’ < ¢’ and suppose that
g5, 3 =1,2, -, € satisfies the following conditions,

’ 2
(H11) g3(2) < §; for0 <z < d, where D1 = 7755 IRy lla [Ty il
(Hi2) 95(z) > & forb' <z < ¢,

2 0 Ll 2—1)
where 97 = Fer [Tiei @f [y Rrp(s, 8)s 27 ds.
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(H13) 95(2) < & for0 <z ¢’

Then, the iterative system (5)—(6) has at least three positive radial solutions
(zitzo, o tzp), Gz, 220, - 220) and Gz, 3z, - 3 z) with [Pz < o,
b <k(z), |172z3l| > a’ andk(Pz3) < b forj =1,2,---, L.

Proof From Lemma 3, P : E — E is a completely continuous operator. If z| € E./,
then ||z1|| < ¢’ and for 0 < sy_; < I and by (H13), we have

1 1
/(; Ry (se—1, sO)@(s0)ge(z1(se))dse < G/o ¥y (s, se)@(se)ge(zi(se))dse

/ 1

oc
< — | Ry(se,sp)e(sedse
O1 Jo
(Fc/rg 1 2n—1) "

Ry (se, sp)s, " | |<ﬂi(Sz)dSe-
0 ;
i=1

n
1 1
There exists a g > 1 such that Z — + — = 1. By the first part of Theorem 2, we
— Di d
i=1
have

7.2 n

S¢—1,S 5] z1(s s < oo,
A ro(Se—1, Se)e(se)gelz1(se ‘ (N —2)29, 70 qilz! Pillp;

</,

Continuing with this bootstrapping argument, we get

1
1Pzl = max/ Ny (T, 1)@ (s1)1
Tel0,1] Jo
1 1
[/ Nr0(51752)¢(52)92|:/ Ry (s2, 83)0(s3)g4 - -
0 0

1
92—1[/0 Ry (se-1, SZ)W(Sz)ge(Zl(Sz))dSe] e j|d53i|d52i|dsl

~

Hence, P : Es — E. In the same way, if z| € E./, then P : E,s — E, . Therefore,
condition (b) of Theorem 10 satisfied. To check condition (a) of Theorem 10, choose
z1(t) = (W' + ') /2, T € [0, 1]. Tt is easy to see that z € E(k, ', ¢) and k(z1) =
k((b' + ¢')/2) > b'. So, {z; € Ek,bV, ) : k(z)) > b’} # @. Hence, if z; €
E(k, b, c)then b’ < z1(1) </, T€[0,1].Let 0 < sg_1 < 1. Then, by (Hj2), we
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have

1 1 1
/0 Vi (se—1, s0)@(s0)ge(z1(se))dse > E/o Ry (se, se)@(se)ge(zi(se))dse

v

1
/0 Ny (Se. s)(se)dse

b’rg 1 2(N 1) n
> — Ry, (s¢, se)s,” | | @i(se)dse
92 ro 14
o(N — 2)%9, il

(90}

2(N—1)

Z O'(N 2)29 H‘pl / Rro(sgvsz)sgz_l\] ds[

>,

Continuing with this bootstrapping argument, we get

1 1
min (Pz;) = min / Nro(T,S1)<p(S1)g1[/ R, (s1, s2)9(s2)a2
el0,1] tel0,11 Jo 0

1
[/0 Ryo(s2,83)9(s3)g4 - - -

1
95—1[/0 Ry (se—1, Sz)w(sz)ge(zl(sz))dsz] e i|ds3}dsz]dsl

> b,
Therefore, we have
k(Pz1) > b/, for z1 € Ek, b/, ¢).

This implies that condition (a) of Theorem 10 is satisfied.

Finally,if z; € E(k, &, ¢), then what we have already proved, k(Pz;) > b’, which
proves the condition (c¢) of Theorem 10. To sum up, all the conditions of Theorem
10 are satisfied. Therefore, P has at least three fixed points, that is, problem (5)—

(6) has at least three positive solutions (lzl, Loy oo, lze), (221, 222, cee 22@) and
Czi,3z, -3z with [Pz || <d’, b <k(Gz2), |Pz3]| > a’ and k(3 z3) < b’ for
i=12,--- ¢ O
For !, p =land )}, E > 1, we have following results.

Theorem 12 Assume that (H1)—(H3) hold. Let 0 < a’ < b’ < ¢’ and suppose that
gy, 3 =1,2,- -, £ satisfies (H12), (H13) and

/ or? o~
(H14) 95(2) < & for0 <z <a', where 93 = 7555 [Ny lloo [Tiy il

Then, the iterative system (5)—(6) has at least three positive solutions 'z, 'z», - -

z0), Cz1, %20, 2z0) and Gz, 320, - 3ze) with [Tz < @', b < k(z2),

13z3] > @’ andk(z3) < b forj =1,2,--- L.
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Theorem 13 Assume that (H1)—(H3) hold. Let 0 < a’ < b’ < ¢’ and suppose that
gy, 3 =1,2,---, Lsatisfies (H12), (H13) and
/ 2~
(M15) 95(2) < & for0 <z <a’, where D4 = 7557 [Ny lloo [Tiy il
Then, the iterative system (5)—(6) has at least three positiv.e solutions (1zy, 1;2, .
'5.126)7 (2217 2229 '.' “ 228) and (3217 3225 Y 3Zl) Wlth ||j Z] ” < a/v b/ < k(j 22)7
1Pz3]| > a andk(®z3) <b' forj =1,2,---,¢L.

Example 3 Consider the following nonlinear elliptic system of equations,

2. 2N-2
(N —2)“rg

Azj + PSS +@(xDg5(z541) =0, 1 < |x] <2, a7
z3 =0 on |x| =1and |x] =2,
0z
z5 =0 on |x|=1anda—r=Oon|x|=2, (18)
aZj
a—:O on |x| =1and z; =0on |x| =2,
r

where ro =1, N =3, j € {1,2}, z3 = z1, ¢(1) = #Hz‘zzl i (D), ¢i(D) = 91 (7).
in which

and

1 1
) = ———,
V41 Vi +16

p1(1) =

then it is clear that

2
@1, 92 € LP[0, 1] and l_[(pl* =4,
i=1

Let

) ) 51, =z>1,
griz)=gal=) = 50z2+1, =z < 1.

Letx =2, =y =06=1, then 1 =r§ <2 = %,5@ = 2cos(l) + sin(1) ~
1.922075596,

1
2 cos(1) + sin(1)
(2sin(T) + cos(T))(sin(l — s) +cos(l —s)), O=<T=<s<I,
(2 sin(s) + cos(s))(sin(l — 1) 4 cos(1 — T)), 0<s<t<l,

Nro (Ta S) =
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3
and 0 = )
w-n )
01 = o'(N 2)2 H‘/’z Nro(s, s)s W ds &~ 1.732057708 x 10°.

Letp1=6,p2=3andq=2,then$+pl2+é=1and

2

or,
O, = m|| ,0||q]_[ @i llp A~ 1.266858405 x 10'2,

Choose a’ = 10!, b’ = 10'2 and ¢/ = 10'3. Then,

/

91(2) = ga(z) < 57.73479691 = g— z € [0,10'],
1
/

0,’
/

g1(z) = ga(z) < 57734.79691 = 5— z € [0,10"3].
1

g1(z) = ga(z) > 0.789354197 = z € [10'%, 1013,

Therefore, by Theorem 3.’ the.boundary value problem (15)—(16) has at least two
positive radial solutions (? z1, 7 z3), j = 1, 2 such that

max Jz1(1) < 10'%, 10'? < min Iz2(t) < max Fz(1) < 103, for § =1, 2,
tel0,1] Tel0,1] Tel0,1]

10'% < max Jz3(1) <10, min Iz3(7t) < 102, for § =1,2.
T€e[0,1] T€e[0,1]

6 Existence of Unique Positive Radial Solution

In the next, for the existence of unique solution to the boundary value problem (5)—(6)
where we employ two metrics under Rus’s theorem (see [4,20,23] for more details).
In this regard, consider the set of real valued functions that are defined and continuous
on [0, 1] and denote this space by X = C([0, 1]). For functions vy, y2 € X, consider
the following two metrics on X :

d(y1,v2) = max |yi(?) —y2(t)l, (19)
t€l0,1]
1
1 5
oy, v2) = [fo |y1(t)—yz(t)|pdt] ., p>1 (20)

For d in (19), the pair (C ([0, 1]), d) forms a complete metric space. For g in (20), the
pair (C ([0, 1]), o) forms a metric space. The relationship between the two metrics on
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X is given by
o(y1,y2) < d(yi,y2) forall yi,y2 € X. 2D

Theorem 14 (Rus [21]) Let X be a nonempty set and let d and o be two metrics on
X such that (X, d) forms a complete metric space. If the mapping U : X — X is
continuous with respect to d on X and

d(Oy1, Oy2) < crolyi,v2), (22)
for some c1 > 0 and for all y1,vy> € X,
0(Oy1, Oy2) < c20(v1,v2), (23)

for some 0 < cp < 1 forall yy,y> € X, then there is a unique y* € X such that
Oy* = vy*.

2w-1)
Denote W(s) = 8y, (s, s)s 27 [[1_, ¢i(s)ds.
Theorem 15 Assume that (H1), (H3) and the following condition are satisfied.

(H14) there exists a number K > 0 such that
lgj(z) =g <Klz —y| for z,y € X.

Further, assume that there are constants p > 1 and @ > 1 suchthat 1/p+1/g=1
with

OKr? t 1 ¢ 1 :
0
|:—(N_2)2:| [weus| [ [weras] <1 e

then the boundary value problem (5)—(6) has a unique positive radial solution in X.
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Proof Let z1,y; € C([0, 1]) and s € [0, 1]. Then, by Holder’s inequality, we have

1 1
‘/o Ry (se—1, s0)@(s)ge(z1(se))dse —j(; Ry (se—1, sO)@(s0)ge(vi(se))dse
1
S/O 1Ny (se—1, 50) @(s)llge(z1(se)) — ge(vi(se))ldse
1
< (7/ Ry (s, s0) e(s0)| Klz1(se) — vi(se)ldse

< 2 mz/IWGMRKw)—WSDMW

-fiiifuw@n%sr[/w () — @NWST
= (N 2)2 ¥4 ¥4 0 Z1 ¥4 Y1 ¥4 Y4

2 1 :
< W [/ I‘P(Sz)lquz] o(z1,v1)
S CIQ(Z]’YI)’

where

. oKr2 1 a
cl=6;§;[ﬁ|w@mﬂ

It follows in similar manner for 0 < s;_» < 1,

1 1
‘/ Ry (se-2, SE—])‘P(SZ—I)QM—I[/ Ry (se-1, Se)‘ﬂ(se)gl(zl(SE))dS€i|dS£—l
0 0
1 1
—/0 Ry (s¢-2, SzO(ﬂ(Sel)gzl[/o Ry (se—1, s0)9(se)ge

(Zl(Sz))dSe:|dSe—1

. A~ W (so— C z1, ds —
_( 2) -1 10 1, Y1 -1
SCICIQ(Z19YI)5

where

(IKr0
A =no zﬂ/|wmwm

Continuing with bootstrapping argument, we get
Uz1(s) — Uyi(s)| < jeielzr,y).
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we see that

d(0z1, Byy) < cro(z1, v1). (25)

for some c| = Ef c’l‘ > 0 for all z1,y1 € X, and so the inequality (22) of Theorem
14 holds. Now, for all z1, y1 € X, we may apply (21) to (25) to obtain

d(Gz1, Oy1) < cro(z1, y1) < c1d(z1, y1)-

Thus, given any ¢ > 0 we can choose 1 = ¢/c so that d(Uz1, Uy1) < ¢, whenever
d(z1,y1) < 1. Hence, U is continuous on X with respect to the metric d. Finally,
we show that U is contractive on X with respect to the metric p. From (25), for each
z1,vy1 € X consider

1

1 : 1 5
[/0 |(6zo(s>—<Uy1)<s>|pds} s[/o ]6§c7@(m,y1>(pds}

o2 S (e o . i
5 [W} UO |\If(s)|dsi| [/0 0 (s)] ds} o(v1,v2).

That is

2 157 e oo 7
0(0z1,0yy) < o [/ |‘V(S)|ds} [/ |\I‘(S)|qu] o(y1,v2).
(N —2)2 0 0

From the assumption (24), we have
0(Oy1, Uy?2) < c20(v1,v2)
for some cy < 1 and all v, y» € X. Thus, Theorem 14, the operator U has a unique

fixed pointin X. Also, we note that the operator U is positive from Lemma 3. Therefore,
the boundary value problem (2) has a unique positive radial solution. O

Example 4 Consider the following nonlinear elliptic system of equations,

2 2N-2
(N - 2)%r2

Bzg+ = a7 Helles (s =0, 1 <ffl <2, @6)
z5 =0 on |x| =1and |x| =2,
=0 —1and 2 ¢ =2
z5 =0 on |[x|=1an 5 = on |x| =2, 27)
0z
8_:0 on |[x|=1and zy =0on [x| =2,
-

where ro = 1, N =3, 3 € {1.2}, z3 = z1. o(0) = L [T7_ i (D. (D) = g1 (L)
in which 1 (1) = ¢2(t) = 7. then [T, ¢f = 1.Letgi(z) = 10% sin(z), ga(z) =
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mandazB:&:l,y:Z,thenl=r§<2=%,50:2005(1)4—
sin(1) ~ 1.922075596,

1
2 cos(1) + sin(1)
(sin(T) + COS(T))(Z sin(1 — s) + cos(1 — s)), 0<t=<s<l,

Nro (t,8) =

(sin(s) 4 cos(s))(2sin(1 — 1) + cos(1 — 1)), <s<Tt<l,
3
and 0 = m Then,
| sin(z) — sin(y)| 1
|gl(z)_g1(Y)| - 10]0 S 1010|Z_Y|9
and
102(2) — 2 ()| = = | —2 Y o oyl
Z) — = — zZ — .
PR TRWI= 9010 (142 " 14y~ 1007 Y
So, K = w%.Leté =2and p = g = 2. Then,
GKrg : 1 ¢ 1 é
— |:/ |\I-'(s)|ds} [/ |\Il(s)|qu] ~~ (0.8595804542 < 1.
N—-2) 0 0

Therefore, from Theorem 15, the iterative system of boundary value problems (26)—
(27) has a unique positive radial solution.
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