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Abstract

This paper is devoted to an inverse space-dependent source problem for space-
fractional diffusion equation. Furthermore, we show that this problem is ill-posed
in the sense of Hadamard, i.e., the solution (if it exists) does not depend continuously
on the data. In addition, we propose a simplified generalized Tikhonov regularization
method and prove the corresponding convergence estimates by using a priori regu-
larization parameter choice rule and a posteriori parameter choice rule, respectively.
Finally, numerical examples are carried to support the theoretical results and illustrate
the effectiveness of the proposed method.
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1 Introduction

In the past few years, fractional diffusion equations become a popular research topic
for their wide applications, such as finance [1], physics [2], medicine [3], and so on.
The direct problems of fractional diffusion equation have been extensively studied
[4-11]. Nevertheless, in many application, initial information, boundary information,
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coefficient information, source term information might not be given and then we
need to recover them by extra measured information which is able to yield some
fractional diffusion inverse problems [12-20]. In recent years, inverse problems for
fractional diffusion equation have become very active in various fields of sciences and
engineering, such as biology [21,22], physics [23,24], chemistry [25], and hydrology
[26].

To our knowledge, the researches on inverse source problems for space-fractional
diffusion equation are still lack of wide attention. For inverse source problem for the
space-fractional diffusion equation u;(x,t) — Dgu(x,t) = F(x, t), we assume the
source term F' = F(x, t) can be splitinto f(x)q(z), if g(¢) # 1, we can see reference
[27],if g (t) = 1, we can see references [28,29]. In this work, we shall study an inverse
source problem for the Riesz—Feller space-fractional diffusion equation as follows:

ur(x,t) — xDgu(x,t) = f(x), xeR, 0<1<l,
u(x,0) =0, x € R, (1.1)
u(x, 1) = g(x), x € R,

where the space-fractional derivative , Dy is the Riesz—Feller fractional derivative of
order (0 < o < 2) and skewness 0(|f| < min{«, 2 — «}, 8 # £1) which is defined
by the Fourier transform in [30],

DY Fx) = —ylE) f (), (1.2)
where o "
Vg (€) = g N2 (13)

From [30], the Riesz—Feller fractional derivative can be written as

DL () :m; o) { i @ +29)n /O°° flx +;1)+; ) 4o
o @O (% f 48— )
+sin 2 0 glta df}, 0<a<?2,
d2
D= s

where I'(-) is a gamma function. The function f (x) denotes the source term. Our aim
is to identify f(x) from the additional data u(x, 1) = g(x). Since the data g(x) is
based on physical observation, there must exist measurement errors, and we assume
the measured data g% € L2(R), which satisfies

lg® —gll <6, (1.4)

where | - || denotes L2-norm and the constant § > 0 is a noise level.

Our main purposes are as follows. By using the simplified generalized Tikhonov
regularization method, we give the convergence estimates under a priori and a poste-
riori regularization parameter choice rules, respectively. Next, the numerical results
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are based on a posteriori parameter choice rule which is independent of a priori bound
of the exact solution is more useful in practical issues.

Finally, we list the content of the paper. In Sect. 2, we will analyze the ill-posedness
of inverse source problem (1.1). In Sect. 3, we propose the simplified generalized
Tikhonov regularization method and prove convergence estimates under a priori
parameter choice rule and a posteriori parameter choice rule. In Sect. 4, we give
two numerical examples to show the effectiveness of the proposed method. Section 5
puts an end to this paper with a brief conclusion.

2 llI-Posedness of Identifying an Unknown Source

In order to apply the Fourier transform, we assume all the functions involving x variable

belong to L(R). Here, and in the following sections, | - || denotes the L*-norm,
1
+o00 2 bl
Ifl= (/ | f )] dX> -
—00
Let
7 R “ixqy, EeR Q2.1
é) = / (x)e , E¢€ ,
fé G 7oof

be the Fourier transform of the function f(x) € L2(R), the solution of problem (1.1)
is obtained in the frequency domain

0
f(é)=1 L, g(8). (2.2

— o= VE®

or equivalently,
1 /00 Jier_ Va®
V21 J—o 1 —eVa®

Note that 1//2 (&)(® < minfo, 2 — «},0 # 1) has a positive real part |£]%. It can be
seen that |£|¥ — oo as |£€] — oo, the small error in the high-frequency components
will be amplified. Therefore, inverse source problem (1.1) is ill-posed. It is impossible
to solve the problem (1.1) by using classical methods, the regularization methods are
needed. Before doing that, we need to impose a priori bound on the given data

fx) = g(§)dt. (2.3)

IfOlgr2 =M, p=>0, 2.4

where M > 0 is a constant, and || - || g».2 denotes the norm in the Sobolev space
HP-2(R) defined by

IfOllgpe == (/ 7®a +§2)”dé>2. (2.5)
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3 Simplified Generalized Tikhonov Regularization Method and
Convergence Estimates

In this section, we solve problem (1.1) by using generalized Tikhonov regularization
method that minimizes the quadratic functional

18°¢) — gOI* + 1l F O3, 2 (3.1)

where i > 0 is the regularization parameter. Let f?;(-) be the solution of the above
problem, the unique solution of the minimization problem (3.1) is equal to the follow-
ing Euler equation:

1 — e Va®\2 N
((ﬁ) +M(1+I$|2)p>ﬁ(é)=ﬁ§5(g)_ (3.2)

The generalized Tikhonov regularization solution ]/‘3(5) in frequency domain can be
given

wﬁ(i)
—e~Va®)
HOE = TRG) 3.3)
2 vE©)
L+ p(l+ ] )p(u—wZ(s))
or equivalently,
X N 1//3@9)
—eVa®) P
fa = 7= e B (34
_ 0
a4 |§|2)p("’“—@2>
l—e—Va®

Now, we use the new filter to replace the original filter

1

0
lu(i4epyp [ —2e®
n(1+gR) (1”]3@

ization solution of (3.4), that is,

1
L+ (1+[E[2)PF2
5. Thus, we get a simplified generalized Tikhonov regular-

69

) —
T ® = O T + ]

Z)M? ), (3.5

or equivalently,

1 /°° vl &) 1
V21 ) oo 1 — e V@ 14+ u(1 + E2)P

fhx) = S () e (3.6)

In the following subsection, the convergence estimates will be given under a priori
regularization parameter choice and a posteriori regularization parameter choice.
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3.1 A Priori Choice Rule

In order to obtain our main results, we first give some important lemmas.

Lemma 3.1 [28] If x > 1, the following inequality holds

<2. (3.7)

1 —e™*

Lemma 3.2 [29] If& € R, the following inequality holds

0 o
Ve (EZ} - €1 _ (3.8)
1 — e VE@ | = | _ Il cos(%)
Lemma3.3 If§ € R, and 0 < a < 2, the following inequality holds
sup ( &1 1 )
geR \ 1 — ¢ 1617 cos(5) 1 4 p(l + [§]2)P+2
2 4 2p+4—a o
_ 2p+4 2(p+2)
Smax{ c Grtizo) (3> ' } (3.9)
cos 7 p+2 "
Proof Let
A§) = i : (3.10)
T el eos(E) 1+ p (1 + |E[2)P R '
1
_ [ o o _ s _ s P
Lets = [§|% cos(75-), and we know [§]% = o~ and |&] = (—COS(%”)) , then A(§)
can be written as
B(s) u ! (3.11)
s) = . .
cos(F)(1 = e™) 1+ (1 4 (—2—)a)P+2)
cos(%5-)
We need to estimate the function B(s) in three cases.
Case1.If 0 < s < 1, we obtain
s se’ et
B(s) < = < < . 3.12)
(<) cos(%”)(l —e™) cos(%”)(es -1 cos(%”) cos(%”) (
Case 2. If —1 < s < 0, we have
s —s 1 e
B(s) < (3.13)

cos(%”)(l —e™) - cos(%”)(e—s -1 = cos(%”) = cos(%”)'
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Case 3. If |s| > 1, we get

B(s) 2s| 1 _ 2|s| 1
5) < < .
cos(%”) 14+ p(l+ (cos(sg—”))%)(P+2) cos(%”) 1 _‘_M(COS(S_M))M
s(% s(%F
(3.14)
Let
s
n(s) = 5 . (3.15)
on s p+2)
cos() A+ n(Hm)

By elementary calculation, we can obtain that s* = (m) 2p+D) cos(%”) such

that 20 (s*) = 0.If s > s*, then ) < 0; If s < 5*, then 222 > 0, and then 7)(s)
attains the maximum at s*, i.e.,

ns) <0 = (=—2—— )" cos(T
Cp+4—a)u 2
_ Qp+4-a) (O‘)M (3.16)

2p+4 w

Therefore, we know

2p+d—a a 2pt+d4—a o
B(s) < 2(2p +4 —q) W (a)z(p+2) _ Q2p+4—a) 2+ (a>2(p+2).

2p+4 i p+2 I aa7)
Finally, combining (3.10), (3.11), (3.12), (3.13) and (3.17), we have
sup( &1* 1 >
ek \ 1 — g~ l€17cos(*F) 1+ pu(1 + [§]2)PH2
2 4 2g+41a o
_ T 2(p12)
<max| ¢ GprAze) BE fayE] (3.18)
cos 97” p+2 n
O
Lemma3.4 If§ € R, the following inequality holds
A+eDE? _ p (p NI e
pHE .
fek L+ u( 1 EPP2 ~2pra\pra) N
Proof Let vis
(A + 53>
D(§) = (3.20)

L4 p(l + [§[HPH2
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Let z = 1 + |£|2, then D(£) can be written as
Z5t2

#(z) = T4 per2

(3.21)

1
By elementary calculation, we can obtain that z* = (%) r+2 such that d‘z—iz) (z") =0.

If z > z*, then d‘fi—g) < 0.If z < z*, then dfl—iz) > 0, and hence, ¢ (z) attains its
maximum at z*, i.e.,

pt+4

T 2p+4
<_P? P =3 (3.22)
1+ pzPt2 = 2p4+4\p+4

4
242

o(z) =

m}

Theorem 3.5 Suppose that f/f (x) is the regularization solution for problem (1.1) with

the noisy data g° (x), and fu(x) is the simplified generalized Tikhonov regularization
solution for problem (1.1) with the exact data g(x). Assumptions (1.4) and (2.4) are
satisfied, then we obtain

2p+4—u 1 % [\ T
: o ' = y 8+ : < > <_) 8.
1/, () f“()”_cos%” P T — "
(3.23)

Proof By using the Parseval equality, and Lemmas 3.2 and 3.3, we have
12 = Ol = 1520 = FuOl

(] ve® 1 ,
B (/—oo ‘ 1 —6_1//3(5) 1 +M(1 + |€:|2)p+2g (E)

1

Vg (®) 1 RS
e VE® 1+M(1+|§|2)p+23(-’3) dé)
Va () L
= ?elng 1— e VE® 1+ pu(l+ |E2)P+2 12°) —g®ll

< sup 1§ 1 5
T ek \ ] — o161 cos(F) 1+ p(l + [E[2)PH2

<max{ e 2(2p+4—(x)( 1 )2(;12)(5)2(&2)}8
- cos%”’ 2p+4 2p+4—«a m

e 2p+4 -« 1 0D (o 0D
< —5-0+ - 8.
cos - p+2 2p+4—« m

(3.24)
O
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Theorem 3.6 Suppose that f,,(x) is the simplified generalized Tikhonov regularization
solution for problem (1.1) with the exact data g(x) and f(x) is the exact solution of

problem (1.1) with the exact data g(x). Assumptions (1.4) and (2.4) are satisfied, then

we have
pt4

T 2p+d p
£ () = FOI < zp”+ Aﬁ) T umE g, (3.25)

Proof By using the Parseval equality, and Lemma 3.4, we have
1) = FOI = 1720 = FOI

_ (/OO Vo @) !

1—eVa® 1+ pu(l+ &

1

A6 2d§ 2
1_6*1#5(5)

(I +EHP2 o P \?
:(/_00‘1+M(1+|E|2)P+2f($) d%’)

IS 2242 2 1
- (/_oo ‘ i fiﬁf'@ﬁ?;w I+ 'E'z)gﬂ‘g)‘ dg) 2
< up ML 617242
eei 1+ (1 + [g2)r+2
< qup HAE 16175 +2
ger 1+ (1 + |§]2)P+2

pté

p p T 2p+4 P
< S WM. (3.26)
2p+4\p+4

57728

g®

I F Ol gp2

m}

Theorem 3.7 Suppose that f;i (x) is the regularization solution for problem (1.1) with

the noisy data g°(x), and Sfu(x) is the exact solution for problem (1.1) with the exact
data g(x). Assumptions (1.4) and (2.4) are satisfied. If we choose

2(p+2)

e 3.7

then we obtain the following convergence estimate

2pt4- )
If00) = fOI < 60718+<p+ °‘< a )( )
COST

p+2 2p+4—«

o (3.28)
+ p <L) 2p+4)8piaMpa+a'
2p+4\p+4
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Proof According to the Parseval identity and triangle inequality, we get
1A = FON= O = TON S N1F2O = FuOl+ 1700 = FOI. - (3.29)

Then, using Theorems 3.5 and 3.6, the proof of Theorem 3.7 is completed. O

3.2 A Posteriori Choice Rule

In this subsection, we prove the convergence estimate between the exact solution and
the regularized solution by using a posteriori choice rule for a regularization parameter,
i.e., Morozov’s discrepancy principle.

According to the Morozov’s discrepancy principle [31], we choose the regulariza-
tion parameter p as the solution of the following equation

”1+M(1+|§|2)p+2§6(§)—?(5)“ = 76. (3.30)

Here, T > 1 is a constant. To establish the main result, we need the following lemmas
and remark.

. 1 .
Lemma3.8 Let p(u) = || W’g‘ﬁ@) —2%(&)||, the following results hold
(a) p(w) is a continuous function,
(b) limy, 0 p(u) = 0;
(©) limyu 400 p(10) = [12°1;
(d) p() is a strictly increasing function over (0, +00).
The proof of Lemma 3.8 is very easy and we omit it here.

Remark 3.9 To establish the existence and uniqueness of the solution for Eq. (3.30),
we always suppose 0 < 7§ < Ig°].

Lemma 3.10 If u is the solution of Eq. (3.30), then the following inequality holds

H T aaT |§|2)p+2§5<s) —§(§)H < (t+1)s. (3.31)

Proof Using the triangle inequality, we obtain

1 =5 —~
1+ pn(1+ |§|2)p+2g (6) —2()

1
_H1+u<1+|s|

5l ) - E+PE) - §<s>”

= H1+u(1+|s|2)P+2§5(‘§)_§6@)H + H?(E)—?(S)H
= (t+ Dé.

O
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Lemma 3.11 If u is the solution of Eq. (3.30), then the following inequality holds

1

(3.32)

2P+ ,,+D,
<|— i
wo ( (t—Ds )
Proof Using the triangle inequality, the formula (3.30) and the condition (2.4), we
have

1
ENTENT
w4+ DI
T aarepea® (E)H
w4+ DO
=T earememt © -
w4 gD+
ENENEDITE
pd + (g P+ w(l + g2+
< H e @© - g@))” + H o L

w(l + |E|>H) P2 4 _ S
- H1+u(1+|§|2)(p+2>( DT — =

T8 =

2),,+2§8<s) —?(é)”

(4P
EENE I

2|

z@H

FOa+1EP?

1ﬁ‘g(é)
p(l + (5 P+ pl—eVa (S)‘
<&+su (1+1&1% —M. (3.33)
S T e Eme T 6]
Let
p(l 4 g2+ r (s)'
G(§) = + _ e R.
© ‘1+M(1 + ISIZ)(’J”)( LRh 1ﬂ"(S) 5
We need to estimate the function G (£€) in three cases.
Case 1. If £ = 0, then we have
G0) =1lim G¢) = L (3.34)
£>0 l+u ’
Case 2. If |£€] < 1 and & # 0, then we get
ne2(r+2)
G¢) < 3.35
) < Tt (3.35)
Case 3. If |£] > 1, then we obtain
2 r+2) 1 2 2(p+2) 1
GE) < 12lE?) _p+3 MIE (3.36)

T 1+ PP g p gl 1+ pl& 2P +2) |g|pte’
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pta _
Let m = u|£|*P+2) then |£|(PF®) = ()75, and we know g&iz‘j < 1, then

pto pHé—a
2(p+2) + 2(p+2)
) (AP e R

pta
1+m mm 14+m

GE) <20t 2 <2 2 (337)

Combining (3.34), (3.35), (3.36) and (3.37), we can get
2(P+2) +ao
sup G(§) < max {W—, 2(p+3),u2(1;’+2) } (3.38)
£eR L+pn

According to the condition 0 < < 1,0 < o < 2, we have

pta
< U< @uiretd |

1+

So, we know

4o
sup G (&) < 2P+ 23 (3.39)
£eR

Therefore, combining (3.33) and (3.39), we can obtain

8 <8+ 62(p+2)u2<pp$> M.

By elementary calculation, the following inequality holds
e A=
< —_—

m ( (t—1)3 )

Lemma3.12 If 0 < o < 2, p > 0, then the following inequality holds

)4
&1% “ 22
(1_e—s|“cos(9§> (145572

4

sup < max {( ‘ )2’} (3.40)

£eR cos(%-)

Proof Let ,

- &1* « 2l

HE) =|———7F—-) I+&) 2, (3.41)
1 — o 1E1 cos(*f)
1

and s = |E|* cos(%”), and we know |&|% = Cos(gﬂ) and |&| = (COS(X%)&, then H (&)

can be written as

S
Hs) = ——
) <COS(97”)(1 — e“‘))

RIS
SIS

2 _
S o
1 —_— . 342
( +(cos(97”)> ) (42
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If0 <s <1, we have

Rl
Qs

w2 (mapas) = (@me)
cos(7F) (1 —e™%) cos(7Z-)(es — 1)
P

ef o e o
< < .
- (COS(%”)) - <COS(97”)>

If -1 <s <0, we get

RIS

s g s
H S S e
V= <C°S(QT")(1 - es)> : <COS(97”)(6S -~ 1))

P P
a

“(am) = (@)
- 005(07”) - cos(%”)

If |s| > 1, we obtain

H(s)§< _ )( l >_“
cos(F)(1 —e™) cos(7)

) I3 iy
“(am) () -
o cos(%”) cos(%”)

Hence, the proof of Lemma 3.12 is completed.

[

Lemma3.13 If 0 < o < 2, p > 0, then the following inequality holds

pta

|51 o !
| —eleleos(3) ) T+ p(l +|g2)PT2

Pt

pra e
e « 1\ 2p+4
< max ) ,Cl — .
cos(5) "

pta 1 P pta—d pta ;ﬂ
= pia
Here, C =2« (cos(%”))a 2p+2a_4(p+4_a) .

sup
EeR

Proof Let

pta

,_ || @ !
L®) = <1 — e lEI" 005(92”)> 1+ pu(l + [g[2)P+2°

@ Springer
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and s = |€]% cos(%”), and we know |£|% = Cm(s%) and |&| = ( )* then L(§)
can be written as ’
pta
L(s) < s ) « 1
S) =
cos(ZZ) (1 — e~*) s _ye
cos -
pta (348)
< ( . ) ’ 1 0(s)
= Q(s).
- 24 _s 2p+4
cos(HH)(1 — e s o
(5)( ) 1+M(cos%ﬂ)
If0 <s <1, we have
pto pra
oo (Gmi)  ~(eme)
S _— m mm = _—
~ \cos(Z)(1 —e™) cos()(es — 1)
pte pto
“(am) =(am) @
- cos(%”) - cos(%”) ' .
If -1 <5 <0, we have
pta e
o= (o) i)
~ \cos(ZE) (1 —e) cos(Z) (e — 1)
pto pta
(mm) =(em) @0
- cos(%”) o cos(%”) ’ .
If |s| > 1, we obtain
Q()<< 2s| )” 1 < 2 )” Is] 5
s = .
- 0 2 2p+4
cos(5F) 1+ (= 9”) & cos(7) o~ =
(3.51)
Let
pta
S
N(s) = e (5>0). (3.52)
1 + I"L( 97{ ) o
By elementary calculation, we can obtain that s* = cos(en )(pf_zaa)ﬁ( 1 )ZI’DIﬁ
such that %(s*) 0.If s > s*, then ””Z(Y) < 0.If s < s*, then ‘“Z(Y) > 0, and
hence, N (s) attains its maximum at s*, i.e.,
ha—4/ pra \EEINES L \B
a — P+ P+ P+
0(s) <25 L2 ( Pt ) (—) _ c<—) 6
2p+4 \p+4—« n n
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+a
Here, C = 25 ”;;"jr44(p£ﬁa)£ﬂ. Hence, combining (3.48), (3.49) and (3.53), the

proof of Lemma 3.13 is completed. O

Theorem 3.14 Suppose that f;i (x) is the regularization solution for problem (1.1)

with the noisy data g°(x), and fu is the exact solution for problem (1.1) with the exact
data g(x). Assumptions (1.4) and (2.4) are satisfied. Then, we obtain the following
convergence estimate

1£2() = FOIl < Ds7va M7, (3.54)

pta

P pta
o o _p
Here, D = ((ﬁ) sM~! 4+ IR 4 (ﬁ> +25> (t + 1)7'a.

Proof According to the Parseval identity and the Holder inequality, we have

1726 = FOI
= 1720 - FOI?
_ | va® B e P
a H | — e v2® 1+ pu(1 + gP)r+28 €) - mg@)
_ Vo) 1 s R 2
= H 1 — e~ ¥e® <] +u(l 4+ |é_-|2)p+2g é) — g($)>

2a

[ ve® Y 1 e
_/oo<1—e_‘ﬁg(§)> <1+M(1+|$|2)P+2g (é) g(E))

1 R
(lw(lﬂglz)ﬁzg (5)—g<$)) dg

o0 0 2 ZT e

5[/_ ((1—%(2’@)) (1+u(1i|$|2>ﬂ+2§8(§)_§($)) ) }
x Rt = e
X[ m<<1+u(1+|5|2)p+2g (5)_5'(‘9) ) dg]

e I IO [

- [/oo<1—e wa@)) (1+u<1+|s|2>ﬂ+2g (5)_“5)) dg}

<[ : o 5@ ]
oo \T+ (1 + P28 §

pta 20

_f(ve® N I o \| s
_H 1—e¢3(5)> <1+M(1+|€:‘|2)1’+2g (g)_g(§)>

2p
7[1

1
< et © - 8O

=11 x I. (3.55)
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Firstly, we estimate [y,

pta
o

I < H( Va® )7( PE) - —————=——2®)
=1\ 2o 14 (1 + |E]2)P+2 14 (1 + [§))P+2

2a

1 URNT::
O —86)

pta

viE o\ @ 1 5 1 _
(H(l - e—wa) (1 Fu(+ P2t ® =17 u(+ EPyr28 @)> H

pta 2o
yoE e 1 ) e
() (e -0))|)

<(Su ( (A )T ! +H< (AGS) )
=z evo 1+ p(l+ [ER)PT2 =)
2a
1 _p 2463) e
(1 g )0 + 0 fa ) e
< (el () +H(*"S'a )
- Eeﬁ 1 — ¢~ 51 cos(5) 1+ p(l+ |g2)pt2 1 — ¢~ &l cos(5)
Do
a+&)7%a +sz)%f<s>H>"+ . (3.56)
From Lemmas 3.12 and 3.13, we know
pre e » 20
e « 1 2p+4 e o P pta
s (me{ () o) e me | (i) )
cos(7H) 2 cos(7)
pta pta r

p O\ ha
M+2aM> . (3.57)

e o 1 2n+4 e
() o) o (i)
cos(5-) 2 cos(%-)

and using Lemma 3.11, we can get

N 20+ 1y e\ b\ 7
I < o 5+ C + = M+2«eM
COS(T) T—1 COS(T)
e = = e2(rt2) e « e w
- <<_9 sM~! 4 C (—< ) +2a> M
cos(F) T—1 cos(7H)
(3.58)
For I, using Lemma 3.10, we have
2p
= H PO-20|  =@+no. (359
S EESER D - ' '
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Therefore, combining (3.55), (3.58), and (3.59), we obtain

pt

5 e e . e2(P+2) e P » e
IIf,L(-)—f(-)Ilf(( ) sM~ +C +< ) +2a)

0 0
cos(%) T—1 cos(75)

x (T + 1)1’%8P%MPQW.
(3.60)
O

4 Numerical Experiments

In this section, we present some numerical results for two examples for showing the
effectiveness of the proposed method.

The numerical examples are constructed in the following way: First, we select the
exactsolution f (x) and obtain the exact data function g (x) through solving the forward
problem. Then, we add a normally distributed perturbation to each data function and
obtain vectors g‘s (x),1.e.,

g5 = g + erandn(size(g)), “.1)

where

g =(8(x1), (x2), ., (), xi = =S+(=DAx, Ax = —

4.2)
Here, the function “randn(-)” generates arrays of random numbers whose elements
are normally distributed with mean 0, variance 0> = 1 and standard deviation o =
1, “randn(size(g))” returns array of random entries that is the same size as g, the
magnitude € indicates a relative noise level. Here, the total noise § can be measured

in the sense of the root mean square error according to

[
8:= 18" —gllp = \/; Zl.zl(gf — 8% (4.3)

Finally, we obtain the regularization solution through solving an inverse problem, and
the regularized solution is compared with the exact solution.

In our experiments, we only consider the regularization parameter p is chosen by
(3.30) with T = 1.1 under a posteriori regularization parameter choice rule, which is
independent of a priori bound of the exact solution is more useful in practical issues.

Example 4.1 Consider a piecewise smooth source:

0, —o00 <x < —1,
fx) = 1—x2, -1 <x <,
0, 1l <x <o0.
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1.2

Exact solution

D> ¢=0.001
— % =001

The exact solution and its approximation

Fig.1 The comparison of the numerical effects between the exact solution and its approximation solution,
a=0.5,0=0.1, p=2:€ =0.001, 0.01 with Example 4.1

In Fig. 1, the numerical results for simplified generalized Tikhonov regular-
ization method under a posteriori parameter choice rule for various noise levels
€ = 0.001,0.01 in case of « = 0.5,0 = 0.1, p = 2 with Example 4.1 are shown.

In Fig. 2, the numerical results for simplified generalized Tikhonov regularization
method under a posteriori parameter choice rule for various noise levels « = 1.4, 0.4
in case of 6 = 0.1, € = 0.001, p = 2 with Example 4.1 are shown.

Example 4.2 Consider the following discontinuous source:

0
Jy =31
0

In Fig. 3, the numerical results for simplified generalized Tikhonov regular-
ization method under a posteriori parameter choice rule for various noise levels
€ = 0.001,0.01 in case of « = 0.5, 6 = 0.1, p = 2 with Example 4.2 are shown.

In Fig. 4, the numerical results for simplified generalized Tikhonov regularization
method under a posteriori parameter choice rule for various noise levels « = 1.4, 0.4
in case of 6 = 0.1, ¢ = 0.001, p = 2 with Example 4.2 are shown.

Figures 1 and 3 show that the smaller the parameter € is, the better the computed
approximation is, and Figs. 2 and 4 show the smaller the parameter « is, the better
the computed approximation is. Moreover, Figs. 1, 2, 3, and 4 also show that the
posteriori parameter choice rule works well. Finally, these tests illustrate that the
proposed method is not only effective for the continuous example, but it works well
for the discontinuous example.
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1.2
Exact solution
1L > a=14 ]
5/ R —% - a=0.4

0.8

0.6

0.4

0.2

The exact solution and its approximation

Fig.2 The comparison of the numerical effects between the exact solution and its approximation solution,
6 =0.1,e =0.001, p =2: o = 1.4, 0.4 with Example 4.1

1.2

0.8

0.6

0.4

0.2

Exact solution
—P--€=0.001
— - ¢=0.01

The exact solution and its approximation

_0 2 Il Il Il Il Il Il Il Il Il
-5 -4 -3 -2 -1 0 1 2 3 4 5

Fig.3 The comparison of the numerical effects between the exact solution and its approximation solution,
a=0.5,0=0.1, p=2:¢ =0.001,0.01 with Example 4.2

5 Conclusion
In this paper, we provide a simplified generalized Tikhonov regularization method to

solve an inverse space-dependent source of space-fractional diffusion equation. The
convergence estimates are proved based on a priori and a posteriori parameter choice
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1.2 T T T T T T T T T

0.8 B Bt J

Exact solution
—D-a=14
—%- =04

The exact solution and its approximation

Fig.4 The comparison of the numerical effects between the exact solution and its approximation solution,
6 =0.1,¢ =0.001, p = 2: « = 1.4, 0.4 with Example 4.2

rules, respectively. From Theorems 3.7 and 3.14, we know that the convergence order
of the proposed method under a posteriori parameter choice rule is better than one of
the proposed method under a priori parameter choice rule. Numerical examples show
that the proposed method is effective and stable.
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