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Abstract
In this paper, a new extragradient algorithm is presented to solve the pseudomono-
tone equilibrium problem with a Bregman–Lipschitz-type condition. The superiority
of this algorithm is that it can be performed without any precedent information about
the Bregman–Lipschitz coefficients. The weak convergence of the algorithm is deter-
minate under mild assumption, and the strong convergence will be established as the
bifunction equilibrium is satisfied in different additional assumptions. In conclusion,
we can use the algorithm to find a solution of the variational inequality problem. At
the end, several numerical examples are exhibited that demonstrate the efficiency of
our method compared to the related methods in the studies.

Keywords Bregman distance · Equilibrium problem · Bregman–Lipschitz-type
condition · Bregman monotone

Mathematics Subject Classification 47H05 · 47H09 · 47H10

1 Introduction

Throughout this paper, we assume that X is a reflexive real Banach space and C is
a nonempty closed and convex subset of X unless otherwise stated. We shall denote
the dual space of X by X∗. The norm and the duality pairing between X and X∗ are,
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respectively, denoted by ‖.‖ and 〈., .〉, and R stands for the set of real numbers. The
equilibrium problem for a bifunction f : C × C → R is stated as follows:

Find x∗ ∈ C such that f (x∗, y) ≥ 0, ∀y ∈ C . (1)

The set of solutions of (1) is denoted by EP( f ).
In some nonlinear analysis problems such as complementarity, fixed point, Nash

equilibria, optimization, saddle point and variational inequality, it is common that these
interesting and confusing problems can be reformulated as the equilibrium problems
(see, for instance, [7]), which caused the problem (EP) to become an interesting area
in recent years. Also, the approximation methods to solutions of problem (EP) plus
the theoretical results of solution are interesting. The proximal point method [27,33]
is a well-known method for solving the problem (EP) that substitutes the original
problem with a family of regularization equilibrium subproblems which can easily be
solved. Using Bregman distance, Reich and Sabach [40] presented two algorithms for
approximating a point of (EP) in reflexive Banach spaces.

The variational inequality problem is a particular part of the equilibrium prob-
lem. Korpelevich [28] presented an extragradient method for solving the variational
inequality in Euclidean space that twometric projections on feasible setsmust be found
at each iterative step. This method was extended in Hilbert spaces by Nadezhkina and
Takahashi [34]. In this direction, see also [18,19,21,27,42,43,45,46].

In this paper, we are interested in the proximal-like method [16] which is also called
the extragradient method [36] due to the early contributions on the saddle point prob-
lems in [28]. The convergence of the extragradient method is established in [36] under
the assumptions that the bifunction is pseudomonotone and satisfies a Lipschitz-type
condition presented in [31]. In the extragradient method, at each iterative step two
strongly convex minimization problems on a closed convex constrained set must be
solved. In 2018, a hybrid extragradient method to find a common element of the set
of solutions of pseudomonotone equilibrium problem in reflexive Banach spaces was
proposed by Eskandani et al. [14]. In [14], Bregman–Lipschitz coefficients are neces-
sary to be determined; however, there are some challenges in their estimation. Some of
the iterative algorithms were introduced by Hieu et al. [22] to solve the pseudomono-
tone and Lipschitz-type equilibrium problem in a Hilbert space. The performance of
suggested algorithms is made without the prior information of the Lipschitz-type con-
stants. In the studies [1,17,19,21,23–26,31,32,37–39], there are some other methods
to solve problem (EP).

In this paper, motivated and inspired by the above results, a new extragradient
algorithm is introduced to solve the pseudomonotone equilibrium problem with a
Bregman–Lipschitz-type condition. The superiority of this algorithm is that it can be
performed without any precedent information about the Bregman–Lipschitz coeffi-
cients. The weak convergence of the algorithm is determinate under mild assumption
and the strong convergencewill be established as the bifunction equilibrium is satisfied
in different additional assumptions. In conclusion, we can use the algorithm to find a
solution of the variational inequality problem. At the end, several numerical examples
are exhibited that demonstrate the efficiency of our method compared to the related
methods in the studies.
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2 Preliminaries and Lemmas

Let {xn} be a sequence in X and x ∈ X . Weak convergence of {xn} to x is denoted
by xn⇀x, and strong convergence is denoted by xn → x . In this paper, we assume
that g : X → (−∞,∞] is a proper convex and lower semicontinuous function. We
denote by dom g, the domain of g, that is, the set {x ∈ X : g(x) < ∞}. Let x ∈ int
dom g, the subdifferential of g at x is the convex set defined by:

∂g(x)=:{x∗ ∈ X∗ : g(x) + 〈y − x, x∗〉 ≤ g(y), ∀y ∈ X},

and the Fenchel conjugate of g is the convex function

g∗ : X∗ → (−∞,∞], g∗(x∗) = sup{〈x, x∗〉 − g(x) : x ∈ X}.

It is well known that x∗ ∈ ∂g(x) is equivalent to

g(x) + g∗(x∗) = 〈x, x∗〉. (2)

It is easy to see that g∗ is proper convex and lower semicontinuous function. The
function g is called to be cofinite if dom g∗ = X∗.

Let g◦(x, y) be the right-hand derivative of g at x ∈ int dom g in the direction y,
that is,

g◦(x, y):= lim
t↓0

g(x + t y) − g(x)

t
. (3)

If the limit as t → 0 in (3) exists for each y, then the function g is said to be Gâteaux
differentiable at x . In this case, the gradient of g at x is the linear function ∇g(x),
which is defined by 〈y,∇g(x)〉:=g◦(x, y) for all y ∈ X . The function g is said to be
Gâteaux differentiable if it is Gâteaux differentiable at each x ∈ int dom g. When
the limit as t → 0 in (3) is obtained uniformly for each y ∈ X with ‖y‖ = 1, we
say that g is Fréchet differentiable at x . At the end, g is said to be uniformly Fréchet
differentiable on a subset C of X if the limit is obtained uniformly for x ∈ C and
‖y‖ = 1.

The function g is said to be Legendre if it satisfies the following two conditions:

(L1) int dom g �= ∅ and ∂g is single-valued on its domain.
(L2) int dom g∗ �= ∅ and ∂g∗ is single-valued on its domain.

Since X is reflexive, we have (∂g)−1 = ∂g∗ (see [8]). This fact, when joined
together conditions (L1) and (L2), intimates the following equalities:

∇g = (∇g∗)−1, ran (∇g) = dom (∇g∗) = int dom g∗,
ran (∇g∗) = dom (∇g) = int dom g.

It is well known that if g is Legendre function, then the functions g and g∗ are Gâteaux
differentiable and strictly convex in the interior of their respective domains [3]. When
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the Banach space X is smooth and strictly convex, in particular, a Hilbert space,
the function g(.) = 1

p‖.‖p with p ∈ (1,+∞), is Legendre [3]. Suppose that g :
X → (−∞,+∞] is Gâteaux differentiable. The function Dg: dom g× int dom
g → [0,+∞) defined by:

Dg(y, x):=g(y) − g(x) − 〈y − x,∇g(x)〉,

is called the Bregman distance with respect to g. It should be mentioned that Dg is not
a distance in the usual sense of the term. Obviously, Dg(x, x) = 0, but Dg(y, x) = 0
may not intimate x = y. In our case, when g is Legendre this indeed holds (see [3],
Theorem 7.3(vi), p. 642). In general, Dg is not symmetric and does not satisfy the
triangle inequality. However, Dg satisfies the three-point identity

Dg(x, y) + Dg(y, z) − Dg(x, z) = 〈x − y,∇g(z) − ∇g(y)〉,

and four-point identity

Dg(x, y) + Dg(w, z) − Dg(x, z) − Dg(w, y) = 〈x − w,∇g(z) − ∇g(y)〉,

for any x, w ∈ dom g and y, z ∈ int dom g.
The modulus of total convexity at x ∈ int dom g is the function υg(x, .) :

[0,+∞) → [0,∞] defined by:

υg(x, t) := inf{Dg(y, x) : y ∈ dom g, ‖y − x‖ = t}.

If for any t > 0, υg(x, t) is positive, then the function g is called totally convex at x .
This concept was first presented by Butnariu and Iusem in [10]. Let C be a nonempty
subset of X . The modulus of total convexity of g on C is defined by:

υg(C, t) = inf{υg(x, t) : x ∈ C ∩ int dom g}.

The function g is termed totally convex on bounded subsets if υg(C, t) is positive for
any t > 0 and for any nonempty and bounded subset C .

Lemma 1 [39] If g : X → R is uniformly Fréchet differentiable and bounded on
bounded subsets of X, then ∇g is uniformly continuous on bounded subsets of X from
the strong topology of X to the strong topology of X∗.

Lemma 2 [10] The function g : X → (−∞,+∞] is totally convex on bounded
subsets of X if and only if for any two sequences {xn} and {yn} in int dom g and dom
g, respectively, such that the first one is bounded,

lim
n→∞ Dg(yn, xn) = 0 �⇒ lim

n→∞ ‖yn − xn‖ = 0.

Lemma 3 [41] Let the function g : X → R be Gâteaux differentiable and totally
convex at a point x ∈ int dom g. Let {xn} ⊂ dom g. If {Dg(xn, x)} is bounded, then
the sequence {xn} is also bounded.
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Lemma 4 [41] Let g : X → R be a Gâteaux differentiable function such that ∇g∗ is
bounded on bounded subsets of dom g∗. Let x0 ∈ X and {xn} ⊂ X. If {Dg(x0, xn)} is
bounded, then the sequence {xn} is also bounded.
A Bregman projection [9,15] of x ∈ int dom g onto the nonempty closed convex set
C ⊂ int dom g is the unique vector

←−−
proj gC (x) ∈ C satisfying

Dg(
←−−
proj gC (x), x) = inf{Dg(y, x) : y ∈ C}.

Lemma 5 [13] Let the function g : X → (−∞,+∞] be Gâteaux differentiable and
totally convex on int dom g. Let x ∈ int dom g and C ⊂ int dom g be a
nonempty closed convex set. If x̂ ∈ C, then the following statements are equivalent:

(i) The vector x̂ ∈ C is the Bregman projection of x onto C.
(ii) The vector x̂ ∈ C is the unique solution of the variational inequality

〈z − y,∇g(x) − ∇g(z)〉 ≥ 0, ∀y ∈ C .

(iii) The vector x̂ is the unique solution of the inequality

Dg(y, z) + Dg(z, x) ≤ Dg(y, x), ∀y ∈ C .

Let B and S be the closed unit ball and the unit sphere of a Banach space X . Let
r B = {z ∈ X : ‖z‖ ≤ r} for all r > 0. Then, the function g : X → R is said to be
uniformly convex on bounded subsets (see [48]) if ρr (t) > 0 for all r , t > 0, where
ρr : [0,∞) → [0,∞] is defined by:

ρr (t) = inf
x,y∈r B,‖x−y‖=t,α∈(0,1)

αg(x) + (1 − α)g(y) − g(αx + (1 − α)y)

α(1 − α)
,

for all t ≥ 0. The function ρr is called the gauge of uniform convexity of g. It is known
that ρr is a nondecreasing function.

Lemma 6 [35] Let X be a Banach space, r > 0 be a fixed number and g : X → R be
a uniformly convex function on bounded subsets of X. Then,

g

(
n∑

k=0

αk xk

)
≤

n∑
k=0

αkg(xk) − αiα jρr (‖xi − x j‖),

for all i, j ∈ {0, 1, 2, ..., n}, αk ∈ (0, 1), xk ∈ r B and k = 0, 1, 2, ..., n with∑n
k=0 αk = 1, where ρr is the gauge of uniform convexity of g.

The function g is also said to be uniformly smooth on bounded subsets (see [48])
if limt↓0 σr (t)

t = 0 for all r > 0, where σr : [0,∞) → [0,∞] is defined by:

σr (t) = sup
x∈r B,y∈S,α∈(0,1)

αg(x + (1 − α)t y) + (1 − α)g(x − αt y) − g(x)

α(1 − α)
,
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for all t ≥ 0. A function g is said to be supercoercive if lim‖x‖→∞ g(x)
‖x‖ = +∞.

Theorem 1 [48] Let g : X → R be a supercoercive and convex function. Then, the
following are equivalent:

(i) g is bounded on bounded subsets and uniformly smooth on bounded subsets of
X;

(ii) g is Fréchet differentiable and ∇g is uniformly norm-to-norm continuous on
bounded subsets of X;

(iii) dom g∗ = X∗, g∗ is supercoercive and uniformly convex on bounded subsets of
X∗.

Theorem 2 [48] Let g : X → R be a convex function which is bounded on bounded
subsets of X. Then, the following are equivalent:

(i) g is supercoercive and uniformly convex on bounded subsets of X;
(ii) dom g∗ = X∗, g∗ is bounded on bounded subsets and uniformly smooth on

bounded subsets of X∗;
(iii) dom g∗ = X∗, g∗ is Fréchet differentiable and ∇g∗ is uniformly norm-to-norm

continuous on bounded subsets of X∗.

Theorem 3 [3] (Supercoercivity) Let g : X → (−∞,+∞] be a proper convex and
lower semicontinuous function. Then, the following are equivalent:

(i) g is supercoercive;
(ii) g∗ is bounded above on bounded sets;
(iii) dom g∗ = X∗ and ∂g∗ maps bounded sets to bounded sets.

Theorem 4 [11] Suppose that g : X → (−∞,+∞] is a Legendre function. The
function g is uniformly convex on bounded subsets of X if and only if g is totally
convex on bounded subsets of X.

A bifunction f satisfies a Bregman–Lipschitz-type condition [14] if there exist two
positive constants c1, c2 such that

f (x, y) + f (y, z) ≥ f (x, z) − c1Dg(y, x) − c2Dg(z, y), ∀x, y, z ∈ C,

where g : X → (−∞,+∞] is a Legendre function. The constants c1 and c2 are called
Bregman–Lipschitz coefficients.

Let g : X → (−∞,+∞] be a Gâteaux differentiable function, recall that the
proximal mapping of a proper convex and lower semicontinuous function f : C →
(−∞,+∞] with respect to g is defined by:

proxgf (x):=argmin
{
f (y) + Dg(y, x) : y ∈ C

}
, x ∈ X .

Applying the tools used in [12], we can state the following lemma.
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Lemma 7 Let g : X → (−∞,+∞] be a Legendre and supercoercive function. Let
x ∈ int dom g, C ⊂ int dom g and f : C → (−∞,∞] be a proper convex and lower
semicontinuous function. Then,

〈
proxgf (x) − y,∇g(x) − ∇g(proxgf (x))

〉 + f (y) − f (proxgf (x)) ≥ 0, ∀y ∈ C .

(4)

3 Weak Convergence

In this section, we first establish some crucial lemmas and then we introduce a new
extragradient algorithm (Algorithm 1) for solving pseudomonotone equilibrium prob-
lem with the Bregman–Lipschitz-type conditions. The algorithm is explicit in the
sense that it is done without previously knowing the Bregman–Lipschitz coefficients
of bifunction. This is quite interesting in the case where these coefficients are unknown
or even demanding to approximate. We prove a weak convergence theorem (Theorem
5 ) for approximating a point of EP. For the sake of simplicity in the presentation,
we will apply the symbol [t]+ = max {0, t} and assume that 0

0 = +∞ and a
0 = +∞

(a > 0).
Motivated by Proposition 2.5 of [29], we prove the following lemma.

Lemma 8 Let the function g : X → (−∞,+∞] be Gâteaux differentiable and totally
convex on bounded subset of X and let {xn} and {yn} be two sequences in int dom g
and dom g, respectively. If {xn} and {Dg(yn, xn)} are bounded, then the sequence {yn}
is bounded too.

Proof Assume that the sequence {yn} is not bounded. Then, there exists a subsequence
{ynk } of {yn} such that lim

k→∞ ‖ynk‖ = +∞. Consequently, lim
k→∞ ‖xnk − ynk‖ = +∞

and there exists some k0 > 0 such that ‖xnk − ynk‖ > 1 for all k > k0. So, using [10,
Proposition 1.2.2], for all k > k0 we get

υg(xnk , ‖xnk − ynk‖) ≥ ‖xnk − ynk‖υg(xnk , 1). (5)

Since g is totally convex on bounded subset of X , letting k → ∞ in (5), we get that
{υg(xn, ‖xn − yn‖)}n∈N is not bounded. Since, by definition,

υg(xn, ‖xn − yn‖) ≤ Dg(yn, xn),

for all n ∈ N, this implies that the sequence {Dg(yn, xn)}n∈N cannot be boundedwhich
is a contradiction. ��
Lemma 9 [30] Let g : X → R be a Legendre function such that ∇g is weakly
sequentially continuous and ∇g∗ is bounded on bounded subsets of dom g∗. Let {xn}
be a sequence in X and C be a nonempty subset of X . Suppose that for every x ∈ C,

{Dg(x, xn)} converges and every weak cluster point of {xn} belongs to C. Then, {xn}
converges weakly to a point in C.
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Proof It is suffice to show that there is exactly one weak subsequential limit of {xn}.
UsingLemma4,we get that {xn} is bounded. So there is at least oneweak subsequential
limit of {xn}. Suppose that x and y are two weak subsequential limits of {xn} in
C, say xkn⇀x and xln⇀y. Since ∇g is weakly sequentially continuous, we have
∇g(xkn )⇀∇g(x) and ∇g(xln )⇀∇g(y). Since x and y belong to C, the sequences
{Dg(x, xn)} and {Dg(y, xn)} converge. In turn, since

Dg(x, y) + Dg(y, xn) − Dg(x, xn) = 〈x − y,∇g(xn) − ∇g(y)〉,

passing to the limit along xkn and along xln , respectively, yields

〈x − y,∇g(x) − ∇g(y)〉 = 〈x − y,∇g(y) − ∇g(y)〉 = 0.

Thus, Dg(x, y) + Dg(y, x) = 0 and hence x = y. ��
Definition 1 [2] Let g : X → (−∞,+∞] be a Gâteaux differentiable function and
C be a nonempty subset of X .A sequence {xn} in X is called Bregman monotone with
respect to C if the following conditions hold:

(i) C ∩ dom g �= ∅.

(ii) {xn} ⊂ int dom g.
(iii) Dg(x, xn+1) ≤ Dg(x, xn), ∀x ∈ C ∩ dom g, ∀n ∈ N.

Lemma 10 Let g : X → R be a Legendre function such that∇g is weakly sequentially
continuous and∇g∗ is bounded on bounded subsets of dom g∗. Let {xn} be a sequence
in X and C be a nonempty subset of X. Suppose that {xn} is Bregman monotone with
respect to C and every weak cluster point of {xn} belongs to C. Then, {xn} converges
weakly to a point in C.

Proof It deduces immediately from Lemma 9. ��
Lemma 11 Let g : X → R be a Legendre function and totally convex on bounded
subset of X such that∇g∗ is bounded on bounded subsets of dom g∗. Let {xn} ⊂ X be a

Bregmanmonotone sequence with respect to C . Then, {←−−
proj gC (xn)} converges strongly

to some z ∈ C . Furthermore, if xn⇀x and∇g is weakly sequentially continuous, then
x = z.

Proof Let un = ←−−
proj gC (xn) and m > n. Since

Dg(um, xm) ≤ Dg(un, xm) ≤ Dg(un, xn),

the sequence {Dg(un, xn)} is convergent and hence it is bounded. Using Lemmas 4
and 8, the sequence {un} is bounded too. Set r = sup{‖un‖, n ∈ N}. So, using Lemma
6 and Theorem 4, we have

Dg(
un + um

2
, xm) =g(

un + um
2

) − g(xm) − 〈un + um
2

− xm,∇g(xm)〉

≤1

2
g(un) + 1

2
g(um) − 1

4
ρr (‖un − um‖) − g(xm)

123



An Iterative Explicit Algorithm… 4307

− 〈un + um
2

− xm,∇g(xm)〉

=1

2
Dg(un, xm) + 1

2
Dg(um, xm) − 1

4
ρr (‖un − um‖),

and then,

1

4
ρr (‖un − um‖) ≤1

2
Dg(un, xm) + 1

2
Dg(um, xm) − Dg(

un + um
2

, xm)

≤1

2
Dg(un, xm) + 1

2
Dg(um, xm) − Dg(um, xm)

≤1

2
Dg(un, xn) − 1

2
Dg(um, xm).

Therefore, ρr (‖un − um‖) → 0 as m, n → ∞. Now, we show that

lim
n,m→∞ ‖un − um‖ = 0.

If this were not the case, there exist ε0 > 0 and subsequences {nk} and {mk} of {n}
and {m}, respectively, such that ‖unk − umk‖ ≥ ε0. Since ρr is nondecreasing, we get

ρr (ε0) ≤ ρr (‖unk − umk‖).

Letting k → ∞, we have ρr (ε0) ≤ 0. But this yields a contradiction to the uniform
convexity of g on bounded subsets of X . Therefore, {un} is a Cauchy sequence and
hence converges strongly to some z ∈ C .

Now, let xn⇀x and∇g be weakly sequentially continuous. Using Lemma 5, we have

〈∇g(xn) − ∇g
(←−−
proj gC (xn)

)
, x − ←−−

proj gC (xn)
〉 ≤ 0.

Letting n → ∞, we get 〈∇g(x) − ∇g(z), x − z〉 ≤ 0. So, Dg(x, z) + Dg(z, x) ≤ 0
and hence x = z. This completes the proof. ��
In order to obtain the convergence of our method, we consider the following blanket
assumptions imposed on the bifunction f .

(A1) f is pseudomonotone on C , i.e., for all x, y ∈ C ,

f (x, y) ≥ 0 ⇒ f (y, x) ≤ 0.

(A2) f satisfies the Bregman–Lipschitz-type condition.
(A3) for any sequence {xn} ⊂ C and x ∈ C such that xn⇀x and lim supn→∞ f (xn, y) ≥

0, for all y ∈ C , then f (x, y) ≥ 0 [26].
(A4) f (x, .) is convex, lower semicontinuous and subdifferentiable on C for every

fixed x ∈ C . A bifunction f is called monotone on C if for all x, y ∈ C,

f (x, y) + f (y, x) ≤ 0. It is evident that any monotone bifunction is a
pseudomonotone one, but not vice versa. A mapping A : C → X∗ is
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pseudomonotone if and only if the bifunction f (x, y) = 〈y − x, A(x)〉 is
pseudomonotone on C (see [47]).

Lemma 12 [6] If the bifunction f satisfying conditions A1 − A4, then E P( f ) is
closed and convex.

Now,we present the following algorithm andwe prove aweak convergence theorem
(Theorem 5) and a strong convergence theorem (Theorem 6) for approximating a point
of EP( f ).

Algorithm 1 (Extragradient algorithm for EP)

Initialization. Choose x0 ∈ C, λ0 > 0 and μ ∈ (0, 1).
Iterative steps: Assume that xn ∈ C , λn (n ≥ 0) are known. Compute
xn+1 and λn+1 as follows:

yn = proxg
λn f (xn ,.)

(xn),

xn+1 = proxg
λn f (yn ,.)

(xn),

and set

λn+1 = min
{
λn ,

μ(Dg(yn , xn) + Dg(xn+1, yn))

[ f (xn , xn+1) − f (xn , yn) − f (yn , xn+1)]+
}
.

Stopping criterion: If yn = xn , then stop and xn is a solution of EP( f ).

Remark 1 Under hypothesis (A2), there exist some constants c1 > 0 and c2 > 0 such
that

f (xn, xn+1) − f (xn, yn) − f (yn, xn+1) ≤c1Dg(yn, xn) + c2Dg(xn+1, yn)

≤max{c1, c2}
(
Dg(yn, xn) + Dg(xn+1, yn)

)
.

Thus, from the definition of λn , we see that this sequence is bounded from below.
Indeed, if λ0 ≤ μ

max{c1,c2} , then {λn} is bounded from below by λ0; otherwise, {λn}
is bounded from below by μ

max{c1,c2} . Moreover, the sequence {λn} is nonincreasing.
Therefore, there is a real λ > 0 such that λn → λ, as n → ∞.

Theorem 5 Let g : X → R be a Legendre and supercoercive function which is
bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of
X and let ∇g be weakly sequentially continuous. Under conditions (A1) − (A4), the
sequence {xn} generated by Algorithm 1 converges weakly to x̄ ∈ EP( f ), where

x̄ = limn→∞
←−−
proj gE P( f )(xn).

Proof It follows from Lemma 7 and the definition of xn+1 that

〈xn+1 − y,∇g(xn) − ∇g(xn+1)〉 ≥ λn f (yn, xn+1) − λn f (yn, y), ∀y ∈ C . (6)

From the definition of λn+1, we get

f (xn, xn+1) − f (xn, yn) − f (yn, xn+1) ≤ μ
(
Dg(yn, xn) + Dg(xn+1, yn)

)
λn+1

,
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which, by multiplying both sides of it by λn, implies that

λn f (yn, xn+1) ≥ λn
(
f (xn, xn+1) − f (xn, yn)

) − μλn
(
Dg(yn, xn) + Dg(xn+1, yn)

)
λn+1

. (7)

Combining relations (6) and (7), we obtain

〈
xn+1 − y,∇g(xn) − ∇g(xn+1)

〉 ≥λn
(
f (xn, xn+1) − f (xn, yn)

) − λn f (yn, y)

− μλn
(
Dg(yn, xn) + Dg(xn+1, yn)

)
λn+1

. (8)

Similarly, from Lemma 7 and the definition of yn we obtain

〈
yn − xn+1,∇g(yn) − ∇g(xn)

〉 ≤ λn
(
f (xn, xn+1) − f (xn, yn)

)
. (9)

Using (8) and (9), we have

〈
xn+1 − y,∇g(xn) − ∇g(xn+1)

〉 ≥〈
yn − xn+1,∇g(yn) − ∇g(xn)

〉 − λn f (yn, y))

− μλn
(
Dg(yn, xn) + Dg(xn+1, yn)

)
λn+1

. (10)

Applying the three-point identity of Bregman distance in (10) and a simple calculation,
we get

Dg(y, xn+1) ≤Dg(y, xn) − (1 − μλn

λn+1
)Dg(yn, xn) − (1 − μλn

λn+1
)Dg(xn+1, yn))

+ λn f (yn, y). (11)

Let x∗ ∈ EP( f ). Since f is pseudomonotone, f (yn, x∗) ≤ 0. Hence, substituting
y = x∗ into (11), we obtain

Dg(x
∗, xn+1) ≤ Dg(x

∗, xn) − (1 − μλn

λn+1
)Dg(yn, xn) − (1 − μλn

λn+1
)Dg(xn+1, yn).

(12)

Let ε ∈ (0, 1 − μ) be some fixed number. Applying Remark 1, λn → λ > 0 and
hence

lim
n→∞(1 − μλn

λn+1
) = 1 − μ > ε > 0.

Thus, there exists n0 ∈ N such that

1 − μλn

λn+1
> ε > 0, ∀n ≥ n0. (13)
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4310 G. Z. Eskandani , M. Raeisi

From (12) and (13), we obtain

Dg(x
∗, xn+1) ≤ Dg(x

∗, xn) − ε(Dg(yn, xn) + Dg(xn+1, yn)), (14)

or

an+1 ≤ an − bn,

where an = Dg(x∗, xn) and bn = ε(Dg(yn, xn) + Dg(xn+1, yn)). Thus, there exists
the limit of {an} and limn→∞ bn = 0. From Lemma 2, we have

lim
n→∞ ‖yn − xn‖ = lim

n→∞ ‖xn+1 − yn‖ = 0, (15)

and hence limn→∞ ‖xn+1 − xn‖ = 0. Therefore, from Lemma 1 we have

lim
n→∞ ‖∇g(xn+1) − ∇g(xn)‖ = 0. (16)

From Theorems 2 and 4, g∗ is bounded on bounded subsets of X∗ and hence ∇g∗ is
also bounded on bounded subsets of X∗. From this, (14) and Lemma 4, the sequence
{xn} is bounded. Now, we prove that each weak cluster point of {xn} is in EP( f ).
Suppose that x is a weak cluster point of {xn}. That is, there exists the subsequence
{xnk } of {xn} such that xnk⇀x as k → ∞. Since ‖xn − yn‖ → 0 as n → ∞, we also
have that ynk⇀x as k → ∞. Passing to the limit in (11) as n = nk, we obtain

lim sup
k→∞

f (ynk , y) ≥1

λ
lim sup
k→∞

(Dg(y, xnk+1) − Dg(y, xnk ))

≥1

λ
lim sup
k→∞

(Dg(y, xnk+1) − Dg(y, xnk ) − Dg(xnk , xnk+1))

=1

λ
lim
k→∞〈xnk − y,∇g(xnk+1) − ∇g(xnk )〉.

From above inequality, (16), boundedness of {xn} and (A3),we obtain f (x, y) ≥ 0 for
all y ∈ C . Hence, x ∈ EP( f ). Using (12) and (13), we get that {xn}n≥n0 is Bregman
monotone with respect to EP( f ). Thus, applying Lemmas 10, 11 and 12, we get the
desired result. ��

4 Strong Convergence

In this section, we analyze the strong convergence of the sequence generated by Algo-
rithm 1 to an element of EP( f ) with some various extra assumptions on the problem.
In the following theorem, we also assume that the bifunction f satisfies the following
condition:
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(A5) for all bounded sequences {xn} and {yn} in C,

‖xn − yn‖ → 0 �⇒ f (xn, yn) → 0.

Definition 2 A bifunction f is called strongly pseudomonotone on C , if there exists
β > 0 such that whenever f (x, y) ≥ 0, then f (y, x) ≤ −β‖x − y‖2 for all x, y ∈ C .

Definition 3 A function h : X → (−∞,+∞] is called uniformly convex with mod-
ulus ψ : [0,+∞) → [0,+∞] if ψ is increasing, vanishes only at 0, and for each pair
x, y ∈ dom h and each α ∈ (0, 1),

h(αx + (1 − α)y) ≤ αh(x) + (1 − α)h(y) − α(1 − α)ψ(‖x − y‖). (17)

If (17) holds withψ = σ
2 ‖.‖2 for some σ > 0, then h is strongly convex with constant

σ . We say that h is strongly concave whenever −h is strongly convex.

Motivated by Theorem 4.3 of [26], we prove the following theorem.

Theorem 6 Let g : X → R be a Legendre and supercoercive function which is
bounded, uniformly Fréchet differentiable and totally convex on bounded subsets of
X and let hypotheses (A1)− (A5) be satisfied. If each one of the following conditions
is satisfied:

(i) f is strongly pseudomonotone,
(ii) for all x ∈ C, f (x, .) is uniformly convex with modulus ψ ,
(iii) for all y ∈ C, f (., y) is strongly concave with constant σ, then the sequence

{xn} made by Algorithm 1 is strongly convergent to an element of E P( f ).

Proof Observe that in Theorem 5, we proved that all cluster points of {xn} belong
to EP( f ). Now, if {xnm } and {xkm } are arbitrary subsequences of {xn} that converge
strongly to p and q, respectively, then

〈p − q,∇g(xnm ) − ∇g(xkm )〉
= Dg(p, xkm ) + Dg(q, xnm ) − Dg(p, xnm ) − Dg(q, xkm ).

From (14), limn→∞ Dg(p, xn) and limn→∞ Dg(q, xn) exist. Using this, Lemma 1
and taking limit when m → ∞, we get p = q. That is, {xn} converges strongly to a
point of EP( f ).
Therefore, in each item, it remains to be proved that if xnk⇀x∗, then xnk → x∗.
Suppose that xnk⇀x∗. Consequently by (15), ynk⇀x∗. Substituting y = x∗ into (6),
we have

0 ≤λnk f (ynk , x
∗) − λnk f (ynk , xnk+1) + 〈xnk+1 − x∗,∇g(xnk ) − ∇g(xnk+1)〉

≤λnk f (ynk , x
∗) − λnk f (ynk , xnk+1) + ‖xnk+1 − x∗‖‖∇g(xnk ) − ∇g(xnk+1)‖.
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From (15), (16), Remark 1, condition A5 and boundedness of {xn}, we get

lim inf
k→∞ f (ynk , x

∗) ≥ 0. (18)

(i) Since f (x∗, ynk ) ≥ 0, there is a β > 0 such that f (ynk , x
∗) ≤ −β‖ynk − x∗‖2.

This together with (18) implies that

0 ≤ lim inf
k→∞ f (ynk , x

∗) ≤ lim inf
k→∞ (−β‖ynk − x∗‖2) ≤ −β lim sup

k→∞
‖ynk − x∗‖2.

Therefore, ynk → x∗, and hence, xnk → x∗.
(ii) Let α ∈ (0, 1) and set wnk = αynk + (1 − α)x∗, for all n ∈ N. Replacing y with
wnk in (6) and using uniform convexity of f (ynk , wnk ), we get

0 ≤λnk f (ynk , wnk ) − λnk f (ynk , xnk+1) + 〈xnk+1 − wnk ,∇g(xnk ) − ∇g(xnk+1)〉
≤λnkα f (ynk , ynk ) + λnk (1 − α) f (ynk , x

∗) − λnkα(1 − α)ψ(‖ynk − x∗‖)
− λnk f (ynk , xnk+1) + ‖xnk+1 − wnk‖‖∇g(xnk ) − ∇g(xnk+1)‖.

Hence, we have

λnkα(1 − α)ψ(‖ynk − x∗‖) ≤ −λnk f (ynk , xnk+1)

+ ‖xnk+1 − wnk‖‖∇g(xnk ) − ∇g(xnk+1)‖.

Since limn→∞ λn > 0, boundedness of the sequences {xn}, {wn}, condition A5 and
(16) imply that limk→∞ ψ(‖ynk − x∗‖) = 0. Applying a similar discussion to the one
utilized in the proof of Lemma 11 , we deduce that ynk → x∗ and hence xnk → x∗.
(iii) Let α ∈ (0, 1) and set wnk = αynk + (1 − α)x∗, for all n ∈ N. Then, since
f (wnk , x

∗) is strongly concave, we have

α f (ynk , x
∗) + (1 − α) f (x∗, x∗) + 1

2
α(1 − α)σ‖ynk − x∗‖2 ≤ f (wnk , x

∗) ≤ 0.

Therefore, we get f (ynk , x
∗) ≤ − 1

2σ(1 − α)‖ynk − x∗‖2. Next, similar to item (i),
we get the desired result. ��
Remark 2 It is valuable to mention that in Theorem 6, unlike Theorem 5, we do not
need that ∇g to be weakly sequentially continuous.

5 Application

In this section, we study the specific equilibrium problem related to the function f
defined for every x, y ∈ C by f (x, y) = 〈y − x, Ax〉 with A : C → X∗. Doing so,
we achieve the conventional variational inequality:
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Find x∗ ∈ C such that 〈y − x∗, Ax∗〉 ≥ 0, ∀y ∈ C . (19)

The set of solutions of (19) is denoted by V I (A,C).

Lemma 13 [14] Let C be a nonempty closed convex subset of a reflexive Banach space
X, A : C → X∗ be a mapping and g : X → R be a Legendre function. Then,

←−−
proj gC (∇g∗[∇g(x) − λA(y)]) = argminw∈C

{
λ〈w − y, A(y)〉 + Dg(w, x)

}
,

for all x ∈ X , y ∈ C and λ ∈ (0,+∞).

Let X be a real Banach space and 1 < q ≤ 2 ≤ p with 1
p + 1

q = 1. The modulus
of convexity δX : [0, 2] → [0, 1] is defined by:

δX (ε) = inf{1 − ‖x + y‖
2

: ‖x‖ = ‖y‖ = 1, ‖x − y‖ ≥ ε}.

X is called uniformly convex if δX (ε) > 0 for any ε ∈ (0, 2], p-uniformly convex if
there is a cp > 0 so that δX (ε) ≥ cpε p for any ε ∈ (0, 2]. The modulus of smoothness
ρX (τ ) : [0,∞) → [0,∞) is defined by:

ρX (τ ) = sup{‖x + τ y‖ + ‖x − τ y‖
2

− 1 : ‖x‖ = ‖y‖ = 1}.

X is called uniformly smooth if limτ→0
ρX (τ )

τ
= 0.

For the p-uniformly convex space, the metric and Bregman distance have the fol-
lowing relation [44]:

τ‖x − y‖p ≤ D 1
p ‖.‖p (x, y) ≤ 〈x − y, J p

X (x) − J p
X (y)〉, (20)

where τ > 0 is fixed number and duality mapping J p
X : X → 2X

∗
is defined by:

J p
X (x) = { f ∈ X∗, 〈x, f 〉 = ‖x‖p, ‖ f ‖ = ‖x‖p−1},

for every x ∈ X . It is well known that X is smooth if and only if J p
X is single-valued

mapping of X into X∗. We also know that X is reflexive if and only if J p
X is surjective,

and X is strictly convex if and only if J p
X is one-to-one. Therefore, if X is smooth,

strictly convex and reflexive Banach space, then J p
X is a single-valued bijection and in

this case, J p
X = (JqX∗)−1 where JqX∗ is the duality mapping of X∗.

For p = 2, the duality mapping J p
X is called the normalized duality and is denoted

by J . The function φ : X2 → R is defined by:

φ(y, x) =‖ y ‖2 −2〈y, J x〉+ ‖ x ‖2,

for all x, y ∈ X . The generalized projection �C from X onto C is defined by:

�C (x) = argminy∈Cφ(y, x), ∀x ∈ X ,
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where C is a nonempty closed and convex subset of X . Let X be a uniformly convex
and uniformly smooth Banach space and g(.) = 1

2‖.‖2. So, ∇g = J , D 1
2 ‖.‖2(x, y) =

1

2
φ(x, y) and

←−−
Proj

1
2 ‖.‖2
C = �C . For solving the variational inequality (19) in 2-

uniformly convex and uniformly smooth Banach space X , we consider the following
algorithm.

Algorithm 2 (Extragradient algorithm for VI)

Initialization. Choose x0 ∈ C, λ0 > 0 and μ ∈ (0, 1).
Iterative steps: Assume that xn ∈ C , λn (n ≥ 0) are known. Compute
xn+1 and λn+1 as follows:

yn = �C (J−1(J (xn) − λn Axn),

xn+1 = �C (J−1(J (xn) − λn Ayn),

and set

λn+1 = min
{
λn ,

μ(φ(yn , xn) + φ(xn+1, yn))

[〈xn+1 − yn , Axn − Ayn〉]+
}
.

Stopping criterion: If yn = xn , then stop and xn is a solution of V I (A,C).

Corollary 1 Let X be a 2-uniformly convex and uniformly smooth Banach space. Sup-
pose that A : C → X∗ is a strongly pseudomonotone, L-Lipschitz and weak to
norm continuous mapping. Then, the sequence {xn} made by Algorithm 2 is strongly
convergent to an element of V I (A,C).

Proof Let f (x, y):=〈y−x, A(x)〉 for all x, y ∈ C . Since A is L-Lipschitz continuous,
for all x, y, z ∈ C , we have

f (x, y) + f (y, z) − f (x, z) =〈y − x, A(x)〉 + 〈z − y, A(y)〉 − 〈z − x, A(x)〉
= − 〈y − z, A(y) − A(x)〉
≥ − ‖A(y) − A(x)‖‖y − z‖
≥ − L‖y − x‖‖y − z‖
≥ − L

2
‖y − x‖2 − L

2
‖y − z‖2

≥ − L

4τ
φ(y, x) − L

4τ
φ(z, y), by (20).

Therefore, f satisfies the Bregman–Lipschitz-type condition with respect to g(.) =
1
2‖.‖2 and c1 = c2 = L

2τ . Moreover, the strong pseudomonotonicity of A certifies the
strong pseudomonotonicity of f . Conditions A3 and A4 are satisfied automatically.
Using Theorem 6 and Lemma 13, we get the desired result. ��

6 Numerical Experiments

In this section, we will give two numerical examples to show that our algorithm is
efficient and converges faster thanAlgorithm 1 of [22] . The optimization subproblems

123



An Iterative Explicit Algorithm… 4315

in these examples have been solved by FMINCON optimization toolbox in MATLAB
software.

Theorem 7 [5] Let g : X → R be a Gâteaux differentiable function. The function g
is strongly convex with constant σ > 0 if and only if

g(x) − g(y) ≥ 〈x − y,∇g(y)〉 + σ

2
‖x − y‖2, ∀x, y ∈ X .

Proposition 1 [4] Let H be a Hilbert space and g : H → (−∞,+∞] be proper and
let σ > 0. Then, g is strongly convex with constant σ > 0 if and only if g − σ

2 ‖.‖2 is
convex.

Example 1 Let X = R and C = [4, 10] with the usual norm |.|. Define the bifunction
f = C × C → R as follows:

f (x, y) = (6x + 4y − 50)(y − x), ∀x, y ∈ C .

Let p ∈ (1,+∞) and gp(.) = 1
p‖.‖p. Using Proposition 1, we can easily see that the

function gp is strongly convex on C with constant

σp =
{

(p − 1)10p−2, if p < 2,
(p − 1)4p−2, o.w.

(21)

Obviously, the bifunction f satisfies conditions A1, A3 and A4. Furthermore,

f (x, y) + f (y, z) − f (x, z) = 2(z − y)(y − x)

≥ −2|z − y||y − x |
≥ −|z − y|2 − |y − x |2

≥ −2

σp
Dgp (z, y) − 2

σp
Dgp (y, x),

which the last inequality follows from the strong convexity of gp on C . Hence, f
satisfies condition A2. Put λ0 = 1

10 and μ = 3
4 . It can be seen that all the hypotheses

of Theorem 5 are satisfied and EP( f ) = {5}.Using Algorithm 1 with the initial point
x0 = 4, we have the numerical results in Figs. 1 and 2. In cases p = 1.5, 2 and 2.5,
approximate solutions, respectively, are

x9 = 4.9999990, x21 = 4.9999994, x53 = 4.9999990,

with the tolerance ε = 10−6.Therefore, the rate of convergencedecreaseswith increas-
ing p. Note that for g(.) = 1

2‖.‖2 our Algorithm 1 reduces to Algorithm 1 of [22] and

we see that our Algorithm 1 with g(.) = 2
3‖.‖

3
2 converges faster than Algorithm 1 of

[22].
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Fig. 1 Plotting of log ‖xn − xn−1‖ in Example 1

Theorem 8 [5] The quadratic function g(x) = xT Ax + 2bT x + c with A = AT ∈ R
n×n, b ∈ R

n and c ∈ R is strongly convex if and only if A is positive definite and in
that case the strong convexity constant is 2λmin(A), where λmin(A) is the minimum
eigenvalue of A.

Remark 3 Let g(x) = xT Ax +2bT x +c, where A is positive definite, b ∈ R
n , c ∈ R,

then

∇g(x) = 2(Ax + b), g∗(y) = 1

4
(y − 2b)T A−1(y − 2b).

Example 2 Let X = R
3 with the Euclidean norm and

C = {x ∈ R
3, ‖x − (4, 4, 4)‖ ≤ 2}.

Define the bifunction f = C × C → R and the quadratic function g : X → R as
follows:

f (x, y) = 〈Px + Qy + q, y − x〉, g(x) = xT Ax + 2bT x + c,

where

P =
⎡
⎣ 8 −3 −1

−3 10 −7
−1 −7 13

⎤
⎦ , Q =

⎡
⎣ 6 −2 −1

−2 8 −6
−1 −6 11

⎤
⎦ , q =

⎡
⎣−21

0
−27

⎤
⎦ ,
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Fig. 2 Plotting of log ‖xn − 5‖ in Example 1

Fig. 3 Plotting of log ‖xn − xn−1‖ in Example 2

and

A =
⎡
⎣11 5 1

5 5 6
1 6 13

⎤
⎦ , b =

⎡
⎣ 1
0
3

⎤
⎦ ,
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Fig. 4 Plotting of log ‖xn − (3, 3, 3)‖ in Example 2

Fig. 5 Plotting of Example 2 with different choices of μ and λ0

and c ∈ R. Obviously, the bifunction f satisfies conditions A1, A3 and A4. Further-
more, using [36, Lemma 6.2], Theorems 7 and 8, we have

f (x, y) + f (y, z) − f (x, z) ≥ −‖Q − P‖
2

‖x − y‖2 − ‖Q − P‖
2

‖y − z‖2

≥ −‖Q − P‖
2λmin(A)

Dg(y, x) − ‖Q − P‖
2λmin(A)

Dg(z, y),
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Fig. 6 Plotting of Example 2 with different choices of μ and λ0

which shows the bifunction f satisfying A2. Since q = (−Q−P)(3, 3, 3)T and Q is a
symmetric positive semidefinite matrix, EP( f ) = {(3, 3, 3)T }.Using Theorem 3 and
Remark 3, we get that g is supercoercive function and total convexity of g on bounded
subsets of X follows from the strong convexity of g. Put λ0 = 1

100 and μ = 1
10 . It can

be seen that all the hypotheses of Theorem 5 are satisfied. Applying Algorithm 1 with
the initial point x0 = (4, 4, 5), we have the numerical results in Figs. 3 and 4 (See also
Figs. 5, 6). In this example, as the first one, we see that our Algorithm 1 converges
faster than Algorithm 1 of [22].
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