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Abstract

Let G be a simple, connected graph and let A(G) be the adjacency matrix of G. If
D(G) is the diagonal matrix of the vertex degrees of G, then for every real @ € [0, 1],
the matrix A, (G) is defined as

Aq(G) = aD(G) + (1 — a)A(G).

The eigenvalues of the matrix A,(G) form the Ag-spectrum of G. Let G1VGa,
G1VG2, G1(v)G7 and G (e) G, denote the subdivision-vertex join, subdivision-edge
join, R-vertex join and R-edge join of two graphs G| and G, respectively. In this
paper, we compute the Ag-spectra of GV Gy, G1VG3, G1(v)G, and G(e)G, for
a regular graph G and an arbitrary graph G, in terms of their A,-eigenvalues. As
an application of these results, we construct infinitely many pairs of A,-cospectral
graphs.
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1 Introduction

All graphs considered in this article are simple, undirected and connected. Let G =
(V(G), E(G)) be a graph with the vertex set V(G) and the edge set E(G). The
adjacency matrix of G on n vertices, denoted by A(G), is an n X n symmetric matrix
whose rows and columns are indexed by V (G). The (i, j)-th entry of A(G) is 1, if
the vertices i and j are adjacent in G, and 0 otherwise. We denote the degree of the
vertex v in G by dg(v), and define D(G) to be the n x n diagonal matrix, whose
diagonal entries are the degrees of the vertices of G. The Laplacian matrix of G,
denoted by L(G), is defined as L(G) = D(G) — A(G). The signless Laplacian matrix
of G, denoted by Q(G), is defined as Q(G) = D(G) + A(G). In [19], the author
introduced a family of matrices A, (G) as follows:

Ay(G) =aD(G) + (1 —a)A(G), for any o € [0, 1]. (1)

It is clear that A, (G) is equal to the adjacency matrix of G if o = 0, and is equal to
30(G)ifa = 1.

Given an n x n matrix M, let M, det(M) and adj(M) denote the transpose, the
determinant and the adjugate of M, respectively. The characteristic polynomial of M
is denoted by V37 (x), which is defined as

Vm(x) = det(x], — M),

where I, is the identity matrix of order n. In particular, for a graph G on n ver-
tices, ¥ 4(G)(x) and ¥4,(G)(x) denote the characteristic polynomial of A(G) and
Ay (G), respectively. The roots of the characteristic polynomial of M are called the
M-eigenvalues. Let 11 (A(G)) = A (A(G)) = --- > X, (A(G)) and A1(Ay(G)) >
A (Ag(G)) = --- = A, (Ag(G)) be the A-eigenvalues and A,-eigenvalues of G,
respectively. The set of all eigenvalues of A(G) and A,(G) together with their
multiplicities is called the A-spectrum and the A,-spectrum of G, respectively. If
A1 > A2 > --- > ) are the distinct A,-eigenvalues of G, then the A, -spectrum of
G can be written as

0 (Aa(G)) = {M1™, D2l™, oo [ ™,

where m; is the algebraic multiplicity of A;, for 1 < i < k. Two graphs are said
to be A-cospectral (respectively, A,-cospectral) if they have the same A-spectrum
(respectively, Ay-spectrum).

In spectral graph theory, computing the spectra and the characteristic polynomials of
various classes of matrices associated with the graphs are interesting problems consid-
ered in the literature. Various graph operations such as the disjoint union, the Cartesian
product, the Kronecker product, the corona, the edge corona, the neighborhood corona,
the subdivision-edge neighborhood corona, the join, the subdivision-vertex join, the
subdivision-edge join, the R-vertex join, the R-edge join etc., have been introduced
and their adjacency, Laplacian and signless Laplacian spectra are computed in [1-
6,8,9,11,14,15,17,18,21]. Recently, the Ay-spectra of some graph operations have
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been studied in [12,13,20]. Motivated by these works, in this article, we determine
the A, -spectra of subdivision-vertex join, subdivision-edge join, R-vertex join and R-
edge join of two graphs G| and G, where G is aregular graph and G is an arbitrary
graph. As applications of these results on the A, -spectra, we construct infinitely many
pairs of Ag-cospectral graphs. The results obtained in this paper extends the results
presented in [6,15] for A, -spectra.

The join of two graphs G| and G, denoted by G| V G2, is the disjoint union of
G1 and G together with all possible edges connecting all the vertices of G| with
all the vertices of G, [7]. The subdivision graph of a graph G, denoted by S(G), is
the graph obtained by inserting a new vertex in every edge of G, that is by replacing
each edge of G by Pj3, the path on 3 vertices [4]. Based on this subdivision graph,
two new graph operations, namely the subdivision-vertex join and the subdivision-
edge join are introduced in [10]. The subdivision-vertex join of two graphs G and
G, denoted by G1V G, is the graph obtained from S(G1) and G, by joining every
vertex of V (G1) with every vertex of V (G,). The subdivision-edge join of G| and G»,
denoted by GV G, is the graph obtained from S(G 1) and G, by joining every vertex
of 1(G1) with every vertex of V(G3), where 1(G1) is the set of inserted vertices of
S(G1). The R-graph of a graph G, denoted by R(G), is the graph obtained from G by
introducing a new vertex u, for each edge ¢ € E(G), and making u, adjacent to both
the end vertices of e [5]. In [16], the authors defined two new graph operations based
on R-graph, namely the R-vertex join and the R-edge join. The R-vertex join of two
graphs G| and G», denoted by G(v)G», is the graph obtained from R(G1) and G,
by joining every vertex of V (G1) with every vertex of V (G,). The R-edge join of G
and G, denoted by G1(e)G», is the graph obtained from R(G1) and G, by joining
every vertex of 1(G1) with every vertex of V(G»), where I(G1) is the set of inserted
vertices of R(G1).

This paper is organized as follows: in Sect. 2, we collect some preliminary results
and define some useful notations. In Sects. 3, 4, 5 and 6, we obtain the characteristic
polynomials of A,-matrices for the graphs GV G2, G1VGa, G1{v)G> and G1{e)G,
respectively, where G is an rj-regular graph and G is an arbitrary graph. In each of
these four sections, we include some results on the eigenvalues of the said matrices
taking G as some particular graphs, like regular and complete bipartite. Also, as an
application of these results, we construct infinitely many pairs of graphs having the
same A -spectrum.

2 Preliminaries

Let G be a graph on n vertices and m edges. The incidence matrix R(G) of the graph
G is the (0, 1)-matrix, whose rows and columns are indexed by the vertex set and the
edge set of G, respectively. The (i, j)-th entry of R(G) is 1, if the vertex i is incident
to the edge j, and O otherwise. The line graph of G, denoted by L(G), is the graph
with vertices are the edges of G. Two vertices in £(G) are adjacent if and only if the
corresponding edges have a common end-vertex in G. It is well known [4] that

R(G)' R(G) = A(L(G)) + 2. @)
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4272 M. Basunia et al.

If G is an r-regular graph, then
R(G)R(G)T = A(G) +rl,. 3)

We will use the symbols 0,, and 1, (0, x, and J;;,x,) for the column vectors (m x n
matrices) consisting all 0’s and all 1’s, respectively. The M-coronal I'y;(x) ofann x n
square matrix M is defined [3,18] by

Cy(x) = 10 (xl, — M), 4

Here the matrix (x I, — M) is considered as matrix over the field of rational functions
C(x), and the inverse (xI,, — M)~ is considered in C(x). We will use this convention
throughout this manuscript. It is known that [3, Proposition 2], if each row sum of an
n X n matrix M is constant, say ¢, then

n
Cy(x) = T (5)

Now we state some lemmas which will be useful to prove our main results.
Lemma 2.1 (Schur complement formula)[22] Let M1, M>, M3 and M4 be matrices of

sizer Xr,r xs,s Xrands X s, respectively. Then

det My M, = det(My) - det <M1 — M2M4_1M3>, when My is invertible.
Mz My

— det(M)) - det <M4 _ M3M1_1M2>, when M, is invertible.

The matrices M1 —M> M, ! M3 and My—M3M | ! M are called the Schur complements
of My and My, respectively.

Lemma 2.2 [15, Proposition 2.2] Let A be an n X n real matrix. Then
det(A + cJpxn) = det(A) + c1ladj(A)1,,

where c is a real number.

Lemma 2.3 [15, Corollary 2.3] Let A be an n x n real matrix and c¢ be a real number.
Then
det(xl, — A — cJyxn) = (1 —cTa(x)) det(x1, — A).

Lemma 2.4 [4] Let G be an r-regular graph on n vertices, and let L(G) be the line
graph of G. If the characteristic polynomials of the matrices A(G) and A(L(G)) are
YaG)(x) and Y ac Gy (x), respectively, then

VA @) = @ +2)""Yae (x —r +2).
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For two positive integers p, g, let K, and K, , denote the complete graph on p
vertices, and complete bipartite graph on p + g vertices, respectively.

Lemma 2.5 [19, Proposition 37] The spectrum of Ag(Kp ) is 0(Ax(Kpyg)) =
{01(17+11)+\/012(P;rq)2+4pq(120(), [apl?=", [agqP~", a<p+q>f«/a2(p2+q>z+4pq(172a> _

Lemma 2.6 [20, Theorem 3] For the graph K, 4, the Ay-coronal is given by,

(P+a)x —a(p+q)?+2pg
x2—a(p+q)x+ Qa—1pq’

Cagk, (X)) =

In [6, Lemma 12], the authors have obtained an expression for the inverse of the matrix
(cl, — dJyxn), for c,d > 0. We modify the conditions on ¢ and d, and restate the
result with proof.

Lemma 2.7 Let ¢ and d be two real numbers such that the matrix (cl,, — dJ,xp) is

invertible. Then ) 4
(chy = dJwsn) ™' = =Ty + ————Jnxn- (6)
c c(c —nd)

Proof The eigenvalues of J,, «,, are n and 0 with multiplicity n — 1. Therefore, we have
det(cl, — dJpxn) = "~ (¢ — nd).

Since the matrix (cI, — dJ,x,) is invertible, we have det(cl,, — dJ,xn) = "~ (c —
nd) # 0. Thus ¢ # 0 and ¢ — nd # 0. So the expression on the right hand side of (6)
is valid. Now,

1 d
(cly —dJpxn) - (Zln + mjnxn>

d d nd?
= In —_ ZJnxn + c Jnxn - Jn><n

—nd c(c —nd)

=1,.

Hence the inverse of the matrix (cI,, — d Jy,x5) 18 %I,, + c(cf—nd)‘lnxn' O

Remark 2.1 If G is a graph on n; vertices and m| edges, and G is a graph on n,
vertices, each of the graphs G1V G2, G1V G2, G1 (v)G, and G (e) G, has (n1+m1+n3)
vertices. We consider the following partition of the vertex set of above graphs: V (G1)U
I1(G1) U V(G2), where V(G1) = {vi,v2, ..., vy} and V(G2) = {u1,uz, ..., up,}
are vertex sets of G| and G, respectively, and 1(G1) = {v], v}, ..., v;nl } is the set of
inserted vertices to construct the graphs S(G1) and R(G) from G1. In the following
figure, we illustrate the labeling process with a particular example.
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U1 (%) Vs uq Uy Uus Uy
o ® ® [ 4 ® ® ®
Py Py
/ /
v V] Vg Vy U3
Uy Ug Us Uy

Fig.1 The subdivision-vertex join of P3 and Py

3 Ag-spectrum of G, VG,

In this section, we discuss results related to the computation of Ay-spectrum of
G 1V Gy, the subdivision-vertex join of the graphs G| and G». To begin with we
obtain an expression for the Ag-characteristic polynomial of GV G,, where G is an
r1-regular graph and G is an arbitrary graph.

Theorem 3.1 Let G| be an r-regular graph on n| vertices and m edges, and G, be
a graph on ny vertices. Let Iy, (G,) (x) be the Ay(G2)-coronal of G,. Then, for each
€ [0, 1], the Ay-characteristic polynomial of GV G is

VA, (G1vGy)(X) = (x = 2a)" 7" - frp Gy (x — any)

ni

11 <x2 — a2+ r 4 n)x +alar) +ry + 2ans)
=2

~(-o)(0-on +A,-(Aa<Gl)))>
~(x2 —a+r +ny)x —2(r; —2ar; — aznz)

—n1(1 —a)*(x — 20T A, (G (x —an1)>. @)

Proof With respect to the labeling of vertices considered in Remark 2.1, the adjacency
matrix of G; VG, is

. Onlxnl R Jnlxnz
A(GIVG2) = RT 0m|xm| Om1><n2 P (8)
anxnl Onzxml A(GZ)
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where R is the (0, 1)-incidence matrix of G.
The degrees of the vertices of the graph G1V G, are:

dg,vG,(Wi) =r1+ny, fori =1,2,...,ny;
dGNGz(U;') =2, forj=1,2,...,my;
dg,v6, Wr) = do, () +my, fork = 1,2, na.

So the diagonal matrix of order (n] + m1 + n2) x (n1 + m1 + n3), whose diagonal
entries are the degrees of the vertices of the graph G|V Gy is

. (r1 + n2)In| Onlxml Onlan
D(GIVGZ) = 0m1><n1 21m1 0m1><n2 . (9)
On2><n1 On2><m1 D(G»y) + nllnz

Using (8) and (9), we have
. a(ry +n)ly, (1 —a)R (1 —a)Jy xn,
Ae(GIVGy) = | (1 —a)RT  2al,, Oy
(1 _a)anxnl 0n2><m] A(x(GZ)""anllnz

Therefore, the characteristic polynomial of A, (G1VG3) is

Y 44(G1vGy) (X)
= det <XI111+m1+n2 - Aa(Gl\./GZ)>

(r—etitm)h ~0-ok 0= |
=det]  _(q-—wRT(x- 205)1,,11 O, s
-1 - a)anxnl 0n2><m1 (x — anl)lnz — Ay(Gr)

— det ((x —any)ly, — Aa(Gz)) ~detS (by Lemma 2.1),

where
_ (x —a(r] +n2)>ln —(1—a)R
5= [ —(1—a)RT | (= 20) by

_ [_(1 - a)Jnl Xny
Omlxnz

Now, det § = det( (x —an +n2)>1"1 —(l—o)R
T ~(1 =R (x=2a)lm,

-1
]((x—oml)ln2 —Aa(G2) [~ = yxny Onycmy -

—a _a)Z |:FAa(Gz)(x —an)Jn;xn; Onyxm; ])

OH’L]XI’!] Om1><m1
sot | (5@ )y = (=T @) (6 = @n) s —(1 =R
= de
—(1—a)RT (x - 2(1)1,,,1
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4276 M. Basunia et al.

By Lemma 2.1, we have

det § = det <(x — 2a)1m1>
- det ((x —a(r +n2)>ln1 - - Ol)ZFAa(GZ)(x —any)Jy xn
-1
—((1 _ a)R) ((x — 2a)1,,,1) ((1 _ a)RT))
= (x — 2a)™! - det <<x —ar; — omz)l,,1
(1 —a)?
—(1— 01)2<FA0,(G2)(X — oml)).lnlx,,l — ﬁRRT>

Now, by Lemma 2.3, we have

m (1 _a)z T
det S = (x — 2a)™! - det (x —ary —()n12)1,,l — mRR
x — 2«

RRT

-(1 — (1 =) Ta, Gy (x —an)T (o2

(x —ar — ang)). (11
(x—2a)
It is clear from Eq. (3) that the eigenvalues of the matrix RR” are r| + 1;(A(G1))

2 2
fori = 1,2,...,n;. Again each row sum of the matrix E;:gi)RRT is 22‘;1—52‘))

Therefore from (5), we have

ni
r 2 X)=——""—.
El:gL)RRT( ) v 2n(-a?
(x—2a)

Thus (11) reduces to

ni

detS = (x —2a)"1 . H <x—ocr1 —any —

i=1

(1—w)?
(x —2a)

(n +xi<A<Gl>)))

.(1 C(—ap? e = 20) P g (G (x — am >>
(x = 2a)(x —ar] —any) —2r1(1 —a)? Aa(G2) !

ny
= (x —2a)M1 7. 1‘[ ((x —2a)(x —ar] —any) — (1 —a)? (r1 + A (A(Gl)))>

i=1

(x = 20)(x —ary —ang) —2r1(1 —ot)2 —(1 —a)zFAa(Gz)(x —any) -ni(x —2a)
( (x —2a)(x —ar] —ana) —2r1(1 —a)? )
n
= (x =20 ] <(x —20)(x —ary —any) — (1 — a)? (rl npy (A(Gl))>>
i=2

-((x —2a)(x —ar] —any) —2r1(1 — ) —n (1 — )2 (x — 2a)

'FAa(GZ)(x —Olnl)).
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Since Ay(G1) = aril,, + (1 — a)A(Gy), the eigenvalues of A, (Gq) are
ri(Ag(GD) =ar; + (1 —a)A; (A(Gy)) fori = 1,2, ...,n1. Thus

det S = (x — 2a)"™1 ™
ni
T1 ((x —2a)(x —ar; —any) — (1 —a)*ri — (1 — )i (Aa(GD)) + a(l — a)r1>

i=2

~<(x —2a)(x —ar; —any) —2ri(1 —a)? —ni1(1 — )% (x — 2a)
'FAa(GZ)(x —(xnl)).

Simplifying this, we get the required result from (10). O
Now, in the following corollary, we obtain the A,-eigenvalues of GV G,, where
G, is an rp-regular graph.
Corollary 3.1 Let G| be an ry-regular graph on n| vertices and m| edges, and G, be
an ry-regular graph on nj vertices.
1. Ifry = 1, then for each a € [0, 1], the Ag-spectrum of G1V G, consists precisely
of:

@) a(l +no);
(i) 20 + A; (Aa(Gz)), i=2,3,...,npand
(iii) three roots of the equation F(x) = 0, where

F(x) = (x—2a—r2)(xz—a(3+n2)x—2(1—2a—a2n2))—2n2(1—a)2(x—2a).

2. If ry > 2, then for each a € [0, 1], the Ay-spectrum of G1V Gy consists precisely
of:

(1) 2«, repeated m| — nj times;
(i) any + A (Aa(Gz)), i=2,3,...,n;
(iii) two roots of the equation G;(x) = 0 foreachi = 2,3, ..., ny, where

Gi(x) = x?— (24 r; +no)x +alar; +r; + 2any)
—(I=a)(r1(1 —a) + 1 (Aa(GD)))
and
(iv) three roots of the equation F (x) = 0, where
F(x)=x —an; — rz)()c2 — a2 +ry+ny))x —2(r; —2ar] — azng))
—nina(1 — a)z(x —2a).

Proof Since G» is an rp-regular graph on ny vertices, each row sum of the matrix
Ay (G») is ra. Therefore from (5), we have

na

FaGH(x —any) = (12)

X—ang—ry

@ Springer



4278 M. Basunia et al.

Again r, is an eigenvalue of A(G»y), therefore r is an eigenvalue of A,(G2) =
aryly, + (1 —a)A(G2). Using this and Eq. (12) in (7), we get

n2

Vau(Grioy®) = (r = 20" 7 [T (3 = ami = 24(4e(G2)))
j=2
ni l
1_[ ( 2_ a(2+r1 +n2)x 4+ aar) +r + 2ans)
i=2

~(1=@)(n1(1 = @) + 2(4a(G)))
((x —any — rz)(x2 —a2+r +n2)x

—2(r1 — 2ar1 — o&?n2)) — nina(l — ) (x — 2a)>. (13)

1. If r; = 1, the only possibility for G is P», the path on two vertices. In this case,
n1 = 2 and m| = 1. Using these particular values of 1, n| and m in (13), we get
the desired result.

2. If r; = 2, the graph G can not have any pendant vertices, so it is not a tree. Thus
m1 > ny, and the result follows from (13).

O
Taking G; as K, 4, we obtain the A,-eigenvalues of G VG, in the next corollary.

Corollary 3.2 Let G| be anry-regular graph with n| vertices and m| edges. Let p, q >

1 be integers and G, = K 4.

1. Ifry = 1, then for each a € [0, 1], the Ay-spectrum of GV Gy consists precisely
of:

) a(l+p+q);
(il) a(p + 2), repeated g — 1 times;
(iii) a(g + 2), repeated p — 1 times and
(iv) four roots of the equation F (x) = 0, where

F(x) = (x> =B+ p+q@)x —2(1 = 2a — o?p — o%q))
~(x2 — a4 p4q)x + (4a® +20%p + 20°q + 2apqg — Pq))
—2(1 = ) (x = 2)((x = 20)(p + @) — a(p +@)* + 2pq).
2. Ifry > 2, then for each a € [0, 1], the Ay-spectrum of G1V G consists precisely
of:

(1) 2a, repeated my — ni times;
(i) a(ny + p), repeated g — 1 times;
(i) a(ny + q), repeated p — 1 times;
(iv) two roots of the equation G;(x) = 0 for eachi = 2,3, ..., ny, where

G;i(x) = x? —a4+r+p+qgx+oalar; +r +2ap +2aq)
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—(1=a)((1 —a)r; + 2 (Aa(GD)))

and
(V) four roots of the equation F (x) = 0, where

F(x) = (> —a@+r+p+q@x =20 = 2ar —o*p — o’q))
'(xz —a@ni+p+qg)x+ (azn% +oe2n1p +a2n1q +2apg — pq))
—ni(1 =) (x — 20)((x —an)(p +q) — a(p + 9)* +2pq).

Proof From Lemmas 2.5 and 2.6, we have o0(Ay(G»)) =
{a(p+q)+¢a2(p+q>2+4pq(1—2a> 1 alptg) /Pt Hapg (120 | g
2 ’ 2

J[apli=!aql?

(P+q@)x —a(p+q)?+2pq
x2—a(p+q)x+ Qe —1)pg’

LAy Gy (X) =
Using this in (7), we have

YAy (G1VGa) (X)

=(x— 20{)"“_"1

< a(p+q) /o2 (p+ 0 +4pq(l —2a>>
X —aoany — )

(x —an; — otp)q_1

a(p+q) — \/az(p +q)* +4pg(l - 2a)>

.(x—om1 —ozq)p_1<x—om1 - 2

ni

.H<x2 —ot(2+r1 +p+q)x—|—oc(otr1 +r +2oe(p+q))
i=2

—(1- a)((l — @) + A (Aa(Gl))>>

-<x2 —a(24r1+p+q)x —2(r1 = 2ar —*(p +q))

(p+q)(x —any) —a(p +q)* +2pq )

2
—m(l = o) = 2a) (x —an))? —a(p+q)(x —any) + Qo — 1) pg

(14)

(p+q)(x—an)—a(p+q)>+2pq
(x—ani)?—a(p+q)(x—an)+Qa—1) pg

The zeros of the denominator of are

a(p+q) ++/e2(p+¢)* +4pg(l — 20)
any + > and
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a(p+q) = a2 (p + )2 + 4pg(l - 2a)

any + >

Using this in (14), we get

YA, (GvGa) (X)

= (x— 2a)m1_nl(x —any — ap)q_l(x —any — aq)p_l

ni
.H(xz—ot(Z—i—rl —|—p+q)x+a(ar1 + r +2a(p+q))
i=2

—(1- a)((l — o) —i—kl-(Aa(Gl))))
~<(x2 —a(24r1+p+q)x —2(r1 = 2ar —a*(p + q)))

-<x2 — Qany +ap +ag)x + (@*n > +a*nip + o*nig + 2apg — pq))
(1= ) (x — 2a)<(p F ) —an) —a(p+q)° + 2pq)>. (15)

1. If r; = 1, then G| = P,. Thus n; = 2 and m| = 1. Using these particular values
of r1, n1 and my in (15), we get the desired result.

2. If r; > 2, the graph G is not a tree. Then we have m| > n, and the result follows
from (15) .

O

Finally, to conclude this section, we provide a construction of new pairs of A,-
cospectral graphs from a given pair of A,-cospectral graphs in the following corollary.

Corollary 3.3

1. Let G| and G, be two Ay-cospectral regular graphs for a € [0, 1], and let H be
an arbitrary graph. Then the graphs G|V H and G,V H are Ay-cospectral.

2. Let Hy and Hy be two Ay-cospectral graphs with T s, (1) (x) = T'a, 1) (x) for
a € [0,1]. If G is a regular graph, then the graphs GV Hy and GV Hy are Ag-
cospectral.

Proof If two regular graphs are A,-cospectral, then they have same regularity with
same number of vertices and same number of edges. By applying Theorem 3.1 on
the concerned graphs and comparing their A, -characteristic polynomials, we get the
required results. O

4 Ag-spectrum of G, VG,
This section is about the A,-spectrum of GV G, the subdivision-edge join of the
graphs G| and G,. We start by obtaining an expression for the A,-characteristic

polynomial of G|V G5 for an rj-regular graph G| and an arbitrary graph G».
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Theorem 4.1 Let G| be an ry-regular graph on n| vertices and m| edges, and G, be
a graph on ny vertices. Let I s ,(G,)(x) be the Ay (G2)-coronal of G».

1. If r1 = 1, then for each o € [0, 1], the Ay-characteristic polynomial of G1V G
is given by,

YA (Gi1vGy)(X) = (X — @) - YA, Gy (x —a)

-(x2 — a3+ n2)x + (@2ny + 4o — 2)

~(1 = @2(x = T, 6) (r — @),

2. Ifr1 = 2, then for each a € [0, 1], the Ay-characteristic polynomial of G1V G2
is given by,

V4u(G1vG) ()
= (x =20 —an)"" " Yay Gy (x — amy)

~(x2 —a+r +nyx+ r1(a2n2 +4da — 2)

—mi(1 = @) (x = ar)la, (G2 (x — am))
11 <x2 — a4+ n)x 4@ 4 3a — 1) — (1 — a)A; (Aa(Gl))>.
=2

Proof Consider the labeling of the graph GV G, given in Remark 2.1. Then, the
adjacency matrix of G1V Gy is

Onlxnl R Onlxnz
A(GIXGZ) = RT Om1><m1 Jml><n2 s (16)
On2><n1 anxml A(G2)

where R is the (0, 1)-incidence matrix of G1.
The degrees of the vertices of the graph G|V G are:

dc,vG,(vj) =7y, fori =1,2,...,ny;
dGlez(U.//) =2+4ny, forj=1,2,...,my;

dGliGz(”k) = dGz(uk) +mq, fork=1,2,...,no.

So the diagonal matrix with diagonal entries are the degrees of the vertices of the graph
G1VvGjyis

rlln] OVHXml 0n1Xn2
D(G1vGr) = Omxm 2+ n2)lm1 Om1 Xno . (17
Onzxnl Onzxml D(G») +m11n2
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Using (16) and (17), we get the Ay-matrix of G1V G, as
aryly, (1 —a)R 01 xny
Ag(G1vGr) = | (1 _a)RT (2—}—112)0[]"“ (1 —Ol).]m]an
Onzxm - a)anxrm Ay (G2) +Oél’l’l]]n2

Therefore, the characteristic polynomial of A, (G1VG») is

VAu(G1vGa) (X)

= det (XIn1+m1+n2 - Aa(GIXGZ))

(x—ozrl)lnl —(1—a)R 01y xny (18)
=det| _(] — o)RT (x —a — anz)lml (1= &) Iy ey
Onzxnl —(1 - a)anxml (x — Olml)lnz — Ax(G2)
= det ((x —ami)l,, — Aa(Gz)) -detS (by Lemma 2.1),
where
§— [(x — ary) Iy, —(1 —a)R
| —(1 —)RT (x — 20 — any) Iy,
0 —1
- |:_(1 _n(;;r‘l]zmlxnz} ((x - aml)lnz - Aa(G2)> [Onzxnl —(1 - a)anxml]
_ _(x—otrl)lnl —(1 —a)R :|
T -0 = )RT (x =20 — an) Iy, — (1 — )T, (G (X — amy) Ty xm, |
By Lemma 2.1, we have
det S = det ((x — ozrl)1m>
- det ((x — 20 —any)ly, — (1 —a)’T (x —am)J, _ - RTR)
2)Im, Ay (G2) 1)JImyxmy (x —arl)
1 — 2
= (x —ar))™ - det ((x — 20 —an)ly, — &RTR)
(x —ary)
.<1 —(1— a)zl"Aa(Gz)(x —am)l 2 RTR(x — 2o — an2)),
(x—ary)
(using Lemma 2.3). (19)

The line graph of an r-regular graph is a (2r — 2)-regular graph. Using this in (2) for
the graph G, we get each row sum of R R is 2r|. Therefore using (5), we get

m
r 1

(1—a)? RTR(x — 20 —anp) =

)2 °
G=arp) x — 20 — any — 211=w)

(X*O[r] )
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Using these information, (19) becomes

mi
detS = (x —ar)™ - l_[ (x —2a —any

i=1

(1—a)? (1—a)?
G ey HACGD) 20— 5)
P _ . my(x —ary)
.(l (I =), (6o (¥ = am) (x —ar)(x —2a —any) — 2r((1 —a)z)’
(20)

where £(G1) is the line graph of G1.

1. If 1 = 1, then G| = P,. Therefore, £(G1) is just a vertex and O is the only
eigenvalue of A(L(G1)). Thus (20) becomes

(1 —a)z)

detS:(x—a)2-<x—2a—an2—2
(x—a)

(12 . (x —a)
<1 (=) Tag G —@) (x—a)(x—Za—ang)—Z(l—a)z)

= == =20 —am) =201 = @) = (1 = )? (¢ = DT 4, 6y (* — @),

After simplifying this, we get the required result from (18).

2. If r; > 2,then m; > n;. By Lemma 2.4 on G, the eigenvalues of A(L(G)) are
ri(A(Gy) +rp—2fori = 1,2,...,n1 and —2, repeated for (m; — ny) times.
Using these information, (20) becomes

det S

1
= (x — n, -
(x —ary) [p——y

ny
TI ((x —ar)(x = 20 —any) — (1 — )2 (A (A(G))) + 71 —2)) —2(1 — a)z)
i=1

mj
11 ((x —ar)(x — 20 — any) — (1 —@)2(=2) — 2(1 — ot)2>
n1+1

.(x —ar))(x —2a —any) —2r(1 —0{)2 —m(l — oz)z(x —ar)l A, (G, (x —amp)

(x —ar)(x — 20 —any) — 2r1(1 — a)?

= (x — 2a —any)™ ™™
ny

11 ((x —ar)(x — 20 —any) — (1 — )2 (M (A(G)) + rl))

i=2

-((x —ary)(x —2a —any)

—2r1(1 —a@)? —=my(1 — a)?(x — ar)Ta, Gy (X — ozml)). 1)
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Since G is an rj-regular graph, therefore

Au(G1) = arily, + (1 —a)A(GY).

Thus
2i(Ax(G1) =ari + (1 — )i (A(GY) fori = 1,2,...,ny,
and hence,
2i(AGY)) = ! 2i(Aa(GY)) fori =1,2 (22)
i 1 —(1_00(1 (G —otr1> ori =1,2,...,n1.

Now replace A; (A(G 1)) in (21) using (22). After simplifying that, we get the
desired result from (18).

O

Now, in the following corollary, we obtain the A,-eigenvalues of G|V G, taking
G» as an rp-regular graph.

Corollary 4.1 Let G| be an ri-regular graph on n| vertices and m| edges, and G, be
an ry-regular graph on ny vertices.

1. If ri =1, then for each o € [0, 1], the Ay-spectrum of G1V G, consists precisely

of:

(1) o;
(i) o+ A (Aa(Gz)), i=2,3,...,npand
(iii) three roots of the equation F(x) = 0, where

F(x) = (x—a—r)(x? —a@B+n)x+@*ny+4a—2)) —na(1—a)*(x —a).

(2) If r1 = 2, then for each o € [0, 1], the Ay-spectrum of G1V G consists precisely
of:
(1) a2 4 ny), repeated my — n times,
(i) am; 4+ Ai(Aa(G2)), i =2,3,...,n2;
(iii) two roots of the equation G;(x) = 0 for eachi = 2,3, ..., ny, where
Gi(x) = x* —aQ+r1 +n2)x + (@*rinz +3ar; —rp) — (1 — @)ri (A (G1))

and
(iv) three roots of the equation F (x) = 0, where

F(x) = (x —ami —r)(x? —a@+r1 +n2)x + ri(@’ny + 4o — 2))

—miny(1 — ot)Z(x —ary).
Proof Proof is similar to that of Corollary 3.1. O

@ Springer



On the Ay -Spectra of Some Join Graphs 4285

Taking G, as K, 4, we obtain the A,-eigenvalues of G1V G in the next corollary.

Corollary 4.2 Let G| be anry-regular graph onn vertices andm edges. Let p, g > 1
be integers and G, = K 4.

1. If r1 =1, then for each o € [0, 1], the Ay-spectrum of G1V G, consists precisely
of:

@) o;
(ii) a(l + p), repeated g — 1 times;
(iil) a(l + q), repeated p — 1 times and
(iv) four roots of the equation F (x) = 0, where

F(x) = (x* —aB+p+q@)x + (@*p +a’q + 4o — 2))
(* —a@+p+@x+ (@ +o’p +a’q+2apg — pq))
—(1—)*(x =) ((x —a)(p+q) —a(p+q)* +2pq).
2. If r1 > 2, then for each a € [0, 1], the Ay-spectrum of G1V G2 consists precisely
of:

(1) a2+ p +q), repeated m| — ny times;
(1) a(my + p), repeated g — 1 times;
(iii) a(mi + q), repeated p — 1 times,
(iv) two roots of the equation G;(x) = 0 for eachi = 2,3, ..., ny, where

Gi(x) = x2— c4+ri+p+qg)x+ (azrlp + azrlq + 3ary —ry)
—(1 — )i (Aa(GY))

and
(v) four roots of the equation F (x) = 0, where

F(x) = (x> —aQ+r +p+qx +ri@p+a’q+da—2))
~(x2 —a(mi+p+qg)x+ (azm%
+a’mip +a’miq + 2apq — pq))
—mi(1 —a)’(x —ar)((x —am)(p+q) —a(p +q)° +2pq).

Proof Proof is similar to that of Corollary 3.2. O

Finally, to conclude this section, we provide a construction of new pairs of A,-
cospectral graphs from a given pair of A,-cospectral graphs in the following corollary.

Corollary 4.3

1. Let G1 and Gy be two Ay-cospectral regular graphs for a € [0, 1], and let H be
an arbitrary graph. Then the graphs G1V H and G,V H are Ay-cospectral.

2. Let Hy and Hy be two Ay-cospectral graphs with T s, (1, (x) = T a, (1) (x) for
o € [0, 1]. If G is a regular graph, then the graphs GV H) and GV Hp are Ay-
cospectral.
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Proof Proof is similar to that of Corollary 3.3. O

5 Ag-spectrum of G1(v)G>

In this section, we study about the A, -spectrum of G1(v)G,, the R-vertex join of the
graphs G| and G;. We start with obtaining the expression of the A,-characteristic
polynomial of G1(v)Ga, for an ri-regular graph G and an arbitrary graph G», in the
following theorem.

Theorem 5.1 Let G| be an ry-regular graph on ny and m edges, and G, be an
arbitrary graph on ny vertices. Let I 4, (G,)(x) be the Ay (G2)-coronal of Ga. Then
for each o € [0, 1], the Ay-characteristic polynomial of G1(v)G> is given by,

Vi (G160 = (¥ = 22)" " a6y (x — any)

ni

1_[ (x2 — (205 + ary +any + A; (Aa(Gl)))x
i=2

+20nz + 3ar = 1 + (Go = D3 (46 (GD))
~(x2 — Qo+ ary +any +r)x + 2a2n2 + 6ary — 2r;

(1 — @)2(x — 20)T A (G (x — anl)).
Proof The adjacency matrix of G(v)G3 is

A(Gl) R Jnlxnz
A(G1(v)Gr) = RT Om1><m1 0m1><ng s (23)
anxnl Onzxml A(G2)

where R is the (0, 1)-incidence matrix of G;.
The degrees of the vertices of the graph G1(v)G» are:

dc, G, (v;) =2r1 +mnp, fori =1,2,...,ny;
dG1<V)G2(v}) =2, forj=1,2,...,my;

dc, G, (k) =dg,(ur) +ny, fork=1,2,...,n.
Therefore,

2r + n2)ln1 0n1><m1 Onlxnz
D(G(v)G2) = Om|xn1 2Im| Omlxnz . (24)
Onzxnl Onzxml D(G»2) + nllnz
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Using (23) and (24), we get the A,-matrix of G(v)G3 as
Ay (G1) + (ar +Oll12)[m (1-a)R (1 _a)menz
Aa(Gl (V>G2) = (1 - a)RT 2061,"1 Omlxnz
a1- a)anxnl Onzxm1 Ay(Go) + an11n2

Therefore, the characteristic polynomial of A, (G1(v)G>) is

VAe(G1(v)Ga) (X)
= det <X1n1+ml+n2 - Aa(Gl <V>G2))

(x —ary —ana)ly, — Ag(G)) —(1 —a@)R —(1 = a)Jn;xn,
= det —(1 —a)RT (x — 2a) I, Oy s
-1 - ‘x)anxnl Onzxml (x — O”'ll)lnz — Ay (Gy)
= det ((x —an)lp, — Aa(Gz)) ~detS (by Lemma 2.1), (25)

5= (x —ary —an)ly; — Ae(G1) —(1 —a)R
- ~(1—a)R” @ = 20) I,

_ |:_(1 - a)Jnl XNy

Om1 Xny

-1
] ((x - anl)lnz - Aa(GZ)> [_(1 - a)]nzxnl 0n2><m|]

[ —ary —ana) I, — Ag(G1) — (1 = @)*T a6 (x —an)Juyxn, —(1 — )R
- —(1 —a)RT (x =20, |

By Lemma 2.1, we get

det § = det ((x - Za)lml)

det ((x = ary = an2)yy = Aa(G1) = (1 = @), (62 (x = an) oy

o2
_dzor RRT)
(x — 2a)

= (x — 2a)™ - det ((x —ar) — an)ly, — Ag(Gy)

1— 2
_d-er RRT)
(x — 2)
2
.(1 — (I =) Ta,Gyx — anl)FAa(Goﬂii‘;g)RRT x —ary — anz)),
by Lemma 2.3. (26)

Now using (1) in (3) for the graph G, we get

RT = ! (Aa(GY) —ariIy)) + 111,
_(1—Ol) o 1 oriily, 14ny-
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Thus
(1-a)? 7 1 2
Ag(G+—— 2 RRT = —((x—3a+l)Aa(G1)+(r1—3ar1+2a rl)I,”).
(x — 2a) (x — 2)
(27)
2 2
Again, each row sum of the matrix A, (G1) + 8:‘;{3{) RRT isr + 8:‘;‘3{) 2r1.
Therefore from (5), we have
r ( ) n (28)
(1—)? X —Or; —onp) = .
Aa(G+ o0 RRT X —arp —any — (71 + ((;:3,32) 2”)
Applying (27) and (28) in (26) and simplifying, we get
detS = (x — 2a)™ ™™
ni
1_[ <x2 — (205 + ary +any + A; (Aa(Gl)))x
i=2
+20%m; + 3ary — i + Ga — Dii(40(G))
~(x2 — Qo +ar; +any +rp)x + 2a2n2 + 6ary
—2ri —n1(1 — a)z(x —20)T 4,62 (x — an1)>. 29)
Finally, using (29) in (25), we get the required result. O

Now, in the following corollary, we obtain the A,-eigenvalues of G1(v)G, taking
G as an rp-regular graph.

Corollary 5.1 Let G| be an ri-regular graph on ny vertices and m edges, and G, be
an ry-regular graph on nj vertices.

1. Ifr1 = 1, then for each o € [0, 1], the Ay-spectrum of G1(v)G, consists precisely
of:

(1) a(B3+n2) —1;
(i) 20 + 1i(A(G2)), i =2,3,...,n2 and
(iii) three roots of the equation F(x) = 0, where

F(x) =& —2a — rz)(x2 — Ba +any + Dx
+2a%n + 60 — 2) — 2na(1 — @) (x — 2a).
2. Ifry > 2, thenforeach a € [0, 1], the Ay-spectrum of G1(v)Gy consists precisely
of:
(1) 2a, repeated my — ni times;

(i) ani 4+ 2i(A«(G2)), i =2,3,...,n2;
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(iii) two roots of the equation G;(x) = 0 for eachi = 2,3, ..., ny, where

Gi(x) = x% — <2a ar +any+ A (Aa(Gl)))x
+2a%ny + 3ary — i+ Ga — DA (Ao (G1))

and
(iv) three roots of the equation F(x) = 0, where

Fx)=x—an; — 1’2)(x2 — Qo+ ary + any

Fr)x 4 2ang + 6ar; — 2r1))

—nina(1 — )% (x — 2a).

Taking G as K, 4, we obtain the A-eigenvalues of G (v) G2 in the next corollary.

Corollary 5.2 Let G| be anry-regular graph onny vertices and m edges. Let p, q > 1
be integers and G2 = Kp 4.
1. Ifr; = 1, thenforeach a € [0, 1], the Ay-spectrum of G1(v)G; consists precisely

of:

@) aB+p+qg) —1;
(i) a2+ p), repeated g — 1 times;
(i) a(2 + q), repeated p — 1 times and
(iv) four roots of the equation F (x) = 0, where

F(x) = (x2 — QBa+ap+ag+ Dx +2a2p—|—2a2q + 6a —2)
‘(xz — (4o + ap + ag)x + 4a® +2a%p + 20°q + 2apg — Pq)
—2(1 —a)?(x — 2a)((x = 2)(p +q) —a(p + %+ 2pq).
2. Ifry = 2, then for each o € [0, 1], the Ay-spectrum of G1(v)G» consists precisely
of:

(1) 2a, repeated my — ny times;
(i) a(ny + p), repeated q — 1 times;
(iil) a(ny + q), repeated p — 1 times;
@iv) two roots of the equation G;(x) = 0 for eachi = 2,3, ..., ny, where

Gi(x) = X2 — <2a +oar+ap+ag +)»,-(Aa(G1))>x

+2a%p +20%q + 3ar) — i + Ba — DA (Aa(G1))

and
(v) four roots of the equation F (x) = 0, where

F(x) = (x2 — QRa+ar; +ap+ag +ry)x +2zx2p +2a2q + 6ar; — 2r1)
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.(x2 — Qany +ap +ag)x +a2n% +ot2n1p +a2n1q +2apqg — pq)

(1= 2 = 20) (& = an)(p + ) — a(p+ @) +2pq).

Finally, to conclude this section, we provide a construction of new pair of Ag-
cospectral graphs from a given pair of A,-cospectral graphs in the following corollary.

Corollary 5.3

1. Let G1 and Gy be two Ay-cospectral regular graphs for a € [0, 1], and let H be
an arbitrary graph. Then the graphs G1(v)H and G,(v)H are A,-cospectral.

2. Let Hy and Hy be two Ay-cospectral graphs with T 4,1, (x) = T a,(H,) (x) for
o € [0,1]. If G is a regular graph, then the graphs G(v)H and G(v)H> are
Ag-cospectral.

6 Ag-spectrum of G (e)G;

In this section, we study the A,-spectrum of G1(e)G2, the R-edge join of the graphs
G1 and G,. We start with obtaining the expression of the A, -characteristic polynomial
of G1(e)Ga, for an ri-regular graph G and an arbitrary graph G, in the following
theorem.

Theorem 6.1 Let G| be an ry-regular graph on n| vertices and m edges, and G, be
an arbitrary graph on ny vertices. Let I' 5 ,(G,) (x) be the Ay (G2)-coronal of Go. Then
Jor each o € [0, 1], the Ay-characteristic polynomial of G1(e)G> is given by,

1

VAL (G e)Gr) (%) = (x =20 —ana)™ ™" Ya Gy (x — amy)

ni

l_[ <x2 — (2a +ary +any + A; (Aa(Gl)))x
i=2

+a2r1n2 +3ar; —r; — (1 = 30 — an))A; (Aa(Gl)))

-(x2 — Qo +ary +any +ry)x + a2r1n2 + 6ary — 2r1 + ariny
—mi(1 — oz)z(x —ary —r)la, G, — aml)).
Proof The adjacency matrix of G1{e)G, is
A(Gl) R Om Xn)
A(G] (e)G2) = RT 0m1><m1 Jmlxnz ’ (30)
Onzxnl anxml A(GZ)

where R is the (0, 1)-incidence matrix of G.
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The degrees of the vertices of the graph G (e) G, are:

dGl(e)Gz(Ui) = 27‘], fori = 1,2,...,n1;
dc;1<e)c;2(v;) =2+4ny, forj=1,2,...,my;
dc ()G, (ur) = dg,(ug) +my, fork =1,2,...,na.

Therefore, we have
2"1Inl Onlxml Onlxnz
. 31D

D(G1<e>G2) = Om1><n1 (2+n2)lm1 Om|Xn2
Onzxm Onzxml D(G») +mlln2

Using (30) and (31), we get the Ay-matrix of G1(e)G» as
Aa(G1)+arlln1 (1—-a)R Onlxnz

Ay (Gi{e)G2) = (I—a)RT  aQ+n)ly, (=) xn,
Onzxnl (1- W)anxml Ay(G2) + amllnz

Therefore, the characteristic polynomial of A, (G1(e)G2) is

V44 (G1()Ga) (X)
= det (X Lny etz — Aa(G1(0)G2) )

(x —arply; — Ag(G)) —(1—a)R Ony s
= det —(1—a)RT (x — 20 — any) ly, —(1 = &) I, xns
Onzxnl —(1 - a)anxml (x — aml)lnz — Ay(G2)

— det ((x — am1) Iy, — Aa(Gz)) ~detS (by Lemma 2.1), 32)

where

5= [(X —ar)ly — Aq(G1) —(I—-ao)R i|
—(1 —a)RT (x =20 — any) Ly,

0n, xn -1
= [_(1 _;)ijm] (= eml, = 4(G2)  [Onsns =1 = @ Jnysm |
—(1 —a)R ]

(x — C‘”"I)In] — Ay (Gy)
(x =20 —any) Ly, — (1 — a)ZFAw(GZ)(x —am)Jmy xm,

= [ —(1 —a)RT
By Lemma 2.1, we get
det S = det ((x —2a —any)ly, — (1 — a)zFAa(Gz)(x — aml)],,,lxml)

-det <(x —ar))l,, — Aq(Gy)

—(1 = ot)zR<(x —2a —anp)ly, — (1 — a)zFAa(Gz)(x — aml)Jmlxml>7lRT>.(33)
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By Lemma 2.7, we can write (33) as
detS = (x — 20 — anz)mﬁl (x — 20 —any —my(1 — a)zl"An(Gz)(x - aml))

- det (o« —ar)ly — Aa(G) — (1 *“>2R(m’""

(1 — &)*Ta, G, (x — amy) T
+ B Jm|><m]>R
(x =20 —any)(x =20 —any —mi(1 —a)* T4, G,) (x —amy))

mp—1

= (x — 20 — anz) (x — 20 —any —my(1 — a)zl"An(Gz)(x - aml))

1 — 2
“det ((x —ar) Iy, — Ag(G1) — _ (A=) ppr
(x —2a — any)
(1 — @)*T a6y (x — amy)

B (x — 20 — anz)(x =20 —any —mi(1 —a)?Ta, Gy (x — aml))

R, somy RT)

= (x —2a — anz)mlfl(x — 20 —any —my(1 — a)zl"An(Gz)(x — aml))

(- o

N d - 1’1 - Act - A~ <
et ((x ary)ly, (G1) G =20 —any)

r12(1 — a)*T a6y (x — amy) )
- B Jn|><n1
(x — 2« — ang)(x — 20 —any —mi(l —a)*T'p Gy (x — aml))

= (x — 20 — anz)ml_l(x — 20 —any —mq(1 — a)2FAm(G2)(x - aml))

_ 2
- det ((x —ar) I, — Ag(Gy) — &RRT>
(x — 20 — any)

r12(1 — @)*Ta, G, (x — amy)

A1 =
( (x — 20 — anz)(x —2a —any —m(1 — ot)zFAa(Gz)(x — otml))

.FAa(Gl)‘F(;g(lz;%RRT(x_arl))’ (34)

by Lemma 2.3.

2 2
Again, each row sum of the matrix A, (G1)+ % RRT isr+ ()(7(12;—%2;"1 .
Therefore from (5), we have

r ) X —ary
Ag(G1)+ (x£12ag:x)12) RRT( )
ni
x—ar — (r + 4=,
1 1 (x—2a—any) 1

ni(x —2a —any)

- (x —ar)(x =20 —any) — ri(x =2 —any) — 2r (1 — a)?
and using this, the expression

r12(1 — @)*Ta, G, (x — amy)

( B (x —2a — anz)(x — 20 —any —m(1 — oz)zr‘Aa(Gz)(x — aml))
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- _a)? X —ar
Aa(Gt 2 1)

—2a—anjy)
becomes
F) = ri?ni(1 —a)*(x — 20 — ana)Ta, Gy (x — amy)
, (35)
J(x)
where
fx) = —2a— an2)<x —2a —any —m(1 — a)zl"Aa(Gz)(x — aml))
-((x —ar))(x — 20 —any) —ri(x — 6« +20% — any +2)).
Again,
In, — Ag(G (=@ ppr
(x —ar)) Iy, — Ag(G1) — m
- In, — Aq(G A= 4G+ DG
= (x —ar)ly — Au( 1)—m( (G1) + D( 1))
B (1—a)*  (Ay(G1) —aD(G)
=(x —ar)l,, — Au(G)) — (x—2a—om2)( 1 —o +D(G1)>

ri(1 = 3a + 20?)
=|\x—ari— ——7— I
(x — 20 — anyp)

(x+1—-3x—an)
(x — 20 — any)

Aq(G1), as D(Gy) =r11y,.

Therefore,

(1 —a)? RRT>

det <(x —ar)) Iy — Ag(G1) — m

nl _ 2 _ _
_ (x Car r1(1 = 3a + 20%) B (x+1-3ax anz))»i(Aa(Gl)))
(x — 20 — any) (x — 20 — any)
ny
! H((x —ar))(x —2a —any) —ri(l —3a + 2a?)
i=1

- (x — 20 — any)™

—(x + 1 =30 — an))i; (Aa(Gl)))

1
- (x — 2« — any)™

<(x —ar)(x — 2«

—any) —ri(x — 6a + 202 — any + 2))

ny

1_[ ((x —ar)(x — 2«

i=2
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—any) —ri(l = 3a +20?) — (x + 1 — 3a — any) (Aa(Gl))).
(36)

Using (35) and (36) in (34), we get

detS = (x — 20 — any)™ ™~ Fi(x)
ni

l_[ ((x —ar))(x —2a — any)

i=2

—r(1 =3a+20%) — (x + 1 — 3a — any)A; (Aa(Gl))>, 37)

where
Fi(x) = (x —2a —any —m(l — a)ZI‘Aa(Gz)(x — aml))
-((x —ary)(x —2a —any)

—r1(x — 6a + 202 — any + 2)) — r12n1(1 — a)4FAa(Gz)(x —amy).

Since G is an ri-regular graph with n; vertices and m edges, rjn; = 2mj. Using
this in the expression of F(x) and then simplifying it, we get
Fi(x) = (x —2a — omz)<x2 — Qo +any +ary +ry)x
+a2r1n2 + 6ar| + arijny — 2r;

—mi(1 — ot)z(x —ary —r)la, G, — aml)).

We use this expression in (37). Using (32), we get the required result. O

Now, in the following corollary, we obtain the A,-eigenvalues of G1(e)G, taking
G as an rp-regular graph.

Corollary 6.1 Let G| be an ry-regular graph with ny vertices and m edges, and G,

be an ry-regular graph on nj vertices.

1. Ifr1 = 1, thenfor each a € [0, 1], the Ay-spectrum of G1(e) G, consists precisely
of:

1) 30 —1;
(i) o+ A (Aa (Gz)), i=2,3,...,n2and
(iii) three roots of the equation F(x) = 0, where

FxX)=x—«a —rz)()c2 — Ba +any + 1)x + a?ny + 6o + ans —2)

(1 —a)?(x —a — 1).
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2. Ifry = 2, then for each a € [0, 1], the Ay-spectrum of G1(e)G, consists precisely
of:

(1) a2 4 ny), repeated m| — n times;
(ii) amy +4i(Aa(G)), i =2.3, ... ny;
(>iii) two roots of the equation G;(x) = 0 for eachi = 2,3, ..., ny, where

Gi(x) = X% - <2a +ary +any + A; (Aa(Gl)))x
+a?riny + 3ar) — r1 + QBa +any — 1A (Aa(Gl))
and
(iv) three roots of the equation F (x) = 0, where
F(x) = (x —amy —r2)
-(x2 — Qo+ ary +any +ry)x + (a2r1n2 + 6ary + arijny — 2r1))

—mny(1 — oz)z(x —ary —ry).
Taking G as K, ;, we obtain the A,-eigenvalues of G (e) G in the next corollary.

Corollary 6.2 Let G| be anry-regular graph onn| vertices and m edges. Let p, g > 1
be integers and G, = Kp 4.

1. Ifr1 = 1, thenfor each o € [0, 1], the Ay-spectrum of G1(e) G, consists precisely
of:

(1) 3a —1;
(i) a(l + p), repeated g — 1 times;
(iii) a(l + q), repeated p — 1 times and
(iv) four roots of the equation F (x) = 0, where

Fx) = (x2—(2a+ap+aq+a+1)x
+a2p+a2q+6a+ap+aq —2)
~<x2 — (20(+ap+ozq)x+a2+a2p+a2q+2apq —pq)
—(1—a)(x—a— 1)(px+qx —op —aq

—otp2 — otq2 —2apq + 2pq).

2. Ifr; = 2, then for each a € [0, 1], the Ay-spectrum of G1(e) G, consists precisely
of:

(1) a2+ p + q), repeated m| — ny times;
(i) a(my + p), repeated g — 1 times;
(iil) a(mi + q), repeated p — 1 times;
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(iv) two roots of the equation Gi(x) = 0 for eachi = 2,3, ..., ny, where

Gi(x) = g <2a +oari+ap+oag+A; (Aa(Gl)))x

+a2r1p +a2r1q +3ar; —r1 + GBa+ap +ag — DA (Aa(Gl));

and
(v) four roots of the equation F (x) = 0, where

F(x)
= <x2 — QRou+ari+ap+oaqg +r1)x +a2r1p +a2r1q

+6ar; +ar p +ariqg — 2r1)

~<x2 — Qam; +ap +aq)x +a2m% +a’mip +a2m1q + 2apg — pq)
—m (1 —ot)z(x —ar; — rl)(px +gx —amip —amiq

—otp2 — otq2 —2apq + 2pq).

Finally, to conclude this section, we provide a construction of new pair of Ag-
cospectral graphs from a given pair of A,-cospectral graphs in the following corollary.

Corollary 6.3 1. Let G| and G, be two Ay -cospectral regular graphs for a € [0, 1],
and let H be an arbitrary graph. Then the graphs G1(e)H and G,{e)H are Ay-
cospectral.

2. Let Hy and Hy be two Agy-cospectral graphs with T 4, (1) (x) = T a,(H,)(x) for
o € [0,1). If G is a regular graph, then the graphs G(e)H| and G(e)H> are
Ag-cospectral.
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