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Abstract
We study the inclusion relation of the triangular ratio metric balls and the Cassinian
metric balls in subdomains of R

n . Moreover, we study distortion properties of Möbius
transformations with respect to the triangular ratio metric in the punctured unit ball.

Keywords Triangular ratio metric · Metric ball · Ball inclusion · Möbius
transformation
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1 Introduction

In geometric function theory, various metrics relative to the boundary of domains in
which families of functions are defined have been introduced and played important
roles in the studies of geometric and analytic properties of these functions. In the planar
case, the hyperbolic metric serves as an important example of such metrics [3,15]. The
so-called hyperbolic-type metrics, defined as generalizations of the hyperbolic metric
of the planar domains to subdomains of higher-dimensional Euclidean space, share
some but not all properties of the hyperbolic metric [5,8]. Examples of well-known
hyperbolic-type metrics include the quasihyperbolic metric, distance ratio metric, and
Apollonian metric.

Most of the hyperbolic-type metrics belong to the family of relative metrics. A
relativemetric is ametric that is evaluated in a domain D � R

n relative to its boundary.
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In 2002, Hästö [7] introduced the generalized relative metric named as the M−relative
metric which is defined on a domain D � R

n by the quantity

ρM,D(x, y) = sup
a∈∂D

|x − y|
M(|x − a|, |y − a|) ,

whereM is continuous in (0,∞)×(0,∞) and ∂D is the boundaryof D. ForM(α, β) =
α + β, the corresponding relative metric is the so-called triangular ratio metric

sD(x, y) = sup
a∈∂D

|x − y|
|x − a| + |y − a| .

The triangular ratio metric has been recently investigated in [4,9–11,16]. Another
example of generalized relative metric is the Cassinian metric defined by the choice
M(α, β) = αβ, i.e.,

cD(x, y) = sup
a∈∂D

|x − y|
|x − a||y − a| .

The geometric properties of the Cassinian metric have been studied in [13,14,17].
In this paper, we continue to study the geometric properties of the triangular ratio

metric and Cassinian metric. In particular, we investigate the inclusion relation of
the triangular ratio metric balls and the Cassinian metric balls in subdomains of R

n .
Also, we study distortion properties of Möbius transformations with respect to the
triangular ratio metric in the punctured unit ball. By using the comparison between
the triangular ratio metric and Ibragimov’s metric, we show the quasiconformality of
bilipschitz mappings in Ibragimov’s metric.

2 Hyperbolic-TypeMetrics

In this section, we collect the definitions and some basic properties of various
hyperbolic-type metrics. We always denote by D the proper subdomain of the
Euclidean spaceR

n andwrite d(x) = d(x, ∂D) for the distance from x to the boundary
of the domain D, and let dxy = min{d(x), d(y)}.

2.1 Hyperbolic Metric

The hyperbolic metrics ρHn and ρBn of the upper half space H
n = {(x1, . . . , xn) ∈

R
n : xn > 0} and of the unit ball B

n = {z ∈ R
n : |z| < 1} are, respectively, defined

as follows [2]: for x, y ∈ H
n

chρHn (x, y) = 1 + |x − y|2
2xn yn

, (2.1)
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and for x, y ∈ B
n

sh
ρBn (x, y)

2
= |x − y|

√
1 − |x |2√1 − |y|2 . (2.2)

2.2 Distance Ratio Metric

For all x, y ∈ D, the distance ratio metric jG is defined as

jD(x, y) = log

(
1 + |x − y|

dxy

)
.

This metric was introduced by Gehring and Palka [6] in a slightly different form and
in the above form in [20]. It follows from [21, Lemma 2.41(2)] and [1, Lemma 7.56]
that

jD(x, y) ≤ ρD(x, y) ≤ 2 jD(x, y)

for D ∈ {Bn, H
n} and all x, y ∈ D.

2.3 Quasihyperbolic Metric

For all x, y ∈ D, the quasihyperbolic metric kD is defined as

kD(x, y) = inf
γ

∫

γ

1

d(z, ∂D)
|dz|,

where the infimum is taken over all rectifiable arcs γ joining x to y in D [6]. It is well
known that

jD(x, y) ≤ kD(x, y)

for all x, y ∈ D.

2.4 Point Pair Function

We define for x, y ∈ D � R
n the point pair function

pD(x, y) = |x − y|
√|x − y|2 + 4 d(x) d(y)

.

This point pair function was introduced in [4] where it turned out to be a very use-
ful function in the study of the triangular ratio metric. However, the function pG is
generally not a metric.
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2.5 Ibragimov’s Metric

For a domain D � R
n , Ibragimov’s metric is defined as

uD(x, y) = 2 log
|x − y| + max{d(x), d(y)}√

d(x) d(y)
, x, y ∈ D.

Several authors have studied comparison inequalities between Ibragimov’s metric and
the hyperbolic metric as well as some hyperbolic-type metrics [12,19,22,23].

3 Inclusion Properties

In this section, we study inclusion relation between triangular ratio metric balls and
other hyperbolic-typemetric balls. Let (D, d) be ametric space. Ametric ball Bd (x, r)
is a set

Bd(x, r) = {y ∈ D : d(x, y) < r}.

Our first theorem shows the inclusion relation between the triangular ratio metric
balls Bs and the Cassinian metric balls Bc.

Theorem 3.1 For arbitrary x ∈ D � R
n and t ∈ (0, 1),

Bc(x, r) ⊂ Bs(x, t) ⊂ Bc(x, R),

where r = 2t
(1+2t)d(x) and R = 2t

(1−t)d(x) . Moreover, R/r → 1 as t → 0.

Proof For all x, y ∈ D, it is easy to see that

inf
z∈∂D

|x − z||y − z| ≤ dxy(dxy + |x − y|).

By the definition of the Cassinian metric, we obtain

cD(x, y) = |x − y|
inf z∈∂D |x − z||y − z| ≥ |x − y|

dxy(dxy + |x − y|) ,

and hence,

|x − y| ≤ cD(x, y)d2xy
1 − cD(x, y)dxy

<
rd2xy

1 − rd(x) ∧ d(y)
< 2tdxy .

By the definition of the triangular ratio metric, we have

sD(x, y) = |x − y|
inf z∈∂D |x − z| + |y − z| ≤ |x − y|

d(x) + d(y)
≤ |x − y|

2dxy
< t .
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Hence, we obtain Bc(x, r) ⊂ Bs(x, t). As for the inclusion Bs(x, t) ⊂ Bc(x, R), let
y ∈ Bs(x, t), then

|x − y|
2d(y) + |x − y| ≤ sD(x, y) < t,

which implies that |x − y| <
2td(y)
1−t and

cD(x, y) ≤ |x − y|
d(x)d(y)

<
2t

(1 − t)d(x)
.

Clearly,

lim
t→0

R

r
= 1.


�
Theorem 3.2 shows the inclusion between the triangular ratio metric balls and

distance ratio metric balls, which was conjectured in [11, Conjecture 7.7].

Theorem 3.2 For arbitrary x ∈ D � R
n and t ∈ (0, 1),

B j (x, r) ⊂ Bs(x, t) ⊂ Bj (x, R),

where r = log(1 + 2t) and R = log(1 + 2t
1−t ). Moreover, R/r → 1 as t → 0.

Proof Suppose that y ∈ Bj (x, r). Then,

log(1 + |x − y|
dxy

) = jD(x, y) < r = log(1 + 2t),

which implies that

|x − y| < 2tdxy .

Since

inf
z∈∂D

|x − z| + |y − z| ≥ 2dxy,

by the definition of the triangular ratio metric we have

sD(x, y) = |x − y|
inf z∈∂D |x − z| + |y − z| ≤ |x − y|

2dxy
< t .
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Hence, y ∈ Bs(x, t). Now we prove the second inclusion. It follows from triangle
inequality that inf

z∈∂D
|x − z| + |y − z| ≤ 2dxy + |x − y|, and

t > sD(x, y) ≥ |x − y|
2dxy + |x − y| ,

which implies

|x − y|
dxy

<
2t

1 − t
.

Hence, the second inclusion holds. It is easy to check that

lim
t→0

R

r
= 1.


�
From the well-known inequalities [1, Theorem 7.56]

jBn (x, y) ≤ ρBn (x, y) ≤ 2 jBn (x, y),

it follows that

Bρ(x, r) ⊂ Bj (x, r) ⊂ Bρ(x, 2r). (3.1)

Theorem 3.3 Let x ∈ B
n and t ∈ (0, 1). Then,

Bρ(x, r) ⊂ Bs(x, t) ⊂ Bρ(x, R),

where r = log(1 + 2t) and R = 2 log(1 + 2t
1−t ). Moreover, R/r → 2 as t → 0 .

Proof By Theorem 3.2, we have Bs(x, t) ⊂ Bj (x, log(1+ 2t
1−t )), which together with

the right-hand side of (3.1) implies the second inclusion with R = 2 log(1 + 2t
1−t ).

Similarly, Theorem 3.2 together with the left-hand side of (3.1) implies

Bρ(x, r) ⊂ Bj (x, r) ⊂ Bs(x,
er − 1

2
).

That is, Bρ(x, r) ⊂ Bs(x, t) with r = log(1 + 2t). By l’Hôpital rule, it is easy to see
that

lim
t→0

R

r
= 2.


�
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In a convex domain D ⊂ R
n , we recall the following inequality [4, Lemma 3.14]

sD(x, y) ≤ pD(x, y) ≤ √
2sD(x, y), for x, y ∈ D.

It follows immediately that

Bp(x, r) ⊂ Bs(x, r) ⊂ Bp(x,
√
2r).

Similarly, in a convex domain D ⊂ R
n , the inequality [9, Theorem 2.17]

sD(x, y) ≤ vD(x, y) ≤ πsD(x, y)

implies the inclusion

Bv(x, r) ⊂ Bs(x, r) ⊂ Bv(x, πr).

Lemma 3.4 [18, Corollary 3.4] For x ∈ B
n and r > 0,

B j (x, r) ⊂ Bk(x, t) ⊂ Bj (x, R),

where

r = max{log(1 + (1 + |x |) sinh t

4
), log(1 + (1 − |x |)e

t/2 − 1

2
)}

and

R = log(1 + (1 + |x |)e
t − 1

2
).

Theorem 3.5 Let x ∈ B
n and t ∈ (0, 1). Then, the following inclusion relation holds:

Bk(x, r) ⊂ Bs(x, t) ⊂ Bk(x, R),

where r = log(1 + 4t
1+|x | ) and R = max{R1, R2} with

R1 = 4 arsh(
2t

(1 + |x |)(1 − t)
), R2 = 2 log(1 + 4t

(1 − |x |)(1 − t)
).

Proof By Lemma 3.4, it is easy to see that

Bk(x, r) ⊂ Bj (x, log(1 + (1 + |x |)e
r − 1

2
)),

and by Theorem 3.2, Bj (x, r) ⊂ Bs(x,
er−1
2 ), then we have

Bk(x, r) ⊂ Bs(x, (1 + |x |)e
r − 1

4
).
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Similarly, Bk(x, r) ⊂ Bs(x, t) with r = log(1 + 4t
1+|x | ).

Again from Theorem 3.2 and Lemma 3.4, it follows that

Bs(x, t) ⊂ Bj (x, log(1 + 2t

1 − t
))

and

Bj (x, t) ⊂ Bk(x,max{4 arsh et − 1

1 + |x | , 2 log(1 + 2(et − 1)

1 − |x | )}).

Hence, the second inclusion holds with R = max{R1, R2}, where

R1 = 4 arsh(
2t

(1 + |x |)(1 − t)
) and R2 = 2 log(1 + 4t

(1 − |x |)(1 − t)
).


�
Lemma 3.6 [17, Theorem 5.4] For given a ∈ R

n, let domain D = R
n\{a}, x ∈ D

and 0 < t < 1/(2|x − a|). Then, we have the following inclusion relation

B j (x, r) ⊂ Bc(x, t) ⊂ Bj (x, R),

where r = log(1+ t |x − a|) and R = log( 1−t |x−a|
1−2t |x−a| ). Moreover, R/r → 1 as t → 0.

The following improved inclusion relation between the Cassinian metric balls and
the distance ratio metric balls was conjectured in [17, Conjecture 5.5].

Theorem 3.7 Let D � R
n be a domain and x ∈ D. For 0 < t < 1

d(x) , the following
inclusion holds:

B j (x, r) ⊂ Bc(x, t) ⊂ Bj (x, R),

where r = log(1 + td(x)) and R = log
(

1
1−td(x)

)
. Moreover, R/r → 1 as t → 0.

Proof Suppose that y ∈ Bj (x, r). Then, jD(x, y) < r , and

log

(
1 + |x − y|

min{d(x), d(y)}
)

< log (1 + td(x)) .

On simplification, we get

|x − y| < td(x)min{d(x), d(y)} < td(x)d(y),

which together with the inequality

inf
p∈∂D

|x − p||y − p| ≥ d(x)d(y)
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implies

cD(x, y) = |x − y|
inf
p∈∂D

|x − p||y − p| < t .

Hence, y ∈ Bc(x, t) and Bj (x, r) ⊂ Bc(x, t).
Now we prove the second inclusion. Let p0 ∈ ∂D with |x − p0| = d(x). The

triangle inequality yields |y − p0| ≤ d(x) + |x − y|, and then,

inf
p∈∂D

|x − p||y − p| ≤ |x − p0||y − p0| ≤ d(x)(d(x) + |x − y|).

Similarly,

inf
p∈∂D

|x − p||y − p| ≤ d(y)(d(y) + |x − y|).

Combining the above two inequalities, we have

inf
p∈∂D

|x − p||y − p| ≤ dxy(dxy + |x − y|),

and then, for y ∈ Bc(x, t),

|x − y|
dxy(dxy + |x − y|) ≤ |x − y|

inf p∈∂D |x − p||y − p| < t,

which implies

|x − y|
dxy

<
tdxy

1 − tdxy
.

Therefore,

jD(x, y) = log

(
1 + |x − y|

dxy

)

≤ log
1

1 − tdxy
< R

and y ∈ Bj (x, R). Hence, the second inclusion holds. Clearly, one can see that R/r →
1 as t → 0. 
�

Before proving Theorem 3.8, we recall the following inequality [6, Lemma 2.1]:

jD(x, y) ≤ kD(x, y) for all x, y ∈ D. (3.2)
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Theorem 3.8 Let D � R
n be a domain and x ∈ D. For t < 1

2d(x) , we have

Bk(x, r) ⊂ Bc(x, t) ⊂ Bk(x, R),

where r = log(1 + td(x)) and R = log( 1−td(x)
1−2td(x) ). Moreover, R/r → 1 as t → 0.

Proof For arbitrary y ∈ Bk(x, r), we have kD(x, y) < r . Inequality (3.2) implies
jD(x, y) < r , and then Bk(x, r) ⊂ Bj (x, r). Since Bj (x, r) ⊂ Bc(x, t) by Theorem
3.7, the first inclusion follows.

Let z ∈ ∂D such that cD(x, y) = cRn\{z}(x, y). Since D ⊂ R
n\{z}, it follows from

the domain monotonicity of the distance ratio metric that

jRn\{z}(x, y) ≤ jD(x, y).

Hence, we have jRn\{z}(x, y) < r . By Lemma 3.6, we obtain

cRn\{z}(x, y) < t

and cD(x, y) < t , which implies Bj (x, r) ⊂ Bc(x, t).
For the second inclusion relation, let y ∈ Bc(x, t). It follows from Theorem 3.7

that y ∈ Bj (x, log(1/(1 − td(x)))) and then

|x − y| <
td2(x)

1 − td(x)
.

Since t < 1/(2d(x)), we have |x − y| < d(x). By [21, Lemma 3.7],

kD(x, y) ≤ log(1 + |x − y|
d(x) − |x − y| )

< log(1 + td(x)

1 − 2td(x)
)

= log(
1 − td(x)

1 − 2td(x)
).

It is easy to see that

lim
t→0

R

r
= 1.


�

4 Distortion Property of Möbius Transformations

The distortion property of the triangular ratio metric under Möbius transformations of
the unit ball has been studied in [4,10]. In this section, we study the similar property
but under Möbius transformations of a punctured unit ball.
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For a ∈ R
n\{0}, let a∗ = a

|a|2 , 0
∗ = ∞, and ∞∗ = 0. Let

σa(x) = a∗ + s2(x − a∗)∗, s2 = |a∗|2 − 1

be the inversion in the sphere Sn−1(a∗, s).
Let f be a Möbius transformation of the unit ball. Since the triangular ratio metric

sD is invariant under orthogonal transformations, it follows from [2, Theorem 3.5.1]
that

sBn ( f (x), f (y)) = sBn (σa(x), σa(y)) for x, y, a ∈ B
n .

Theorem 4.1 Let a ∈ B
n and f : B

n\{0} → B
n\{a} be a Möbius transformation with

f (0) = a. Then, for x, y ∈ B
n\{0}, it holds

1 − |a|
1 + |a| sBn\{0}(x, y) ≤ sBn\{a}( f (x), f (y)) ≤ 1 + |a|

1 − |a| sBn\{0}(x, y).

Proof If a = 0, i.e., f (0) = 0, then f is a rotation and preserves the triangular ratio
metric. Now we suppose that a = 0 and then f (a) = 0.

sBn\{0}(x, y) = |x − y|
P

,

where

P = min{|x | + |y|, inf
w∈∂Bn

|x − w| + |y − w|}

and

sBn\{a}(σa(x), σa(y)) = |σa(x) − σa(y)|
T

,

with

T = min{|σa(x) − a| + |σa(y) − a|, inf
z∈∂Bn

|σa(x) − σa(z)| + |σa(z) − σa(y)|}.

We first prove the right-hand side inequality.
If T = inf

z∈∂Bn
|σa(x)−σa(z)|+ |σa(z)−σa(y)|, then the distortion of the triangular

ratio metric under Möbius transformations of the punctured unit ball is the same as
the case of the unit ball [4, Theorem 3.31].
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Now we suppose that T = |σa(x) − a| + |σa(y) − a|. Then,

sBn\{a}(σa(x), σa(y)) = |σa(x) − σa(y)|
|σa(x) − a| + |σa(y) − a|

=
s2|x−y|

|x−a∗||y−a∗|
s2|x |

|x−a∗||a∗| + s2|y|
|y−a∗||a∗|

= |x − y|
|y−a∗|

|a∗| |x | + |x−a∗|
|a∗| |y|

= |x − y|
β|x | + γ |y| ,

where β = |y−a∗|
|a∗| and γ = |x−a∗|

|a∗| . Clearly,

|a∗| − 1 ≤ |x − a∗|, |y − a∗| ≤ |a∗| + 1

which together with β, γ ≥ 1 − |a| implies

sBn\{a}(σa(x), σa(y)) ≤ 1

1 − |a|
|x − y|
|x | + |y| ≤ 1 + |a|

1 − |a| sBn\{0}(x, y).

Nextweprove the left-hand side of the inequality. If P = inf
w∈∂Bn

|x−w|+|y−w|, the
distortion of the triangular ratio metric underMöbius transformations of the punctured
unit ball is the same as the case of the unit ball [4, Theorem 3.31]. Now we assume
P = |x | + |y|. Then,

sBn\{0}(x, y) = |x − y|
|x | + |y|

=
|σa(x)−σa(y)||x−a∗||y−a∗|

s2

|σa(x)−a||x−a∗||a∗|
s2

+ |σa(y)−a||y−a∗||a∗|
s2

= |σa(x) − σa(y)|
1
β
|σa(x) − a| + 1

γ
|σa(y) − a| ,

where β, γ ≤ 1 + |a|. Therefore,

sBn\{0}(x, y) ≤ (1 + |a|) |σa(x) − σa(y)|
|σa(x) − a| + |σa(y) − a|

≤ (1 + |a|)sBn\{a}(σa(x), σa(y))

≤ 1 + |a|
1 − |a| sBn\{a}(σa(x), σa(y)).


�
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5 Quasiconformality of a Bilipschitz Mapping in Ibragimov’s Metric

Bilipschitz mappings with respect to the triangular ratio metric have been studied in
[10]. In this section, we use the comparison inequality between the triangular ratio
metric and Ibragimov’s metric to investigate the quasiconformality of bilipschitz map-
pings in Ibragimov’s metric.

Theorem 5.1 [10, Theorem 4.4] Let G � R
n be a domain and let f : G → f G ⊂ R

n

be a sense-preserving homeomorphism, satisfying L-bilipschitz condition with respect
to the triangular ratio metric, i.e.,

sG(x, y)/L ≤ s f G( f (x), f (y)) ≤ LsG(x, y),

holds for all x, y ∈ G. Then, f is quasiconformal with the linear dilatation H( f ) ≤
L2.

Lemma 5.2 [22, Theorem 3.10] Let D � R
n. For x, y ∈ D,

(2 log 3)sD(x, y) ≤ uD(x, y) ≤ 3 log
1 + sD(x, y)

1 − sD(x, y)
,

and the inequalities are sharp.

Theorem 5.3 Let D � R
n be a domain and f : D → f D ⊂ R

n is a sense-preserving
homeomorphism satisfying the L-bilipschitz condition in Ibragimov’s metric

1

L
uD(x, y) ≤ u f (D)( f (x), f (y)) ≤ LuD(x, y). (5.1)

Then, f is a quasiconformal mapping with the linear dilatation H( f ) ≤ 9L2

log2 3
.

Proof Since, by Lemma 5.2,

uD(x, y) ≤ 3 log
1 + sD(x, y)

1 − sD(x, y)
= 3 log

(
1 + 2sD(x, y)

1 − sD(x, y)

)
,

for arbitrary ε > 0, there exists δ > 0 such that for x, y ∈ D satisfying sD(x, y) < δ,
we have

(2 log 3)sD(x, y) ≤ uD(x, y) ≤ 6(1 + ε)sD(x, y).
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By Lemma 5.2, we have

s f D( f (x), f (y)) ≤ 1

2 log 3
u f D( f (x), f (y))

≤ L

2 log 3
uD(x, y)

≤ 3(1 + ε)L

log 3
sD(x, y).

Similarly,

s f D(( f (x), f (y)) ≥ 1

6(1 + ε)
u f D( f (x), f (y))

≥ 1

6L(1 + ε)
uD(x, y)

≥ log 3

3(1 + ε)L
sD(x, y).

Therefore, an L-bilipschitz mapping under Ibragimov’s metric is a 3L(1+ε)
log 3 -

bilipschitz mapping under the triangle ratio metric. It follows from Theorem 5.1 that
f is a quasiconformal mapping with the linear dilatation H( f ) ≤ (

3L(1+ε)
log 3 )2. Let

ε → 0, we obtain the desired linear dilatation. 
�
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