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Abstract
The exact solutions of the Riemann problem for a Temple-class hyperbolic system of
conservation laws consisting of three scalar equations are obtained in fully explicit
forms, inwhich all the state variablesmay containDirac delta functions simultaneously
under some suitable Riemann initial data. The generalized Rankine–Hugoniot condi-
tions and the over-compressive entropy condition are derived for such very singular
delta shock wave solution. We also prove rigorously this delta shock wave solution
satisfying the system in the sense of distributions. Moreover, three typical cases for
the delta shock interaction problem are provided in order to illustrate some interesting
nonlinear wave phenomena. In addition, some numerical simulations are offered to
confirm the theoretical results.
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1 Introduction

In this paper, we are concerned with the following hyperbolic system of conservation
laws ⎧

⎪⎨

⎪⎩

ut + (uφ(au + bv + cw))x = 0,

vt + (vφ(au + bv + cw))x = 0,

wt + (wφ(au + bv + cw))x = 0,

(1.1)

subjected to the Riemann-type initial conditions given by

(u, v, w)(x, 0) =
{

(u−, v−, w−), x < 0,

(u+, v+, w+), x > 0.
(1.2)

For convenience, let φ(r) be a given smooth function of the combined state variable
r = au+bv + cw satisfying a2 +b2 + c2 �= 0, with a, b and c being given constants.
It is shown that the system (1.1) has only two different eigenvalues λ1 = φ(r) and
λ2 = φ(r)+rφ′(r), in which λ1 is fold two times and the elementary waves associated
with λ1 are coincident. In this work, we restrict ourselves to the following reasonable
assumptions [1]:

φ′(r) > 0, (rφ(r))′′ > 0, φ(0) = 0, (1.3)

whichmeans that the system (1.1) is non-strictly (orweakly) hyperbolic because r may
be positive or negative. It is evident to find that the shock curve has the same expression
as the rarefaction one, so the system (1.1) belongs to the so-called hyperbolic system
of Temple class [2,3].

It is obvious that the system (1.1) is also a reasonable generalization of the following
general 2 × 2 Keyfitz–Kranzer system [4]

{
ut + (uφ(u, v))x = 0,

vt + (vφ(u, v))x = 0,
(1.4)

which has been extensively addressed in [5–8] for example. It should be emphasized
that the system (1.4) was first introduced by Keyfitz and Kranzer [4] to discuss the
wave propagation problem for an idealized nonlinear elastic string model, in which
φ(u, v) = φ(r) was a given smooth function of r = √

u2 + v2. Moreover, the admis-
sibility criteria of solutions and the propagation and cancellation of initial oscillations
for the system (1.4) were well considered by Chen [5]. The existence, uniqueness and
stability of the Cauchy problem for the extended Keyfitz–Kranzer system were also
consider by Freistuhler [6] under some suitable initial conditions. In addition, the sys-
tem (1.4) was also adopted by Kearsley and Reiff [7] to interpret some characteristics
of solar wind in magnetohydrodynamic. Very recently, some detailed examples for the
system (1.4) have been provided and illustrated by Betancourt et al. [8]. To the end,
it is necessary to point out that the asymmetric Keyfitz–Kranzer system has also been
proposed by Lu recently, please refer to [9–11] for details. It should be stressed that
Yang and Zhang [1] investigated a special form of 2 × 2 Keyfitz–Kranzer system as
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follows: {
ut + (φu)x = 0,

vt + (φv)x = 0,
(1.5)

where φ = φ(r) is a given smooth function of r = au + bv satisfying a2 + b2 �= 0,
where a and b are constants. It was shown in [1] that both the two state variables u and
v contain Dirac delta function simultaneously. Furthermore, they [12] also considered
the Riemann problem for the system (1.5) when φ = φ(r) is a given smooth function
of r = u

v
, in which some new interesting nonlinear wave phenomena were discovered.

Subsequently, Shen [13] considered the interaction problem of delta shock wave for
the system (1.5) with φ(u, v) = φ(uv). Very recently, De la Cruz et al. [14] have
investigated the interaction between delta shock waves and contact discontinuities for
a nonsymmetric Keyfitz–Kranzer system by using the method of splitting δ-function
together with the method of characteristics, please also see the related study about this
nonsymmetric Keyfitz–Kranzer system under the viscosity term [15] or the Coulomb-
like friction term [16].

Inspired by the above-mentioned work, it is very natural and expected to investigate
the extended Keyfitz–Kranzer system (1.1), which belongs to the so-called Temple-
class hyperbolic system of conservation laws.More precisely, the system (1.1) is also a
special case of the n×n symmetric Keyfitz–Kranzer system introduced by Freistuhler
[6] when n = 3 and r = au + bv + cw are taken. In addition, it is also interesting to
mention that the triple-component nonlinear chromatography system is a special case
of our system (1.1) by taking φ(r) = 1 + 1

1+r and then transforming appropriately,
please see Eqs. (3.14)–(3.15) in [17] and Eq. (1.1) in [18]. In the current work, the first
task is to solve the exact solutions of the Riemann problem (1.1) and (1.2) for all the
possible cases under the assumptions (1.3). It is noticed interestingly that five kinds
of Riemann solutions are constructed in fully explicit forms for the Riemann problem
(1.1) and (1.2) by using the combination of classical waves including shock wave,
rarefaction wave and contact discontinuity with the help of the analysis in the phase
plane. Moreover, it is discovered that if r− ≥ 0 ≥ r+, then the Riemann problem
(1.1) and (1.2) admits a delta shock wave solution, in which Dirac delta functions are
included in all the state variables u, v and w at the same time. Moreover, we extract
the generalized Rankine–Hugoniot conditions to describe the relationship among the
location, the wave speed, the strength and the assignment of the state variables u, v

and w on such delta shock front. In order to guarantee the uniqueness of delta shock
wave solution, the over-compressive entropy condition is also proposed, which shows
that all the characteristic lines on the both sides enter the delta shock front. To the
end, we can also prove strictly that such delta shock wave solution satisfies the system
(1.1) in the sense of distributions. In addition, we also simulate the delta shock wave
solution of the Riemann problem (1.1) and (1.2) for the different cases of a, b and c
by employing the upwind scheme. It is shown clearly that the numerical results are in
complete agreement with our theoretical analysis. To the end, it is of interest to note
that the Riemann solutions for the system (1.1) share the similar structures of Riemann
solutions for a simplified thin film model [19]. However, it should be stressed that the
Dirac delta functions are developed in all the state variables u, v andw simultaneously
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in the current work, which is completely different from that in [19] where the Dirac
delta function is only developed in the single state variable v.

At the present time, the concept of delta shock wave has been widely recognized
and accepted in the hyperbolic theory of conservation laws, which refers to the form
of standard Dirac δ-measure supported upon a shock front. In general, the concept
of delta shock wave is a reasonable generalization and extension of the concept of
normal shock wave due to more excessive compressibility of delta shock wave than
that of shock wave. More precisely, the number of characteristic lines breaking into
the delta shock front is usually more than the number of characteristic lines incoming
the normal shock front. To the end, it is necessary to address that the concept of delta
shock wave is different from that of delta wave which often appears in the current
literature. In fact, the concept of delta wave only refers to the form of standard Dirac
δ-measure involved in a solution but it is not necessarily superimposed on the shock
front, which is boarder than the concept of delta shock wave. However, it often leads
to some confusion and abuse in the current literature.

With the Riemann solutions in hand, it is very significant and also natural to concern
with the interaction problem of delta shock wave with other classical waves for the
system (1.1). For this purpose, we consider the initial condition consisting of three
piecewise constant states as follows:

(u, v, w)(x, 0) =

⎧
⎪⎨

⎪⎩

(u−, v−, w−), − ∞ < x < −ε,

(um, vm, wm), − ε < x < ε,

(u+, v+, w+), ε < x < +∞,

(1.6)

where ε is a sufficiently small positive number. More precisely, we consider the inter-
action between a delta shock wave δS starting from (−ε, 0) when r− ≥ 0 ≥ rm and
a shock wave S followed by a contact discontinuity J when r+ < rm ≤ 0, a com-
posite wave J R consisting of a contact discontinuity J attached on the wave back of
the rarefaction wave R when rm = 0 or another delta shock wave δS starting from
(ε, 0) when rm ≥ 0 ≥ r+, respectively. The strength of delta shock wave is obtained
explicitly by using the split delta function method proposed by Nedeljkov [20–22] in
the construction of the global solution to the double Riemann problem (1.1) and (1.6).

In what follows, let us briefly review the split delta function method for the reason
thatwewillmake use of suchmethodheavily to dealwith thewave interaction problem.

For convenience, let us denote the notations R2+ = (−∞,+∞)× (0,+∞) and R2+ =
(−∞,+∞) × [0,+∞). Let � be a piecewise smooth boundary curve to separate the

two disjoint open sets�1 and�2, where�1∪�2 = R2+ and�1∩�2 = ∅. Let C(�i ) be
a space of bounded and continuous real-valued functions endowed with the L∞-norm
and further letM(�i ) be the space of measures on�i , where i = 1, 2. Let us consider
the following two spaces C� = C(�1) × C(�2) and M� = M(�1) × M(�2), then
the product of G = (G1,G2) ∈ C� and D = (D1, D2) ∈ M� can be defined by an
element GD = (G1D1,G2D2) ∈ M� , in which Gi Di (i = 1, 2) can be defined by
the common product between a continuous function and a measure. Each measure on

�i is regarded as a measure on R2+ with support in �i . Following up this way, we

123



Riemann Problem andWave Interactions for a Temple-class… 4199

arrive at a mapping m : M� → M(R2+) by taking m(D) = D1 + D2. Moreover, one
further has m(GD) = G1D1 + G2D2. For instance, if the following typical Dirac

delta function δ(x−γ (t)) ∈ M(R2+) along a piecewise smooth curve x = γ (t) is split
in the non-unique manner into a left-hand component D− ∈ M(�1) and a right-hand
one D+ ∈ M(�2), then it holds that

δ(x − γ (t)) = β−(t)D− + β+(t)D+ with β−(t) + β+(t) = 1.

In summary, the concept of solution used in the current work can be illustrated in the
following way: perform the multiplication and composition operations in the space

M� and subsequently take the mapping m : M� → M(R2+) before differentiating in
the traditional space of distributions.

In thiswork, it is of very interest tomention that the delta shockwave δS is separated
into a delta contact discontinuity δ J and a shock wave S when it begins to penetrate
the composite wave J R. Subsequently, the shock wave begins to penetrate rarefaction
wave R. As a result, if r− > r+ > 0, then the shock wave S is able to cancel the
whole rarefaction wave R completely in finite time. Otherwise, if r+ > r− ≥ 0,
then the shock wave S cannot penetrate R completely and finally takes the line x =
ε + (φ(r−) + r−φr (r−))t as the asymptotic line. It should be mentioned that the
interaction problem of delta shock wave has been extensively investigated such as in
[23–31] for different hyperbolic systems of conservation laws, which is the basis in the
construction of the Riemann solutions for the two-dimensional and multi-dimensional
situations [32].

The paper is organized as follows: In Sect. 2, we construct the solutions of the
Riemann problem (1.1) and (1.2) for all the possible cases under the assumptions
(1.3). In particular, when the condition r− ≥ 0 ≥ r+ is satisfied, delta shock wave
will appear in the solution of the Riemann problem (1.1) and (1.2). We clarify the
generalized Rankine–Hugoniot conditions and over-compressive entropy condition
for this delta shock wave, which can be used to solve the delta shock wave solution
of the Riemann problem (1.1) and (1.2). In Sect. 3, we study the interaction problem
of delta shock wave with other classical waves for the system (1.1). Then, the global
solutions of the double Riemann problem (1.1) and (1.6) are constructed explicitly
for three typical cases. Furthermore, we pay attention to the limiting problem whether
the solutions of the double Riemann problem (1.1) and (1.6) are identical with the
corresponding ones of (1.1) and (1.2) or not when ε → 0. In the end, we present some
representative numerical results for the delta shock wave solution of the Riemann
problem (1.1) and (1.2) in Sect. 4.

2 The Riemann Problem (1.1) and (1.2)

In order to solve the Riemann problem (1.1) and (1.2) for all kinds of situations, the
process can be divided into the following three subsections. In the first subsection,
we consider the elementary waves for the system (1.1). Subsequently, we construct
the solutions of Riemann problem (1.1) and (1.2) for five different cases as follows:
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(1) r+ < r− < 0, (2) r− < r+ ≤ 0, (3) r− < 0 < r+, (4) 0 ≤ r− < r+ and (5)
0 < r+ < r− by using the combinations of elementary waves. To the end, it is found
that delta shock wave appears in the solution of the Riemann problem (1.1) and (1.2)
in the case of r+ ≤ 0 ≤ r−, in which the generalized Rankine–Hugoniot relations and
entropy condition are deduced for such delta shock wave.

2.1 ElementaryWaves for the System (1.1)

In this subsection, we are concerned with the classical waves of the system (1.1). The
eigenvalues of system (1.1) are as follows

λ1 = φ, λ2 = φ + rφ′, (2.1)

where λ1 is a double eigenvalue, which means that the two elementary waves corre-
sponding to λ1 are coincident. The right eigenvectors corresponding to λ1 and λ2 are−→r1 1 = (b,−a, 0)T , −→r1 2 = (c, 0,−a)T and −→r2 = (u, v, w)T , respectively. Let the
notation ∇ = ( ∂

∂u , ∂
∂v

, ∂
∂w

) be the gradient operator, then it is easy to check that

∇λ1 · −→r1 1 ≡ 0, ∇λ1 · −→r1 2 ≡ 0, ∇λ2 · −→r2 = r(rφ)′′,

which allows us to know that λ1 is linearly degenerate and λ2 is genuinely nonlinear
provided that r(rφ)′′ �= 0. Let us denote the curved surface � = {(u, v, w)|λ1 =
λ2} = {(u, v, w)|rφ′(r) = 0} in the (u, v, w) state space, then the strict hyperbolicity
of the system (1.1) fails on such curved surface�. It should be addressed here that our
assumptions (1.3) are in full coincide with those in [1,4]. In the assumptions (1.3), the
monotonicity condition φ′(r) > 0 makes us to judge the ordering relation between
λ1 and λ2 obviously. Then, the second condition (rφ(r))′′ > 0 enables us to ensure
that the λ2-characteristic field is genuinely nonlinear when r �= 0. In addition, this
condition also allows us to derive the monotonicity of φ(r) + rφ′(r) with respect to r
immediately, such that the state variables r and then (u, v, w) in the interior of the front
(or back) rarefaction wave fan can be determined uniquely by (2.4) [or (2.5)] later. Of
course we may assume (rφ(r))′′ < 0 instead of (rφ(r))′′ > 0 and the problem can be
dealt with similarly. Finally, the last condition φ(0) = 0 is trivial for the convenience
of computation. As a consequence, the elementary waves in connection with λ1 is
contact discontinuities as well as the elementary waves in connection with λ2 is either
shock waves or rarefaction waves. From (2.1), we can get λ1 > λ2 if r < 0 and
λ1 < λ2 if r > 0, thus the system (1.1) is non-strictly (or weakly) hyperbolic.

In the following,we need to consider the classicalwaves including rarefactionwave,
shock wave and contact discontinuity, which have a given left state (u−, v−, w−) and
a variant right state (u, v, w). Now, let us use self-similar transformation ξ = x

t to find
the continuous solution of this form (u, v, w)(x, t) = (u, v, w)(ξ), then the Riemann
problem (1.1) and (1.2) turns out to be

−ξuξ + (φu)ξ = 0, −ξvξ + (φv)ξ = 0,

−ξwξ + (φw)ξ = 0, (u, v, w)(±∞) = (u±, v±, w±) . (2.2)
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For smooth solution, (2.2) is reduced to

⎛

⎝
auφ′ + φ − ξ buφ′ cuφ′

avφ′ bvφ′ + φ − ξ cvφ′
awφ′ bwφ′ cwφ′ + φ − ξ

⎞

⎠

⎛

⎝
du
dv

dw

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ . (2.3)

Except for constant states (general solutions), plugging ξ = λ1 = φ into (2.3) yields
adu + bdv + cdw = 0, thus the contact discontinuity is given by

J (u−, v−, w−) : ξ = φ(r) = φ(r−), au + bv + cw = au− + bv− + cw−.

Similarly, inserting ξ = λ2 = φ + rφ′ into (2.3) leads to du
u = dv

v
= dw

w
, together

with the condition λ2(r−) < λ2(r), such that the rarefaction wave curve is shown as

R (u−, v−, w−) : ξ = φ + rφ′, u

u−
= v

v−
= w

w−
= r

r−
, r− < r .

We now turn our attention to the study of discontinuous solutions of Riemann
problem (1.1) and (1.2). In what follows, the notation [h] = h(x(t)+0, t)− h(x(t)−
0, t) is used todenote the jumpofh across thediscontinuity x = x(t). Let (u−, v−, w−)

and (u, v, w) be connected by a shock wave or a contact discontinuity with the jump
speed σ , then the Rankine–Hugoniot conditions are given by

σ [u] = [φu], σ [v] = [φv], σ [w] = [φw],

which is simplified into

⎛

⎜
⎝

φ(r−) + au+ φ(r+)−φ(r−)
r+−r− − σ bu+ φ(r+)−φ(r−)

r+−r− cu+ φ(r+)−φ(r−)
r+−r−

av+ φ(r+)−φ(r−)
r+−r− φ(r−) + bv+ φ(r+)−φ(r−)

r+−r− − σ cv+ φ(r+)−φ(r−)
r+−r−

aw+ φ(r+)−φ(r−)
r+−r− bw+ φ(r+)−φ(r−)

r+−r− φ(r−) + cw+ φ(r+)−φ(r−)
r+−r− − σ

⎞

⎟
⎠

⎛

⎝
[u]
[v]
[w]

⎞

⎠ =
⎛

⎝
0
0
0

⎞

⎠ .

By a tedious but trivial calculation, it is shown that shock wave curve originating
from the given left state (u−, v−, w−) is given by

S (u−, v−, w−) : σ = rφ(r) − r−φ(r−)

r − r−
,

u

u−
= v

v−
= w

w−
= r

r−
, 0 < r < r−, r < r− < 0.

It is evident to see that the expression of shock wave curve is the same as that of
rarefaction one in the (u, v, w) state space, so that the system (1.1) belongs to the
well-known Temple type [2,3].
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(a) (b)

Fig. 1 The elementary wave curves for the Riemann problem (1.1) and (1.2) are displayed in the projected
(au + bv, w) phase plane, where a represents the condition r− < 0 and b stands for the condition r− > 0
with r+ > 0

2.2 Classical Riemann Solutions

In this subsection, it is expected to construct the solutions of the Riemann problem
(1.1) and (1.2) by using the combinations of the above elementary waves. By virtue
of the projected (au+bv,w) phase plane in Fig. 1, our discussion can be divided into
five cases as follows:

(1) If r+ < r− < 0, then the Riemann solution is displayed as
←−
S + J given by

(u, v, w)(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(u−, v−, w−), x ≤ r+φ(r+) − r−φ(r−)

r+ − r−
t,

(
r+u−
r−

,
r+v−
r−

,
r+w−
r−

)

,
r+φ(r+) − r−φ(r−)

r+ − r−
t < x < φ(r+)t,

(u+, v+, w+), φ(r+)t ≤ x .

(2) If r− < r+ < 0, then the Riemann solution is represented as
←−
R + J in the form

(u, v, w)(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(u−, v−, w−) , x <
(
φ(r−) + r−φ′(r−)

)
t,

←−
R (u, v, w),

(
φ(r−) + r−φ′(r−)

)
t ≤ x ≤ (

φ(r+) + r+φ′(r+)
)
t,

(
r+u−
r−

,
r+v−
r−

,
r+w−
r−

)

,
(
φ(r+) + r+φ′(r+)

)
t < x < φ(r+)t,

(u+, v+, w+) , φ(r+)t ≤ x,

where the varying state in the wave fan of
←−
R (u, v, w) is determined by

x

t
= φ(r) + rφ′(r), u

u−
= v

v−
= w

w−
. (2.4)
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(3) If r− < 0 < r+, then the Riemann solution is represented as
←−
R + J +−→

R given
by

(u, v, w)(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

(u−, v−, w−) , x <
(
φ(r−) + r−φ′(r−)

)
t,

←−
R (u, v, w),

(
φ(r−) + r−φ′(r−)

)
t ≤ x < 0,

(0, 0, 0), x = 0,
−→
R (u, v, w), 0 < x ≤ (

φ(r+) + r+φ′(r+)
)
t,

(u+, v+, w+) ,
(
φ(r+) + r+φ′(r+)

)
t < x,

where the state in
←−
R (u, v, w) is also given by (2.4) and the state in

−→
R (u, v, w) can

be calculated by
x

t
= φ(r) + rφ′(r), u

u+
= v

v+
= w

w+
. (2.5)

(4) If r+ > r− ≥ 0, then the Riemann solution is expressed as J + −→
R in the form

(u, v, w)(x, t) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(u−, v−, w−) , x ≤ φ(r−)t,
(
r−u+
r+

,
r−v+
r+

,
r−w+
r+

)

, φ(r−)t < x < (φ(r−) + r−φ′(r−))t,

−→
R (u, v, w),

(
φ(r−) + r−φ′(r−)

)
t ≤ x ≤ (

φ(r+) + r+φ′(r+)
)
t,

(u+, v+, w+) ,
(
φ(r+) + r+φ′(r+)

)
t < x,

where the state
−→
R (u, v, w) is also given by (2.5).

(5) If r− > r+ > 0, then the Riemann solution is expressed as J + −→
S , which is

given by

(u, v, w)(x, t) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

(u−, v−, w−) , x ≤ φ(r−)t,
(
r−u+
r+

,
r−v+
r+

,
r−w+
r+

)

, φ(r−)t < x <
r+φ(r+) − r−φ(r−)

r+ − r−
t,

(u+, v+, w+) ,
r+φ(r+) − r−φ(r−)

r+ − r−
t ≤ x .

(2.6)

2.3 Delta ShockWave Solution

In this subsection, motivated by [1], it will be shown that delta shock wave appears
in the solution of the Riemann problem (1.1) and (1.2) for the case r− ≥ 0 ≥ r+
(see Fig. 2), which also satisfies the system (1.1) in the sense of distributions. For the
boundary case r− > 0 = r+, let us consider the limiting solution (u, v, w)(ξ)when r−
is fixed, r− > 0 and r+ → 0+.When r− > r+ > 0, the solution is expressed as J+−→

S

shown inFig. 3. By (2.6), the intermediate state is (u∗, v∗, w∗) =
(
r−u+
r+ ,

r−v+
r+ ,

r−w+
r+

)
.
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Fig. 2 For the condition r− ≥ 0 ≥ r+, δS must be developed in the domain � = {(x, t)∣∣λ1(r+)t ≤ x ≤
λ1(r−)t, t > 0}

Fig. 3 For the case r− > r+ > 0, the solution consisting of J + −→
S is shown on the left-hand side in the

projected (au + bv, w) phase plane and on the right-hand side on the (x, t) plane when r+ → 0+, where
r∗ = au∗ + bv∗ + cw∗

Therefore, one has

lim
r+→0+ u∗ = lim

r+→0+ v∗ = lim
r+→0+ w∗ = +∞,

when u+, v+, w+ > 0. In addition, it is found that the speed of
−→
S tends to that of

contact discontinuity J , which means that
−→
S and J overlap to form a new nonlinear

hyperbolic wave.
Subsequently, let us calculate the total quantities of u, v, w and r as r+ → 0+. It

follows from the first equation of (2.2) that

0 =
∫ ξ= r+φ(r+)−r−φ(r−)

r+−r− +0

ξ=φ(r−)−0
−ξdu + d(φu) = (−ξu)

∣
∣
ξ= r+φ(r+)−r−φ(r−)

r+−r− +0

ξ=φ(r−)−0

+
∫ ξ= r+φ(r+)−r−φ(r−)

r+−r− +0

ξ=φ(r−)−0
udξ + (φu)

∣
∣
ξ= r+φ(r+)−r−φ(r−)

r+−r− +0

ξ=φ(r−)−0 ,
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which gives that if u+ �= 0

lim
r+→0+

∫ ξ= r+φ(r+)−r−φ(r−)

r+−r− +0

ξ=φ(r−)−0
u(ξ)dξ = lim

r+→0+

(
r+φ(r+) − r−φ(r−)

r+ − r−
u+ − φ(r−)u−

−φ(r+)u+ + φ(r−)u−) = φ(r−)u+ �= 0.
(2.7)

Similarly, from the second and third equations of (2.2), if v+ �= 0 and w+ �= 0, then
we can get

lim
r+→0+

∫ ξ= r+φ(r+)−r−φ(r−)

r+−r− +0

ξ=φ(r−)−0
v(ξ)dξ = φ(r−)v+ �= 0,

lim
r+→0+

∫ ξ= r+φ(r+)−r−φ(r−)

r+−r− +0

ξ=φ(r−)−0
w(ξ)dξ = φ(r−)w+ �= 0. (2.8)

Thus, it is calculated by

lim
r+→0+

∫ ξ= r+φ(r+)−r−φ(r−)

r+−r− +0

ξ=φ(r−)−0
(au + bv + cw)(ξ)dξ = lim

r+→0+ φ(r−)r+ ≡ 0. (2.9)

Equations (2.7) and (2.8) show that u(ξ), v(ξ) andw(ξ) have the same singularity as a
weighted Dirac delta function at ξ = φ(r−) while (2.9) implies that r is still bounded.
In addition, the inequality

λ2(r+) = λ1(r+) < σδ = φ(r−) = λ1(r−) < λ2(r−),

is established, where σδ is the wave speed of delta shock wave. In addition, the limiting
situation can also be considered similarly for the other boundary case r+ < 0 = r−.

For the case r− > 0 > r+, it will be shown that the Riemann solution of (1.1)
and (1.2) admits a delta shock wave with the wave speed σδ = r+φ(r+)−r−φ(r−)

r+−r−
satisfying

λ2(r+) < λ1(r+) < σδ < λ1(r−) < λ2(r−).

And if u+v− − u−v+ �= 0, u+w− − u−w+ �= 0 and v+w− − v−w+ �= 0, then we
have

∫ σδ+0

σδ−0
u(ξ)dξ = σδ(u+ − u−)

−(u+φ(r+) − u−φ(r−)) = M(u+(bv− + cw−) − u−(bv+ + cw+)) �= 0,
∫ σδ+0

σδ−0
v(ξ)dξ = σδ(v+ − v−)

−(v+φ(r+) − v−φ(r−)) = M(v+(au− + cw−) − v−(au+ + cw+)) �= 0,
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∫ σδ+0

σδ−0
w(ξ)dξ = σδ(w+ − w−)

−(w+φ(r+) − w−φ(r−)) = M(w+(au− + bv−) − w−(au+ + bv+)) �= 0,

with M = φ(r+)−φ(r−)
r+−r− , and

∫ σδ+0

σδ−0
(au + bv + cw)(ξ)dξ ≡ 0. (2.10)

As a result, for the case r− ≥ 0 ≥ r+, the Riemann solution of (1.1) and (1.2) can be
constructed by introducing the concept of delta shock wave, which is a discontinuity
at ξ = σδ = r+φ(r+)−r−φ(r−)

r+−r− satisfying

λ2(r+) ≤ λ1(r+) ≤ σδ ≤ λ1(r−) ≤ λ2(r−).

Next, it will be shown that the above delta shock wave is a solution satisfying the
system (1.1) in the sense of distributions. For this purpose, such as in [33,34], the
two-dimensional weighted δ-measure βi (t)δ� (i = 1, 2, 3) supported on a smooth
curve � = {(x, t)|x = x(t), 0 ≤ t < +∞} can be defined by

〈βi (t)δ�, ϕ(x, t)〉 =
∫ +∞

0
βi (t)ϕ(x(t), t)dt,

for any test function ϕ(x, t) ∈ C∞
0 (R × R+).

With the above definition, in the case of r− ≥ 0 ≥ r+, the delta shockwave solution
of the Riemann problem (1.1) and (1.2) can be expressed as

u(x, t) = u− + [u]H(x − σδt) + β1(t), v(x, t) = v− + [v]H(x − σδt) + β2(t),

w(x, t) = w− + [w]H(x − σδt) + β3(t),

in which � = {(σδt, t) : 0 ≤ t < +∞}, β1(t) = (σδ[u] − [uφ(r)])t , β2(t) =
(σδ[v] − [vφ(r)])t , β3(t) = (σδ[w] − [wφ(r)])t and H(x) is the Heaviside function.
The delta shock wave solution (u, v, w) constructed as above should satisfy

〈u, ϕt 〉+ 〈uφ, ϕx 〉 = 0, 〈v, ϕt 〉+ 〈vφ, ϕx 〉 = 0, 〈w, ϕt 〉+ 〈wφ, ϕx 〉 = 0, (2.11)

for all test functions ϕ(x, t) ∈ C+∞
0 (R × R+), in which

〈u, ϕ〉 =
∫ +∞

0

∫ +∞

−∞
u0ϕdxdt + 〈β1(t)δ�, ϕ〉,

〈uφ, ϕ〉 =
∫ +∞

0

∫ +∞

−∞
u0φ(r0)ϕdxdt + 〈σδβ1(t)δ�, ϕ〉,
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with u0 = u− + [u]H(x − σδt) and φ(r0) = φ(r−) + [φ(r)]H(x − σδt) where
r0 = au0 + bv0 + cw0. The similar notations and conclusions are also performed on
the last two equations of (2.11) without explanation any more.

Theorem 2.1 For the case r− ≥ 0 ≥ r+, the Riemann problem (1.1) and (1.2) admits
a delta shock wave solution in the form

(u, v, w)(x, t) =

⎧
⎪⎨

⎪⎩

(u−, v−, w−) , x < σδt,

(β1(t), β2(t), β3(t)) δ (x − σδt) , x = σδt,

(u+, v+, w+) , x > σδt,

(2.12)

where

σδ = r+φ(r+) − r−φ(r−)

r+ − r−
,

β1(t) = M(u+(bv− + cw−) − u−(bv+ + cw+))t,

β2(t) = M(v+(au− + cw−) − v−(au+ + cw+))t,

β3(t) = M(w+(au− + bv−) − w−(au+ + bv+))t .

(2.13)

The delta shock wave solution (2.12) in connection with (2.13) also satisfies the gen-
eralized Rankine–Hugoniot conditions

⎧
⎪⎨

⎪⎩

dx

dt
= φ(r)

∣
∣
x=x(t) = σδ,

dβ1(t)

dt
= σδ[u] − [uφ(r)],

dβ2(t)

dt
= σδ[v] − [vφ(r)], dβ3(t)

dt
= σδ[w] − [wφ(r)].

(2.14)

and the over-compressive entropy condition

λ2(r+) ≤ λ1(r+) ≤ σδ ≤ λ1(r−) ≤ λ2(r−).

Proof Let us first check that the above constructed delta shock wave solution (2.12)
in connection with (2.13) should satisfy the system (1.1) in the sense of distributions.
Based on the definition of Schwartz distributions, this is equivalent to proving that it
should satisfy

∫ +∞

0

∫ +∞

−∞
(uϕt + uφ(r)ϕx ) dxdt = 0,

∫ +∞

0

∫ +∞

−∞
(vϕt + vφ(r)ϕx ) dxdt = 0,

∫ +∞

0

∫ +∞

−∞
(wϕt + wφ(r)ϕx ) dxdt = 0. (2.15)
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Without loss of generality, assume that σδ > 0, then we have

∫ +∞

0

∫ +∞

−∞
(uϕt + uφ(r)ϕx ) udxdt

=
∫ +∞

0

∫ x
σδ

0
u+ϕtdtdx

+
∫ +∞

0

∫ +∞
x
σδ

u−ϕtdtdx +
∫ +∞

0

∫ σδ t

−∞
u−φ(r−)ϕxdxdt

+
∫ +∞

0

∫ +∞

σδ t
u+φ(r+)ϕxdxdt

+
∫ +∞

0
M (u+ (bv− + cw−) − u− (bv+ + cw+)) tdϕ

=
∫ +∞

0
u+ϕ

(

x,
x

σδ

)

dx −
∫ +∞

0
u−ϕ

(

x,
x

σδ

)

dx

+
∫ +∞

0
u−φ(r−)ϕ (σδt, t) dt −

∫ +∞

0
u+φ(r+)ϕ (σδt, t) dt

−
∫ +∞

0
M (u+ (bv− + cw−) − u− (bv+ + cw+)) ϕdt

=
∫ +∞

0
(σδ (u+ − u−) + u−φ(r−) − u+φ(r+)

−M (u+ (bv− + cw−) − u− (bv+ + cw+))) ϕdt = 0.

Similarly, one also has

∫ +∞

0

∫ +∞

−∞
(vϕt + vφ(r)ϕx )dxdt

=
∫ +∞

0
(σδ(v+ − v−) + u−φ(r−) − v+φ(r+)

−M (v+(au− + cw−) − v− (au+ + cw+)) ϕdt = 0,
∫ +∞

0

∫ +∞

−∞
(wϕt + wφ(r)ϕx )dxdt

∫ +∞

0
(σδ(w+ − w−)

+w−φ(r−) − w+φ(r+) − M(w+(au− + bv−) − w−(au+ + bv+))ϕdt = 0.

From the above, we can see that (2.12) in connection with (2.13) is indeed the
piecewise smooth Riemann solution of (1.1) and (1.2) in the sense of distributions. In
addition, we obtain the relations (2.14), which is said to be the generalized Rankine–
Hugoniot conditions of delta shock wave. In order to ensure the uniqueness, the delta
entropy condition

λ2(r+) ≤ λ1(r+) ≤ σδ ≤ λ1(r−) ≤ λ2(r−), (2.16)
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should be proposed, which means that all characteristic lines on both sides of delta
shock front are outgoing here.

Now, we employ the generalized Rankine–Hugoniot conditions (2.14) to solve the
Riemann problem (1.1) and (1.2) with the initial data x(0) = 0, β1(0) = 0, β2(0) = 0
and β3(0) = 0, then (2.12) in connection with (2.13) can be obtained directly by a
trivial calculation.We also check that σδ(t) exactly satisfies the delta entropy condition
(2.16), which guarantees the uniqueness of our obtained solution (2.12) together with
(2.13). The proof is completed. ��

It can be seen from the inequality (2.16) clearly that the delta shock wave is more
compressible than the normal shock wave in the sense that more characteristic lines
enter such delta shock front, so that delta shock wave can be regarded as an over-
compressible shock wave from the physical viewpoint. It should be addressed here
that our current study is focused on the Riemann problem (1.1) and (1.2) only, thus
we only need the over-compressible delta entropy condition (2.16). If the uniqueness
of Radon measure solution for the Cauchy problem is considered under some suitable
initial data, then one may refer to some more elaborate entropy and admissibility
conditions [35–39] for example.

In summary, the solutions of theRiemannproblem (1.1) and (1.2) can be constructed
explicitly for the situation abc < 0 as follows:

(1)
←−
S + J (r+ < r− < 0) , (2)

←−
R + J (r− < r+ ≤ 0) , (3)

←−
R + J + −→

R (r− < 0 < r+) ,

(4) J + −→
R (0 ≤ r− < r+) , (5) J + −→

S (0 < r+ < r−) , (6) δS (r+ ≤ 0 ≤ r−) .

Similarly, the solutions of the Riemann problem (1.1) and (1.2) for the situation abc >

0 can be treated in the same as those for the situation abc < 0.

3 Interactions of Delta ShockWaves with Classical Waves

In this section, in order to discover new nonlinear wave phenomena, it is expected
to study the wave interaction problem for the system (1.1) when delta shock wave is
involved.More specifically, our discussion is divided into the following seven different
cases, according to the different wave combinations from (−ε, 0) and (ε, 0) as follows:

(1) δS and
←−
S + J ; (2) δS and J+←−

R ; (3) δS and
←−
R + J+−→

R ; (4) J+−→
S and δS;

(5)
−→
R + J and δS; (6)

←−
R + J + −→

R and δS; (7) δS and δS.

It is noticed that (1) is similar to (4), (2) is similar to (5) as well as (3) is similar to
(6) by symmetry. Thus, we need only to consider the cases (1), (2), (3) and (7). Due
to the fact that the function φ is undetermined, it is impossible to calculate the wave
interactions for the cases (2) and (3) in fully explicit forms. It is worthwhile to mention
that the composite wave J R can be seen as the simplification of both

←−
R + J + −→

R

and J + ←−
R , in which a contact discontinuity J is attached on the wave back of the

rarefaction wave R. For the sake of brevity, the current work is only concerned with
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Fig. 4 The interaction between δS and
←−
S + J is shown in the (x, t) plane when r+ < rm ≤ 0 ≤ r−

the following three typical cases: (1) δS and
←−
S + J , (2) δS and a composite wave J R

as well as (3) δS and δS, for the reason that it is adequate to discover nonlinear wave
phenomena for the system (1.1) by studying the above three cases.
Case 1 δS and

←−
S + J .

In this case, we study the interaction of delta shock wave δS starting from (−ε, 0)
with the backward shock wave

←−
S plus the contact discontinuity J starting from

(ε, 0). The occurrence of this case depends on the condition r+ < rm ≤ 0 ≤ r−,
where rm = aum + bvm + cwm (see Fig. 4).

The wave speed of δS is σδ1 = rmφ(rm )−r−φ(r−)
rm−r− , the wave speed of

←−
S is σ =

r+φ(r+)−rmφ(rm )
r+−rm

. From the assume (rφ(r))′′ > 0, we know that δS1 will overtake
←−
S

at a finite time. The intersection (x1, t1) is determined by

x1 = σδ1t1 − ε = σ t1 + ε,

which implies that

(x1, t1) =
(

ε (σδ1 + σ)

σδ1 − σ
,

2ε

σδ1 − σ

)

. (3.1)

The new initial data will be formulated at the intersection (x1, t1) as follows:

(u, v, w)
∣
∣
t=t1

=
{

(u−, v−, w−) , x < x1
(u∗, v∗, w∗) , x > x1

}

+ (β1(t1), β2(t1), β3(t1)) δ (x1, t1) ,

where the intermediate state between
←−
S and J canbe easily obtainedby (u∗, v∗, w∗) =

(
r+um
rm

,
r+vm
rm

,
r+wm
rm

). The strengths β1(t1), β2(t1) and β3(t1) can be calculated by

⎧
⎪⎨

⎪⎩

β1 (t1) = M1 (um (bv− + cw−) − u− (bvm + cwm)) t1,

β2 (t1) = M1 (vm (au− + cw−) − v− (aum + cwm)) t1,

β3 (t1) = M1 (wm (au− + bv−) − w− (aum + bvm)) t1,

(3.2)
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where

M1 = φ (rm) − φ (r−)

rm − r−
.

A new delta shock wave will be generated after the interaction of δS1 and
←−
S , let

us denote it by δS2. Before δS2 meets the contact discontinuity J , the solution can be
expressed as

⎧
⎪⎨

⎪⎩

u(x, t) = u− + (u∗ − u−) H + β1−(t)D− + β1+(t)D+,

v(x, t) = v− + (v∗ − v−) H + β2−(t)D− + β2+(t)D+,

w(x, t) = w− + (w∗ − w−) H + β3−(t)D− + β3+(t)D+,

(3.3)

where β1(t)D = β1−(t)D− + β1+(t)D+, β2(t)D = β2−(t)D− + β2+(t)D+ and
β3(t)D = β3−(t)D− + β3+(t)D+ are expressed by using the split delta functions,
in which all of them are supported on the line x = x1 + (t − t1)σδ2 with σδ2 =
r∗φ(r∗)−r−φ(r−)

r∗−r− being the wave speed of δS2 and r∗ = au∗ + bv∗ + cw∗ = r+. D−

is delta measure on the set R × R+
⋂{(x, t)|x ≤ x1 + (t − t1)σδ2} and D+ is delta

measure on the set R × R+
⋂{(x, t)|x ≥ x1 + (t − t1)σδ2}.

From (3.3), we can get

ut = (−σδ2 (u∗ − u−) + β ′
1−(t) + β ′

1+(t)
)
δ − σδ2 (β1−(t) + β1+(t)) δ′,(3.4)

(φu)x = (φ (r∗) u∗ − φ (r−) u−) δ + (φ (r−) β1−(t) + φ (r∗) β1+(t)) δ′. (3.5)

By substituting (3.4) and (3.5) into the first equation of (1.1) and then comparing the
coefficients of δ and δ′, we can get

−σδ2 (u∗ − u−) + β ′
1− + β ′

1+ + φ (r∗) u∗ − φ (r−) u− = 0, (3.6)

φ (r−) β1−(t) + φ (r∗) β1+(t) − σδ2 (β1−(t) + β1+(t)) = 0, (3.7)

with the initial condition β1(t1). By (3.5), we can obtain

β1(t) = β1−(t)+β1+(t) = β1 (t1)+M∗ (u∗ (bv− + cw−) − u− (bv∗ + cw∗)) (t − t1) .

(3.8)
Similarly, we can also get β2(t) and β3(t) as follows:

β2(t) = β2−(t) + β2+(t) = β2 (t1)

+ M∗ (v∗ (au− + cw−) − v− (au∗ + cw∗)) (t − t1) , (3.9)

β3(t) = β3−(t) + β3+(t) = β3 (t1) + M∗ (w∗ (au− + bv−)

−w− (au∗ + bv∗)) (t − t1) , (3.10)
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which is the strength of δS2 before the occurrence of the interaction of δS2 and J and
M∗ = φ(r∗)−φ(r−)

r∗−r− . Obviously,

β1−(t) = r−
r− − r∗

β1(t), β1+(t) = −r∗
r− − r∗

β1(t), β2−(t) = r−
r− − r∗

β2(t),

β2+(t) = −r∗
r− − r∗

β2(t), β3−(t) = r−
r− − r∗

β3(t), β3+(t) = −r∗
r− − r∗

β3(t).

Then, δS2 and J will intersect at the point (x2, t2) which can be calculated by

x2 = σδ2 (t2 − t1) + x1 = τ t2 + ε,

where τ = φ(r+) = φ(r∗) is the wave speed of contact discontinuity J . Then, we can
obtain

(x2, t2) =
(

σδ2τ t1 + σδ2ε − τ x1
σδ2 − τ

,
ε + σδ2t1 − x1

σδ2 − τ

)

. (3.11)

After the time t2, δS2 will pass through J with the same wave speed as before and
only changes the strength, which can be calculated by

β1(t) = β1 (t2) + M (u+ (bv− + cw−) − u− (bv+ + cw+)) (t − t2) ,

β2(t) = β2 (t2) + M (v+ (au− + cw−) − v− (au+ + cw+)) (t − t2) ,

and

β3(t) = β3 (t2) + M (w+ (au− + bv−) − w− (au+ + bv+)) (t − t2) ,

where β1(t2), β2(t2) and β3(t2) can be calculated by (3.8), (3.9) and (3.10) when
t = t2, respectively. It is easy to check that (x1, t1) and (x2, t2) tend to (0, 0) as ε → 0
from (3.1) and (3.11). Moreover, βi (t j ) (i = 1, 2, 3, j = 1, 2) tends to 0 as ε → 0
from (3.2), (3.8), (3.9) and (3.10), respectively. Thus, the limit ε → 0 of the solution
of the double Riemann problem (1.1) and (1.6) is still a single delta shock wave, which
is exactly the corresponding solution of the Riemann problem (1.1) and (1.2) in this
case.
Case 2 δS and composite wave J R

For this case, we consider the interaction of the delta shock wave δS1 starting from
(−ε, 0) and the composite wave J R starting from (ε, 0), which relies on the condition
r− ≥ 0 = rm and r+ > 0 = rm . (see Fig. 5). More precisely, when t is small enough
before the interaction of δS1 and J R happens, the solution can be expressed in the
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(a) (b)

Fig. 5 The interaction between δS and composite wave J R is displayed in the (x, t) plane under the
condition r− > r+ > rm = 0 in a and the condition r+ > r− ≥ rm = 0 in b, respectively

following form:

(u, v, w) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(u−, v−, w−) , x < φ(r−)t − ε,

(β1(t), β2(t), β3(t)) δ (x − φ(r−)t − ε) , x = φ(r−)t − ε,

(um, vm, wm) , φ(r−)t − ε < x < ε,

−→
R (u, v, w), ε ≤ x ≤ (φ(r+) + r+φr (r+)) t + ε,

(u+, v+, w+) , (φ(r+) + r+φr (r+)) t + ε < x,

(3.12)

where β1(t), β2(t), β3(t) can be calculated by

⎧
⎪⎨

⎪⎩

β1(t) = M1 (um (bv− + cw−) − u− (bvm + cwm)) t,

β2(t) = M1 (vm (au− + cw−) − v− (aum + cwm)) t,

β3(t) = M1 (wm (au− + bv−) − w− (aum + bvm)) t,

and the state in
−→
R (u, v, w) can be calculated by

x − ε

t
= φ(r) + rφ′(r), u

u+
= v

v+
= w

w+
. (3.13)

Theorem 3.1 If rm = 0 is taken for the double Riemann problem (1.1) and (1.6), then
there are a delta shock wave starting from (−ε, 0) and a composite wave J R starting
from (ε, 0). The delta shock wave δS is decomposed into a delta contact discontinuity

δ J and a shock wave
−→
S when δS meets the composite wave J R. Moreover, the

shock wave
−→
S is able to penetrate the whole rarefaction wave

−→
R completely when

r− > r+ > 0 or cannot penetrate
−→
R completely and finally takes the line x =

ε + (φ(r−) + r−φ′(r−))t as the asymptotic line when r+ > r− ≥ 0.

Proof The wave speeds of δS and J are given by σδ = φ(r−) and τ = φ(rm) = 0,
respectively. Hence, we can get φ(r−) > φ(0) = 0 on account of φ′(r) > 0. They will
meet at the point (x1, t1) = (ε, 2ε

φ(r−)
), in which the strengths β1(t1), β2(t1) and β3(t1)
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of δS can be calculated according to (3.2) when rm = 0. A new Riemann problem is
formed at (x1, t1) when δS and J R start to interact. It is known from (3.12) that the
continuously varying right state in

−→
R (u, v, w) is also calculated by (3.13), in which

the state (u, v, w) changes from (um, vm, wm) to (u+, v+, w+). Then, we consider
the local Riemann problem at the point (x1, t1) with the initial data

(u, v, w)
∣
∣
t=t1

=
{

(u−, v−, w−) , x < x1
(u, v, w), x > x1

}

+ (β1(t1), β2(t1), β3(t1)) δ (x1, t1) ,

(3.14)
in which the composite wave J R is separated into a series of non-entropy waves as in
[21].

Actually, we can construct the solution of the local Riemann problem (1.1) and
(3.14) in the form

(u, v, w)(x, t) =

⎧
⎪⎪⎨

⎪⎪⎩

(u−, v−, w−) , x < φ(r−)t − ε
(r−u

r
,
r−v

r
,
r−w

r

)
, φ(r−)t − ε < x < x(t)

(u, v, w), x(t) < x

⎫
⎪⎪⎬

⎪⎪⎭

+ (β1(t1), β2(t1), β3(t1)) δ (x + ε − φ(r−)t) , (3.15)

where

x(t) = x1 + rφ(r) − r−φ(r−)

r − r−
(t − t1).

In the following, let us prove that (3.15) is really a weak solution of the local Riemann
problem (1.1) and (3.14) in the sense of distributions. For convenience, let us introduce
the notation � = {

(x, t)
∣
∣x = φ(r−)t − ε, t > t1

}
. For every ϕ ∈ C∞

0 (R × R+), if
suppϕ

⋂
� = ∅, then (3.15) obviously satisfies the system (1.1). Otherwise, it is

expected to examine that (3.15) still satisfies (2.11) in the local neighborhood of �,
which is a weak formulation of (1.1). By calculating, we know that

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ut + (φu)x = −φ(r−)
(
(
r−u
r

− u−)δ + β1(t1)δ
′)

+
(
r−uφ(r−)

r
− u−φ(r−)

)

δ + φ(r−)β1(t1)δ
′ = 0,

vt + (φv)x = −φ(r−)
(
(
r−v

r
− v−)δ + β2(t1)δ

′)

+
(
r−vφ(r−)

r
− v−φ(r−)

)

δ + φ(r−)β2(t1)δ
′ = 0,

wt + (φw)x = −φ(r−)
(
(
r−w

r
− w−)δ + β3(t1)δ

′)

+
(
r−wφ(r−)

r
− w−φ(r−)

)

δ + φ(r−)β3(t1)δ
′ = 0,

(3.16)

holds in the local neighborhood of � in the sense of distributions, where δ and δ′ are
the functions of x + ε − φ(r−)t .
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It is seen from (3.15) that the Dirac delta function is supported on �, which is
called as the delta contact discontinuity δ J in [21]. Specifically, δS is separated into
δ J and S with the state (u∗, v∗, w∗) = (

r−u+
r+ ,

r−v+
r+ ,

r−w+
r+ ) between them after t1.

Accordingly, it is necessary to provide the physical interpretation of delta contact
discontinuity for the sake of intuition. It is evident to find that the Dirac delta function
propagates along the front of the former contact discontinuity � with the invariant
strength and propagation speed in the physical (x, t) plane. In other words, this delta
contact discontinuity δ J proceeds to move forward with the invariant propagation
speed φ(r−) and strength (or weight) (β1(t1), β2(t1), β3(t1)) of Dirac delta functions
for the state variables (u, v, w). This is attributed to the intuitive observation that all
the matter on both sides of the front � of the delta contact discontinuity δ J shares the
same propagation speed φ(r−) such that the over-compressibility entropy condition
is lost on such δ J after the time t1. On the other hand, the aggregated matter at the
point (x1, t1) is impossible to disappear suddenly and thus moves forward along with
the front � of the delta contact discontinuity δ J after the time t1. As a consequence,
it is found clearly that our constructed local solution (3.15) is not only admissible
from the above verification but also reasonable from the above physical explanation.
At present, there is no general uniqueness result for the delta contact discontinuity
δ J constructed in (3.15). However, such delta contact discontinuity is introduced in
a manner to continue the solution after the point (x1, t1) where the delta shock wave
loses its over-compressibility.

Hereafter, δ J continues to propagate forward with the strengths β1(t1), β2(t1) and
β3(t1) and speedφ(r−). The shockwave during the process of penetration is calculated
by

σ = dx

dt
= rφ(r) − r−φ(r−)

r − r−
,

x − ε

t
= φ(r) + rφ′(r), (3.17)

with r varying from 0 to r+ and the initial condition x(t1) = x1. It is deduced from

(3.15) that σ
∣
∣
t=t1

= φ(r−), and d2x
dt2

= − ((rφ)′(r−r−)−(rφ(r)−r−φ(r−)))2

(r−r−)3(rφ)′′t . When r− >

r+ > 0, S will penetrate the whole R in finite time, and the intersection point is
determined by (3.17) together with the line of the wave back of R given by x−ε

t =
φ(r+) + r+φ′(r+). Finally, the shock wave continues to propagate forward with the
speed σ = r+φ(r+)−r−φ(r−)

r+−r− . Otherwise, when r+ > r− ≥ 0, S cannot penetrate R

completely and finally takes the line x = ε + (φ(r−) + r−φ′(r−))t as the asymptotic
line.

It is easy to check that (x1, t1) = (ε, 2ε
φ(r−)

) tends to (0, 0) as ε → 0. Moreover,
βi (t1) (i = 1, 2, 3) tends to 0 as ε → 0 from (3.2) when rm = 0, respectively. Thus,
the limit ε → 0 of the solution of the double Riemann problem (1.1) and (1.6) is either
a delta contact discontinuity plus a shock wave when r− > r+ > 0 or a delta contact
discontinuity plus a rarefaction wave when r+ > r− ≥ 0, which corresponds to the
Riemann solution of (1.1) and (1.2) under the same Riemann initial data (1.2). The
proof is completed. ��
Case 3 δS and δS.

In this case, let us focus on the interaction of two delta shock waves starting from
(−ε, 0) and (ε, 0), respectively. The occurrence of this case relies on the condition
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Fig. 6 The interaction between two delta shock waves is shown in the (x, t) plane when r− ≥ rm = 0 ≥ r+

r− ≥ rm = 0 ≥ r+(see Fig. 6). The wave speeds of δS1 and δS2 are calculated by
σδ1 = r−φ(r−)−rmφ(rm )

r−−rm
= φ(r−) and σδ2 = r+φ(r+)−rmφ(rm )

r+−rm
= φ(r+), respectively.

Thus, it is easy to check that δS1 will overtake δS2 at a finite time. By virtue of φ′ > 0,
the intersection point can be calculated by (x1, t1) = (

(σδ1+σδ2)ε
σδ1−σδ2

, 2ε
σδ1−σδ2

) and the
strengths at (x1, t1) are given by

β1(t1) = β1−(t1)+β1+(t1), β2(t1) = β2−(t1)+β2+(t1), β3(t1) = β3−(t1)+β3+(t1),

in which ⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

β1−(t1) = M1(um(bv− + cw−) − u−(bvm + cwm))t1,

β1+(t1) = M2(u+(bvm + cwm) − um(bv+ + cw+))t1,

β2−(t1) = M1(vm(au− + cw−) − v−(aum + cwm))t1,

β2+(t1) = M2(v+(aum + cwm) − v−(au+ + cw+))t1,

β3−(t1) = M1(wm(au− + bv−) − w−(aum + bvm))t1,

β3+(t1) = M2(w+(aum + bv+) − w−(au+ + bv+))t1,

together with

M2 = φ(r+) − φ(rm)

r+ − rm
.

Now, the Riemann problem is formulated at (x1, t1), which can be dealt with sim-
ilarly to Case 1. A new delta shock wave δS3 will be generated after the coalescence
of δS1 and δS2 at (x1, t1), whose wave speed is σδ3 = r+φ(r+)−r−φ(r−)

r+−r− and whose
strengths are given, respectively, by

⎧
⎪⎨

⎪⎩

β1(t) = β1 (t1) + M (u+ (bv− + cw−) − u− (bv+ + cw+)) (t − t1) ,

β2(t) = β2 (t1) + M (v+ (au− + cw−) − v− (au+ + cw+)) (t − t1) ,

β3(t) = β3 (t1) + M (w+ (au− + bv−) − w− (au+ + bv+)) (t − t1) .

It is evident to conclude that the interaction of two delta shock waves still gives rise
to a single delta shock wave. It is clear that (x1, t1) → 0 and βi (t1) → 0 (i = 1, 2, 3)
as ε → 0. Hence, the limit ε → 0 of solution of the double Riemann problem (1.1)
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Fig. 7 Numerical results of u, v, w and r for a = 0.1, b = 0.3 and c = 0.2

Fig. 8 Numerical results of u, v, w and r for a = 0.1, b = −0.1 and c = 0.3

and (1.6) is just the corresponding delta shock wave solution of the Riemann problem
(1.1) and (1.2) under the same Riemann initial data (1.2).

4 Numerical Simulation for Delta ShockWaves

In this section, we present some representative numerical results for delta shock wave
solution of the Riemann problem (1.1) and (1.2) mentioned in Sect. 2.3. Many more
numerical tests have been performed tomake sure that what are not numerical artifacts.
Let us take φ(r) = r to simplify the system (1.1). Moreover, we employ the upwind
scheme and CFL = 0.25 to discretize the system (1.1) with φ(r) = r . According to
different signal of a, b and c, eight numerical solutions are shown in detail. In what
follows, all the chosen values of a, b, c and (u±, v±, w±) should satisfy the condition
r+ ≤ 0 ≤ r−.

For the case a = 0.1, b = 0.3 and c = 0.2, we can take the initial data as follows:

u− = 0.21, v− = 0.32, w− = 0.2, u+ = 0.31, v+ = 0.1, w+ = −0.36,

and present the numerical results at t = 2 in Fig. 7.
For the case a = 0.1, b = −0.1 and c = 0.3, we can choose the following initial

data:

u− = 2.1, v− = 2.14, w− = 1.0, u+ = 2.9, v+ = 3.24, w+ = 0.1,

and present the numerical results at t = 2 in Fig. 8.
For the case a = 0.2, b = 0.2 and c = −0.1, we can choose the following initial

data are taken as:

u− = 0.33, v− = 0.2, w− = 0.2, u+ = 0.12, v+ = 0.11, w+ = 0.5,

and present the numerical results at t = 2 in Fig. 9.
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Fig. 9 Numerical results of u, v, w and r for a = 0.2, b = 0.2 and c = −0.1

Fig. 10 Numerical results of u, v, w and r for a = 0.3, b = −0.2 and c = −0.1

Fig. 11 Numerical results of u, v, w and r for a = −0.1, b = 0.2 and c = 0.1

For the case a = 0.3, b = −0.2 and c = −0.1, we can select initial data as below:

u− = 0.24, v− = 0.08, w− = 0.13, u+ = 0.2, v+ = 0.25, w+ = 0.12,

and present the numerical results at t = 2 in Fig. 10.
For the case a = −0.1, b = 0.2 and c = 0.1, we can choose the initial data as

follows:

u− = 0.21, v− = 0.42, w− = 0.21, u+ = 0.65, v+ = 0.2, w+ = 0.1,

and present the numerical results at t = 2 in Fig. 11.
For the case a = −0.3, b = −0.1 and c = 0.2, we can take the initial data in the

following form:

u− = 0.3, v− = 0.3, w− = 1.64, u+ = 0.21, v+ = 0.32, w+ = 0.42,

and present the numerical results at t = 2 in Fig. 12.
For the case a = −0.5, b = 0.2 and c = −0.1, we take the initial data as below:

u− = 0.01, v− = 0.7, w− = 0.1, u+ = 0.03, v+ = 0.02, w+ = 0.03,

and present the numerical results at t = 2 in Fig. 13.
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Fig. 12 Numerical results of u, v, w and r for a = −0.3, b = −0.1 and c = 0.2

Fig. 13 Numerical results of u, v, w and r for a = −0.5, b = 0.2 and c = −0.1

Fig. 14 Numerical results of u, v, w and r for a = −0.1, b = −0.2 and c = −0.1

For the case a = −0.1, b = −0.2 and c = −0.1, we can select the following data:

u− = 0.25, v− = −1.65, w− = 0.25, u+ = 0.27, v+ = −0.2, w+ = 0.26,

and present the numerical results at t = 2 in Fig. 14.
It can be observed from Figs. 7, 8, 9, 10, 11, 12, 13 and 14 that all the state variables

u, v andw develop aweightedDirac delta function,while r is always bounded variation
anddevelops a classical shockwave.This is consistentwith the results of our theoretical
analysis in Sect. 2.3.
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