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Abstract
In this paper, we obtain the local regularity estimates in Besov spaces ofweak solutions
for the following parabolic p-Laplacian equations:

ut − diva (Du, x, t) = div F

under some proper assumptions on the functions a and F. Moreover, we would like to
point out that our results improve the known results for such equations.
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1 Introduction

The aim of this paper is the study of the local regularity estimates in Besov spaces of
weak solutions for the following quasilinear parabolic equations of p-Laplacian type

ut − diva (Du, x, t) = divF in �T := � × (t0, t0 + T ], (1.1)

where t0 ∈ R, T > 0, n ≥ 2 and � is an open bounded domain in R
n . Here,

F = ( f 1, · · ·, f n) is a given vector-valued function, and a (ξ, x, t) is a Carathéodory
function satisfying the following conditions:

γ |ξ |p−2 |η|2 ≤ 〈Dξa (ξ, x, t) η, η〉 (1.2)
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and

|a (ξ, x, t)| + |ξ | ∣∣Dξa (ξ, x, t)
∣
∣ ≤ � |ξ |p−1 (1.3)

for p ≥ 2, every ξ, η ∈ R
n , (x, t) ∈ R

n ×R and some constants γ,� > 0. Moreover,
the coefficients a (ξ, x, t) are also assumed to satisfy some smoothness assumptions
(see Assumption (A1) and Assumption (A2)). Additionally, we would like to point out
that (1.2) and (1.3) can imply the following condition:

[a (ξ, x, t) − a (η, x, t)] · (ξ − η) ≥ γ̄ |ξ − η|p , (1.4)

where γ̄ depends only on γ,�, n and p.
There has been a rapid scientific development in the theory of nonlinear parabolic

equations of p-Laplacian type in divergence form. In [1], Acerbi andMingione invent a
new covering/iteration argument allowing them to prove the local Calderón–Zygmund
estimates for the following parabolic system of p-Laplacian type:

ut − div
(

a (x, t) |Du|p−2 Du
)

= div
(

|F|p−2 F
)

(1.5)

with coefficients of VMO/BMO type. Furthermore, Byun, Ok and Ryu [10] obtained
the global Calderón–Zygmund estimates of the general case of p-Laplacian type

ut − diva (Du, x, t) = div
(

|F|p−2 F
)

in �T . (1.6)

Moreover, many authors [4–9,11,25] also studied the Calderón–Zygmund estimates
for the parabolic equations of p-Laplacian type.

Recently, Baisón, Clop, Giova, Orobitg and Passarelli di Napoli [2] studied the
local regularity estimates in Besov spaces for weak solutions of the following linear
elliptic equation

divA (Du, x) = div G in �, (1.7)

where A is a Carathéodory function with linear growth satisfying

< A (ξ, x) − A (η, x) , ξ − η >≥ C |ξ − η|2,
|A (ξ, x) − A (η, x)| ≤ C |ξ − η|,
|A (ξ, x)| ≤ C

(

μ2 + |ξ |2
) 1

2

for any ξ, η ∈ R
n , some μ ∈ [0, 1] and a.e. x ∈ �. Furthermore, Clop, Giova &

Passarelli di Napoli [13] extended the results in the previous paper [2] to the more
general case of (1.7), whenA is a Carathéodory function with p−1 growth for p ≥ 2
satisfying

< A (ξ, x) − A (η, x) , ξ − η >≥ C
(

μ2 + |ξ |2 + |η|2
) p−2

2 |ξ − η|2, (1.8)
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|A (ξ, x) − A (η, x)| ≤ C
(

μ2 + |ξ |2 + |η|2
) p−2

2 |ξ − η|, (1.9)

|A (ξ, x)| ≤ C
(

μ2 + |ξ |2
) p−1

2
(1.10)

for any ξ, η ∈ R
n , some μ ∈ [0, 1] and a.e. x ∈ �. Moreover, many authors [3,16,24]

investigated the regularity theory in the context of Besov spaces for the elliptic p-
Laplacian equation withA (Du, x) = |Du|p−2Du. Meanwhile, Eleuteri & Passarelli
di Napoli [18] established the higher differentiability of the gradient of weak solutions
to variational obstacle problems of the form:

∫

�

〈A(Du, x), D(ϕ − u)〉 dx ≥ 0,

where A (ξ, x) is a p-harmonic type operator satisfying (1.8)-(1.10) and the critical
Besov spaces. Actually, many authors [12,14,15,17,20,22,26,28,30] also studied reg-
ularity estimates in Besov spaces for PDEs of various types. The aim of this paper
is to study the corresponding regularity estimates in Besov spaces for the case of the
parabolic p-Laplacian equation.

In the elliptic case

divA (Du, x) = 0 in �,

Giova & Passarelli di Napoli [19,31] obtained the higher differentiability from the
following pointwise condition on the map A (ξ, x)

|A (ξ, x) − A (ξ, y)| ≤ |x − y| (g (x) + g (y))
(

1 + |ξ |2
) p−1

2

for some g (x) ∈ Ln
loc(�), each ξ ∈ R

n and almost every x, y ∈ �. Furthermore, the
authors first studied the corresponding fractional higher differentiability for the linear
(see [2]) and nonlinear (see [13]) elliptic equationswith the followingTriebel–Lizorkin
coefficients

|A (ξ, x) − A (ξ, y)| ≤ |x − y|α (g (x) + g (y))
(

μ2 + |ξ |2
) p−1

2
(1.11)

for some g (x) ∈ L
n
α

loc(�), some α ∈ (0, 1), some μ ∈ [0, 1], each ξ ∈ R
n and almost

every x, y ∈ �. Actually, Kristensen & Mingione have used such assumption in the
paper [29], where various higher integrability results are obtained. As in Sect. 1 in
[2,13], we would like to mention that condition (1.11) for 0 < α < 1 says that A
belongs to the Triebel–Lizorkin space Fα

n
α
,∞ (see Remark 3.3 in [27] for details). In

order to get the extra differentiability for the non-homogeneous equations and fit the
Besov setting, the authors in [2,13] originally introduced the following condition

|A (ξ, x) − A (ξ, y)| ≤ |x − y|α (gk (x) + gk (y))
(

μ2 + |ξ |2
) p−1

2
, (1.12)
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where gk (x) ∈ L
n
α

loc(�) is a sequence ofmeasurable non-negative functions satisfying

∑

k

‖gk (x) ‖q
L

n
α
loc(�)

< ∞.

As mentioned in [2,13], if A (ξ, x) = A(x)|ξ |p−2ξ and � = R
n , condition (1.12)

says that A belongs to the Besov space Bα
n
α
,q (see Theorem 1.2 in [27]).

Now we shall study the extra fractional higher differentiability of weak solutions
of the quasilinear parabolic equations of p-Laplacian type (1.1). In this work, we
shall need the following assumptions (A1) and (A2) on a (ξ, x, t) in the setting of the
parabolic case.

Assumption (A1). Given 0 < α < 1, we assume that there exists a measurable

non-negative function g (x, t) ∈ L
n+2
α

loc (�T ) such that

|a (ξ, x, t) − a (ξ, y, s)| ≤
[

|x − y|2 + |t − s|
] α

2
(g (x, t) + g (y, s)) |ξ |p−1

for each ξ ∈ R
n and almost every (x, t), (y, s) ∈ �T .

Assumption (A2). Given 0 < α < 1 and 1 < q < ∞, we assume that there exists

a sequence of measurable non-negative functions gk (x, t) ∈ L
n+2
α

loc (�T ) such that

∑

k

‖gk (x, t) ‖q
L

n+2
α

loc (�T )

< ∞ (1.13)

and

|a (ξ, x, t) − a (ξ, y, s)| ≤
[

|x − y|2 + |t − s|
] α

2
(gk (x, t) + gk (y, s)) |ξ |p−1

for each ξ ∈ R
n and almost every (x, t), (y, s) ∈ �T such that 2−kdiam(�T ) ≤

(|x − y|2 + |t − s|) 1
2 ≤ 2−k+1diam(�T ) for k ∈ N.

As usual, the solutions of (1.1) are taken in a weak sense. More precisely, we have
the following definition of weak solutions.

Definition 1.1 Assume that F ∈ L
p

p−1
loc (�T ). A function u ∈ C

(

(t0, t0+T ]; L2 (�)
)∩

L p
loc

(

(t0, t0 + T ];W 1,p
loc (�)

)

is a local weak solution of (1.1) in �T if for any compact
set K of � and any subinterval [t1, t2] of (t0, t0 + T ] we have

∫

K
uϕdx

∣
∣
t2
t1

+
∫ t2

t1

∫

K
{− uϕt + a (Du, x, t) · Dϕ

}

dxdt = −
∫ t2

t1

∫

K
F · Dϕdxdt

for any ϕ ∈ W 1,2
loc

(

(t0, t0 + T ]; L2 (�)
) ∩ L p

loc

(

(t0, t0 + T ];W 1,p
0 (�)

)

.
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Let a(ξ, x, t) be a Carathéodory function satisfying (1.2) and (1.3). Just like §2.2
in [13], we need a control on the oscillations, which is called "locally uniformly in
VMO". Next, we shall give the exact definition of the parabolic version of the one
used in this paper.

Definition 1.2 We say that a (ξ, x, t) is locally uniformly in VMO if

lim
R→0

sup
0<ρ≤R

sup
Qρ(z)⊂�T

∫

−
Qρ(z)

V
(

x, t, Qρ (z)
)

dxdt = 0, (1.14)

where z = (y, s) ∈ R
n+1, Qρ (z) = Bρ (y) × (s − ρ2, s + ρ2),

V
(

x, t, Qρ (z)
) := sup

ξ∈Rn\{0}

∣
∣a (ξ, x, t) − āQρ(z) (ξ)

∣
∣

|ξ |p−1 (1.15)

and

āQρ(z) (ξ) :=
∫

−
Qρ(z)

a (ξ, x, t) dxdt = 1
∣
∣Qρ (z)

∣
∣

∫

Qρ(z)
a (ξ, x, t) dxdt .

We first recall the following definition of the Besov space Bα
p,q(�).

Definition 1.3 (see [32], Section 2.5.12) Let 0 < α < 1 and 1 < p, q < ∞. Then, the
Besov space Bα

p,q(�) is the set of all measurable functions v satisfying v ∈ L p(�)

and

‖v‖Bα
p,q (�) := ‖v‖L p(�) + [v]Ḃα

p,q (�) < ∞,

where

[v]Ḃα
p,q (�) :=

(∫

Rn

(∫

�

|
hv(x)|p
|h|α p

dx

) q
p dh

|h|n
) 1

q

,

‖v‖L p(�) :=
(∫

�

|v (x) |pdx
) 1

p

and 
hv(x) = v(x + h) − v(x). Moreover, we define 
hv(x) is zero if x + h leaves
�.

It is easy to check that v ∈ L p(�) and �hv|h|α ∈ Lq
( dh

|h|n ; L p(�)
)

if v ∈ Bα
p,q(�).

Actually, we can only integrate over Bδ for a fixed δ > 0 and then obtain an equivalent
norm since

(∫

{|h|≥δ}

(
∫

�

|
hv(x)|p
|h|α p

dx

) q
p dh

|h|n
) 1

q

≤ c(n, α, p, q, δ)‖v‖L p(�).
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Meanwhile, we say that v ∈ Bα
p,∞(�) if v ∈ L p(�) and

[v]Ḃα
p,∞(�) := sup

h∈Rn

(∫

�

|
hv(x)|p
|h|α p

dx

) 1
p

< ∞.

Similarly, we can only take the supremum over |h| ≤ δ and then obtain an equivalent
norm.

The next result is the current version of Sobolev embedding theorem (see Lemma
2.2 in [18]), whose proof can be found in Proposition 7.12 of [23].

Lemma 1.4 Assume that 0 < α < 1. If 1 < p < n
α
and 1 < q ≤ p∗

α := np
n−α p , then

there is a continuous embedding Bα
p,q(�) ⊂ L p∗

α (�).

In this workwe define the Besov space Bα
p,q(�T ) for 0 < α < 1 and 1 < p, q < ∞

as

Bα
p,q(�T ) :=

{

v ∈ L p(�T ) : ‖v‖Bα
p,q (�T ) := ‖v‖L p(�T ) + [v]Ḃα

p,q (�T ) < ∞
}

,

where

[v]Ḃα
p,q (�T ) :=

(∫

Rn

(∫

�T

|
hv(x, t)|p
|h|α p

dxdt

) q
p dh

|h|n
) 1

q

,

|v‖L p(�T ) :=
(∫

�T

|v (x, t) |pdxdt
) 1

p

and
hv(x, t) = v(x+h, t)−v(x, t)with
hv(x, t) = 0 if x+h leaves�.Meanwhile,
we say that v ∈ Bα

p,∞(�T ) if v ∈ L p(�T ) and

sup
h∈Rn

(∫

�T

|
hv(x, t)|p
|h|α p

dxdt

) 1
p

< ∞.

Similar to the cases of [·]Ḃα
p,q (�) and [·]Ḃα

p,∞(�), for |h| ≤ δwe can obtain the equivalent
norms.

Now we state the main results of this work. Our first result concerns the homoge-
neous case F = 0.

Theorem 1.5 Assume that 0 < α < 1 and a(ξ, x, t) satisfies (1.2), (1.3) and (A1). If
u is a local weak solution of

ut − diva (Du, x, t) = 0 in �T ,

then we have Du(x, t) ∈ B
α

p−1
p,∞(�T ) locally.
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Under the assumption (A2), we are able to deal with non-homogeneous equations
and obtain the higher fractional differentiability. More precisely, we establish the
following result.

Theorem 1.6 Assume that 0 < α < 1 and a(ξ, x, t) satisfies (1.2), (1.3) and (A2). If
u is a local weak solution of

ut − diva (Du, x, t) = div F in �T ,

then we have

F(x, t) ∈ L
np

n(p−1)−pβ

(

(t0, t0 + T ]; Bβ
p

p−1 ,q
(�)

)

locally

⇒ Du(x, t) ∈ B
α

p−1
p,q (�T ) locally

for any 1 ≤ q(p−1)
p ≤ min

{
n(p−1)

n(p−1)−pβ ,
(n+2)(p−1)

pβ

}

and α < β < 1.

2 Proofs of theMain Results

This section is devoted to the proofs of the main results stated in Theorem 1.5 and
Theorem 1.6. Now we will give some lemmas which are essential for the proofs of
our main results. First of all we recall the following result (see [13,18,21]).

Lemma 2.1 Assume that F and G are two functions such that F,G ∈ W 1,p(�) for
p > 1 and

�|h| := {x ∈ � : dist(x, ∂�) > |h|}.

Then, we have

(1) 
h F ∈ W 1,p(�|h|) and Di (
h F) = 
h(Di F).
(2) If at least one of the functions F or G has support contained in �|h|, then

∫

�

F
hGdx =
∫

�

G
−h Fdx .

(3) 
h (FG) (x) = F (x + h)
hG (x) + G (x) 
h F (x).
(4)

∫

Bρ

|
h F |p dx ≤ C (n, p) |h|p
∫

BR

|DF |p dx and

∫

Bρ

|F(x + h)|p dx ≤
∫

BR

|F(x)|p dx

for 0 < ρ < R and |h| <
R−ρ
2 with BR ⊂ �.
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The following result is a modified version of Theorem 2.6 in [10], which is suitable
for our purpose.

Lemma 2.2 Assume that |F| p
p−1 ∈ Lq(�T ) for any q ∈ (1,∞) and a (ξ, x, t) satisfies

(1.2),(1.3) and (1.14). If u ∈ W 1,p(�T ) is the weak solution of (1.1) with u = 0 on
∂p�T , then |Du|p ∈ Lq (�T ) with the following estimate:

∫

�T

|Du|pq dxdt ≤ C

(∫

�T

|F| pq
p−1 dxdt + 1

)p/2

,

where C = C (γ,�, n, p, q, |�T |) .

Actually, from [10] we can also obtain the local Lq estimates

∫

Qρ

|Du|pq dxdt ≤ C

[(∫

QR

|Du|p dxdt
)q

+
∫

QR

|F| pq
p−1 dxdt + 1

]p/2

(2.1)

for weak solutions of (1.1) and ρ < R with QR ⊂ �T .
Next, we can prove the following result, which is just the parabolic version of

Lemma 17 in [2] or Lemma 3.1 in [13].We report it here in order to describe integrality.

Lemma 2.3 Assume that a (ξ, x, t) satisfies (1.2), (1.3) and (A1). Then, a(ξ, x, t) is
locally uniformly in VMO.

Proof Let Qρ (y, s) ⊂ �T . From (1.15), (A1) and Hölder’s inequality, we deduce
that
∫

−
Qρ(y,s)

V
(

x, t, Qρ (y, s)
)

dxdt

=
∫

−
Qρ(y,s)

sup
ξ∈Rn/{0}

∣
∣a (ξ, x, t) − āQρ(y,s) (ξ)

∣
∣

|ξ |p−1 dxdt

≤
∫

−
Qρ(y,s)

sup
ξ∈Rn/{0}

∫−Qρ(y,s)

∣
∣a (ξ, x, t) − a

(

ξ, x ′, t ′
)∣
∣ dx ′dt ′

|ξ |p−1 dxdt

≤
∫

−
Qρ(y,s)

∫

−
Qρ(y,s)

[∣
∣x − x ′∣∣2 + ∣∣t − t ′

∣
∣

] α
2 [

g (x, t) + g
(

x ′, t ′
) ]

dx ′dt ′dxdt

≤ Cρα

∫

−
Qρ(y,s)

g (x, t) dxdt

≤ Cρα

[
∫

−
Qρ(y,s)

g (x, t)
n+2
α dxdt

] α
n+2

= C

[
∫

Qρ(y,s)
g (x, t)

n+2
α dxdt

] α
n+2

,

which implies that (1.14) is true. Thus, we finish the proof. ��
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Now it is time to prove the first one of the main results, Theorem 1.5.

Proof of Theorem 1.5 Let us fix a parabolic cylinder Q2R such that Q2R ⊂ �T and
consider a cut-off function η (x, t) ∈ C∞

0 (�T ) satisfying

0 ≤ η ≤ 1, η ≡ 1 in QR/2, η ≡ 0 in �T \QR, |∇η| ≤ C

R
and 0 < |ηt | ≤ C

R2 . (2.2)

Selecting ϕ = 
−h(η
2
hu) as a test function, where h ∈ Bδ for some small constant

δ < R, from Definition 1.1 we have

∫

BR

uϕdx
∣
∣t=R2

t=−R2 +
∫ R2

−R2

∫

BR

{−uϕt + a (Du, x, t) · Dϕ} dxdt = 0.

After a direct calculation, the resulting expression is shown as follows:

I1 + I2 = I3 + I4 + I5 + I6,

where

I1 := 1

2

∫

BR

η2 (
hu)2 dx
∣
∣R

2

−R2 = 0,

I2 :=
∫

QR

[a (Du (x + h, t) , x + h, t)

−a (Du (x, t) , x + h, t)] · η2
h Du dxdt,

I3 :=
∫

QR

ηηt (
hu)2 dxdt,

I4 :=
∫

QR

[a (Du (x, t) , x + h, t)

−a (Du (x + h, t) , x + h, t)] · 2ηDη
hu dxdt,

I5 :=
∫

QR

[a (Du (x, t) , x, t) − a (Du (x, t) , x + h, t)] · 2ηDη
hu dxdt,

I6 :=
∫

QR

[a (Du (x, t) , x, t) − a (Du (x, t) , x + h, t)] · η2
h Du dxdt .

Estimate of I2. It follows from (1.4) that

I2 ≥ γ̄

∫

QR

η2 |
h Du|p dxdt .

Estimate of I3. By virtue of (2.2) and Lemma 2.1, we find that

|I3| ≤
∫

QR

η |ηt | |
hu|2 dxdt ≤ C
∫

QR

|
hu|2 dxdt ≤ C |h|2
∫

Q2R

|Du|2 dxdt .
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Estimate of I4. Using ( 1.3), Lagrange’s mean value theorem and Young’s inequality,
we obtain

|I4| ≤ C
∫

QR

|a (Du (x, t) , x + h, t)

−a (Du (x + h, t) , x + h, t)| · η · |
hu| dxdt
≤ C

∫

QR

∣
∣Dξa (ξ, x + h, t)

∣
∣ · |
h Du| · η · |
hu| dxdt

≤ C
∫

QR

(|Du (x, t)| + |Du (x + h, t)|)p−2 · η
2
p · |
h Du| · |
hu| dxdt

≤ C(ε)

∫

QR

(|Du (x, t)| + |Du (x + h, t)|) p(p−2)
p−1 · |
hu| p

p−1 dxdt

+ε

∫

QR

η2 |
h Du|p dxdt,

where ξ is between Du (x, t) and Du (x + h, t). Therefore, by usingHölder’s inequal-
ity and Lemma 2.1, we get

|I4| ≤ C(ε)

(∫

QR

(|Du (x, t)| + |Du (x + h, t)|)p dxdt
) p−2

p−1

(∫

QR

|
hu|p dxdt
) 1

p−1

+ε

∫

QR

η2 |
h Du|p dxdt

≤ C(ε) |h| p
p−1

(∫

Q2R

|Du|p dxdt
) p−2

p−1
(∫

Q2R

|Du|p dxdt
) 1

p−1

+ε

∫

QR

η2 |
h Du|p dxdt

≤ C(ε) |h| p
p−1

∫

Q2R

|Du|p dxdt + ε

∫

QR

η2 |
hDu|p dxdt . (2.3)

Estimate of I5. Also, by (A1) and Young’s inequality we obtain

|I5| ≤ C
∫

QR

|a (Du (x, t) , x, t) − a (Du (x, t) , x + h, t)| · η · |
hu| dxdt

≤ C |h|α
∫

QR

[g (x, t) + g (x + h, t)] · |Du (x, t)|p−1 · |
hu| dxdt

≤ C |h| pα
p−1

∫

QR

[g (x, t) + g (x + h, t)]
p

p−1 |Du (x, t)|p dxdt
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+C
∫

QR

|
hu|p dxdt,

which implies that

|I5| ≤ C |h| pα
p−1

[∫

QR

(g (x, t) + g (x + h, t))
n
α dxdt

] pα
n(p−1)

[∫

QR

|Du| np(p−1)
n(p−1)−pα dxdt

] n(p−1)−pα
n(p−1)

+C |h|p
∫

Q2R

|Du|p dxdt,

where we used Hölder’s inequality and Lemma 2.1.
Estimate of I6. Thanks to (A1) and Young’s inequality, we estimate I6 as follows:

|I6| ≤
∫

QR

|a (Du (x, t) , x, t) − a (Du (x, t) , x + h, t)| · η2 · |
h Du| dxdt

≤ C |h|α
∫

QR

[g (x, t) + g (x + h, t)] · |Du (x, t)|p−1 · η
2
p · |
h Du| dxdt

≤ ε

∫

QR

η2 |
h Du|p dxdt + C(ε) |h| pα
p−1

∫

QR

[g (x, t)

+g (x + h, t)]
p

p−1 |Du (x, t)|p dxdt .

Similar to the estimate of I5, we have

|I6| ≤ C(ε) |h| pα
p−1

[∫

QR

(g (x, t) + g (x + h, t))
n
α dxdt

] pα
n(p−1)

[∫

QR

|Du| np(p−1)
n(p−1)−pα dxdt

] n(p−1)−pα
n(p−1)

+ε

∫

QR

η2 |
h Du|p dxdt .

Combining all the estimates of Ii (1 ≤ i ≤ 6) and choosing ε small enough, we con-
clude that

∫

QR/2

|
h Du|p dxdt

≤
∫

QR

η2 |
h Du|p dxdt

≤ C |h| pα
p−1

[∫

QR

(g (x, t) + g (x + h, t))
n
α dxdt

] pα
n(p−1)
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[∫

QR

|Du| np(p−1)
n(p−1)−pα dxdt

] n(p−1)−pα
n(p−1)

+C |h|p
∫

Q2R

|Du|p dxdt + C |h| p
p−1

∫

Q2R

|Du|p dxdt

+C |h|2
∫

Q2R

|Du|2 dxdt

≤ C |h| pα
p−1

[∫

QR

(g (x, t) + g (x + h, t))
n
α dxdt

] pα
n(p−1)

[∫

QR

|Du| np(p−1)
n(p−1)−pα dxdt

] n(p−1)−pα
n(p−1)

+C |h| p
p−1

∫

Q2R

|Du|p + 1dxdt,

in view of the fact that p
p−1 ≤ 2 ≤ p. By (2.1), we know that Du ∈ Ls

loc(�T ) for any

s > p and so, in particular, Du ∈ L
np(p−1)

n(p−1)−pα
loc (�T ). Also, we have g ∈ L

n
α

loc(�T ) since

g ∈ L
n+2
α

loc (�T ). Furthermore, we divide both sides of the above inequality by |h| pα
p−1

and use Lemma 2.1 to obtain

∫

QR/2

∣
∣
∣
∣
∣


h Du

|h| α
p−1

∣
∣
∣
∣
∣

p

dxdt

≤ C |h| p(1−α)
p−1

∫

Q2R

|Du|p + 1dxdt

+C

[∫

QR

(g (x, t) + g (x + h, t))
n
α dxdt

] pα
n(p−1)

[∫

QR

|Du| np(p−1)
n(p−1)−pα dxdt

] n(p−1)−pα
n(p−1)

≤ C .

Finally, we can take supremum over h ∈ Bδ for some δ < R and obtain

sup
|h|<δ

∫

QR/2

∣
∣
∣
∣
∣


h Du

|h| α
p−1

∣
∣
∣
∣
∣

p

dxdt < +∞,

which implies that Du ∈ B
α

p−1
p,∞ (�T ) locally. So, the proof of the lemma is completed.

��
Moreover, we can prove the following result, whose proof is similar to the elliptic

case (see Lemma 18 in [2] or Lemma 4.1 in [13]). We report it here just for the sake
of completeness.
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Lemma 2.4 Assume that 0 < α< β < 1, 1 < q ≤ n+2
β

and a (ξ, x, t) satisfies (1.2),
(1.3) and (A2). Then, a(ξ, x, t) is locally uniformly in VMO.

Proof Let (x, t) , (y, s) ∈ �T and Ak (x, t) := {(y, s) ∈ �T : 2−kdiam(�T ) ≤
(|x − y|2 + |t − s|) 1

2 ≤ 2−k+1diam(�T )}. Then, by virtue of (1.15) and the assump-
tion (A2), we have

∫

−
Qρ(y,s)

V
(

x, t, Qρ (y, s)
)

dxdt

=
∫

−
Qρ(y,s)

sup
ξ∈Rn/{0}

∣
∣a (ξ, x, t) − āQρ(y,s) (ξ)

∣
∣

|ξ |p−1 dxdt

≤
∫

−
Qρ(y,s)

sup
ξ∈Rn/{0}

∫−Qρ(y,s)

∣
∣a (ξ, x, t) − a

(

ξ, x ′, t ′
)∣
∣ dx ′dt ′

|ξ |p−1 dxdt

≤ 1
∣
∣Qρ (y, s)

∣
∣
2

∫

Qρ(y,s)
sup

ξ∈Rn/{0}

∫

Qρ(y,s)

∣
∣a (ξ, x, t) − a

(

ξ, x ′, t ′
)∣
∣ dx ′dt ′

|ξ |p−1 dxdt

≤ 1
∣
∣Qρ (y, s)

∣
∣2

∫

Qρ(y,s)
sup

ξ∈Rn/{0}
∑

k

∫

Qρ(y,s)∩Ak (x,t)

∣
∣a (ξ, x, t) − a

(

ξ, x ′, t ′
)∣
∣ dx ′dt ′

|ξ |p−1 dxdt

≤ Cρα

∣
∣Qρ (y, s)

∣
∣2

∑

k

∫

Qρ(y,s)

∫

Qρ(y,s)∩Ak (x,t)

(

gk(x, t) + gk(x
′, t ′)

)

dx ′dt ′dxdt

≤ Cρα

∣
∣Qρ (y, s)

∣
∣
2

∑

k

∣
∣Qρ (y, s) ∩ Ak (x, t)

∣
∣

∫

Qρ(y,s)
gk(x, t)dxdt

+ Cρα

∣
∣Qρ (y, s)

∣
∣

∑

k

∫

Qρ(y,s)∩Ak (x,t)
gk(x

′, t ′)dx ′dt ′

=: I1 + I2.

Estimate of I1. Using Hölder’s inequality, we have

I1 ≤ C
∣
∣Qρ (y, s)

∣
∣

∑

k

∣
∣Qρ (y, s) ∩ Ak (x, t)

∣
∣

[
∫

Qρ(y,s)
g

n+2
α

k dxdt

] α
n+2

≤ C
∣
∣Qρ (y, s)

∣
∣

⎡

⎣
∑

k

(
∫

Qρ(y,s)
g

n+2
α

k dxdt

) αq
n+2
⎤

⎦

1
q

[
∑

k

∣
∣Qρ (y, s) ∩ Ak (x, t)

∣
∣

q
q−1

] q−1
q
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≤ C

[
∑

k

‖gk‖q
L

n+2
α (Qρ(y,s))

] 1
q

.

Estimate of I2. In view of the facts that 0 < α < β < 1 and 1 < q ≤ n+2
β

, we find

that (n+2−α)q
(n+2)(q−1) > 1. Using Hölder’s inequality again, we deduce that

I2 ≤ Cρα

∣
∣Qρ (y, s)

∣
∣

∑

k

[
∫

Qρ(y,s)∩Ak (x,t)
g

n+2
α

k dx ′dt ′
] α

n+2
∣
∣Qρ (y, s) ∩ Ak(x, t)

∣
∣
1− α

n+2

≤ Cρα

∣
∣Qρ (y, s)

∣
∣

⎡

⎣
∑

k

(
∫

Qρ(y,s)
g

n+2
α

k dxdt

) αq
n+2
⎤

⎦

1
q

[
∑

k

∣
∣Qρ (y, s) ∩ Ak (x, t)

∣
∣

(n+2−α)q
(n+2)(q−1)

] q−1
q

≤ C

[
∑

k

‖gk‖q
L

n+2
α (Qρ(y,s))

] 1
q

.

Combining the estimates of I1 and I2, we have

∫

−
Qρ(y,s)

V
(

x, t, Qρ (y, s)
)

dxdt ≤ C

[
∑

k

‖gk‖q
L

n+2
α (Qρ(y,s))

] 1
q

.

Thus, from (1.13) and the dominated convergence theorem, we can get the desired
result (1.14). This finishes the proof. ��

Finally, we shall finish the proof of Theorem 1.6.

Proof of Theorem 1.6 Let us fix a parabolic cylinder Q2R such that Q2R ⊂ �T and
select ϕ = 
−h(η

2
hu) as a test function, where h ∈ Bδ for some small constant
δ < R and η (x, t) ∈ C∞

0 (�T ) is a cut off function satisfying

0 ≤ η ≤ 1, η ≡ 1 in QR/2, η ≡ 0 in �T \QR, |∇η| ≤ C

R
and 0 < |ηt | ≤ C

R2 .(2.4)

From the definition of weak solution, we have

∫

BR

uϕdx
∣
∣
t=R2

t=−R2 +
∫ R2

−R2

∫

BR

{

− uϕt + a (Du, x, t) · Dϕ
}

dxdt

= −
∫

QR

F · Dϕdxdt .
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After simple computations, we can write the resulting expression as

I1 + I2 = I3 + I4 + I5 + I6 + I7,

where

I1 := 1

2

∫

BR

η2 (
hu)2 dx
∣
∣
R2

−R2 = 0,

I2 :=
∫

QR

[a (Du (x + h, t) , x + h, t)

−a (Du (x, t) , x + h, t)] · η2
h Du dxdt,

I3 :=
∫

QR

ηηt (
hu)2 dxdt,

I4 :=
∫

QR

[a (Du (x, t) , x + h, t)

−a (Du (x + h, t) , x + h, t)] · 2ηDη
hu dxdt,

I5 :=
∫

QR

[a (Du (x, t) , x, t) − a (Du (x, t) , x + h, t)] · 2ηDη
hu dxdt,

I6 :=
∫

QR

[a (Du (x, t) , x, t) − a (Du (x, t) , x + h, t)] · η2
h Du dxdt,

I7 := −
∫

QR


hF · 2ηDη
hu + 
hF · η2
h Du dxdt .

Estimates of I2-I4. Similar to the proof of Theorem 1.5, we deduce that

I2 ≥ γ̄

∫

QR

η2 |
h Du|p dxdt,

|I3| ≤ C |h|2
∫

Q2R

|Du|2 dxdt,

|I4| ≤ C(ε) |h| p
p−1

∫

Q2R

|Du|p dxdt + ε

∫

QR

η2 |
h Du|p dxdt .

Estimate of I5. Without loss of generality, we may as well assume that diam (�) =
K0R for some constant K0 > 1 and 2−k K0R ≤ |h| ≤ 2−k+1K0R ≤ R for N � k >

k0, where k0 = [1 + log2 K0] ∈ N. Therefore, from (A2), (2.4), Young’s inequality
and Lemma 2.1 we have

|I5| ≤ C
∫

QR

∣
∣a (Du (x, t) , x, t) − a (Du (x, t) , x + h, t)

∣
∣ · |
hu| dxdt

≤ C |h|α
∫

QR

(gk (x, t) + gk (x + h, t)) · |Du (x, t)|p−1 · |
hu| dxdt

≤ C |h| pα
p−1

∫

QR

(gk (x, t) + gk (x + h, t))
p

p−1 |Du (x, t)|p dxdt
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+C
∫

QR

|
hu|p dxdt

≤ C |h| pα
p−1

∫

QR

(gk (x, t) + gk (x + h, t))
p

p−1 |Du (x, t)|p dxdt

+C |h|p
∫

Q2R

|Du|p dxdt .

Estimate of I6-I7. Thanks to (A2), Young’s inequality and Lemma 2.1, we estimate
I6-I7 as follows:

|I6| ≤
∫

QR

∣
∣a (Du (x, t) , x, t) − a (Du (x, t) , x + h, t)

∣
∣ · η2 · |
h Du| dxdt

≤ C |h|α
∫

QR

(gk (x, t) + gk (x + h, t)) · |Du (x, t)|p−1 · η2 · |
h Du| dxdt

≤ ε

∫

QR

η2 |
h Du|p dxdt + C(ε) |h| pα
p−1

∫

QR

(gk (x, t)

+gk (x + h, t))
p

p−1 |Du (x, t)|p dxdt

and

|I7| ≤ C
∫

QR

|
hF| · |
hu| + |
hF| · η2 · |
h Du| dxdt

≤ C(ε)

∫

QR

|
hF| p
p−1 dxdt + C

∫

QR

|
hu|p dxdt

+ε

∫

QR

η2 |
h Du|p dxdt

≤ C(ε)

∫

QR

|
hF| p
p−1 dxdt + C |h|p

∫

Q2R

|Du|p dxdt

+ε

∫

QR

η2 |
h Du|p dxdt .

Combining the estimates of Ii (1 ≤ i ≤ 7) and choosing ε small enough, we conclude
that

∫

QR/2

|
h Du|p dxdt

≤
∫

QR

η2 |
h Du|p dxdt

≤ C |h|2
∫

Q2R

|Du|2 dxdt + C |h|p
∫

Q2R

|Du|p dxdt

+C |h| p
p−1

∫

Q2R

|Du|p dxdt
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+C |h| pα
p−1

∫

QR

(gk (x, t) + gk (x + h, t))
p

p−1 |Du (x, t)|p dxdt

+C
∫

QR

|
hF| p
p−1 dxdt

≤ C |h| p
p−1

∫

Q2R

|Du|p + 1dxdt

+C |h| pα
p−1

∫

QR

(gk (x, t) + gk (x + h, t))
p

p−1 |Du (x, t)|p dxdt

+C
∫

QR

|
hF| p
p−1 dxdt,

where we used the fact that p
p−1 ≤ 2 ≤ p. Furthermore, by dividing both sides by

|h| pα
p−1 and taking the Lq norm with the measure dh

|h|n restricted to the ball Bδ for some
δ < R, from Lemma 2.1 we conclude that

⎛

⎝

∫

Bδ

(
∫

QR/2

∣
∣
∣
∣
∣


h Du

|h| α
p−1

∣
∣
∣
∣
∣

p

dxdt

) q
p dh

|h|n

⎞

⎠

1
q

≤ C

(
∫

Bδ

|h| (1−α)q
p−1

(∫

Q2R

|Du|p + 1dxdt

) q
p dh

|h|n
) 1

q

+C

⎛

⎝

∫

Bδ

|h| (β−α)q
p−1

(
∫

QR

∣
∣
∣
∣


hF

|h|β
∣
∣
∣
∣

p
p−1

dxdt

) q
p dh

|h|n

⎞

⎠

1
q

+C

(
∫

Bδ

(∫

QR

(gk (x, t) + gk (x + h, t))
p

p−1 |Du (x, t)|p dxdt
) q

p dh

|h|n
) 1

q

=: J1 + J2 + J3. (2.5)

Estimate of J1. In view of the facts that δ < R and p ≥ 2, we observe that

J1 ≤ C

(∫

Q2R

|Du|p + 1dxdt

) 1
p
(∫ δ

0
ρ

(1−α)q
p−1 −1dρ

) 1
q

≤ C

(∫

Q2R

|Du|p dxdt
) 1

p

< +∞,

since u ∈ L p
loc

(

(t0, t0 + T ];W 1,p
loc (�)

)

.
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Estimate of J2. Since the proof in the case that p = 2 is trivial, we may as well assume
that p > 2. Applying Hölder’s inequality and Fubini’s theorem, we get

J2 = C

⎛

⎝

∫

Bδ

|h| −n
p−1

(
∫

QR

∣
∣
∣
∣


hF

|h|β
∣
∣
∣
∣

p
p−1

dxdt

) q
p

|h| (β−α)q−(p−2)n
p−1 dh

⎞

⎠

1
q

≤ C

⎛

⎜
⎝

∫

Bδ

(
∫

QR

∣
∣
∣
∣


hF

|h|β
∣
∣
∣
∣

p
p−1

dxdt

) q(p−1)
p dh

|h|n

⎞

⎟
⎠

1
q(p−1)

(∫

Bδ

|h| (β−α)q
p−2 −n dh

) p−2
q(p−1)

≤ C

⎛

⎜
⎝

∫

Bδ

∫ R2

−R2

(
∫

BR

∣
∣
∣
∣


hF

|h|β
∣
∣
∣
∣

p
p−1

dx

) q(p−1)
p

dt
dh

|h|n

⎞

⎟
⎠

1
q(p−1)

(∫ δ

0
ρ

(β−α)q
p−2 −1dρ

) p−2
q(p−1)

≤ C

⎛

⎜
⎝

∫ R2

−R2

∫

Bδ

(
∫

BR

∣
∣
∣
∣


hF

|h|β
∣
∣
∣
∣

p
p−1

dx

) q(p−1)
p dh

|h|n dt
⎞

⎟
⎠

1
q(p−1)

≤ C ‖F‖
1

p−1

Lq

(

(−R2,R2);Bβ
p

p−1 ,q
(BR)

) < +∞,

where we also used the facts that F(x, t) ∈ L
np

n(p−1)−pβ

(

(t0, t0 + T ]; Bβ
p

p−1 ,q
(�)

)

locally and q ≤ np
n(p−1)−pβ for 1 ≤ q(p−1)

p ≤ min
{

n(p−1)
n(p−1)−pβ ,

(n+2)(p−1)
pβ

}

.

Estimate of J3. Since F(·, t) ∈ Bβ
p

p−1 ,q
(�) locally for any t ∈ (t0, t0 + T ),

0 < β < 1 and q ≤
(

p
p−1

)∗
β

=: np
n(p−1)−pβ , from Lemma 1.4 we find

that F(·, t) ∈ L
np

n(p−1)−pβ
loc (�) and then F(x, t) ∈ L

np
n(p−1)−pβ
loc (�T ) due to the fact

that F(x, t) ∈ L
np

n(p−1)−pβ

(

(t0, t0 + T ]; Bβ
p

p−1 ,q
(�)

)

locally. So, we conclude that

|F(x, t)| p
p−1 ∈ L

n(p−1)
n(p−1)−pβ
loc (�T ) and then |F(x, t)| p

p−1 ∈ L
n(p−1)

n(p−1)−pα
loc (�T ) by the fact

that 0 < α < β < 1. Therefore, from (2.1) we know that Du ∈ L
np(p−1)

n(p−1)−pα
loc (�T ). Let

rk = 2−k K0R. Furthermore, we use the assumption (A2) and Hölder’s inequality to
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obtain

J3 ≤ C

(
∫

Bδ

(∫

QR

(gk (x, t) + gk (x + h, t))
p

p−1 |Du (x, t)|p dxdt
) q

p dh

|h|n
) 1

q

≤ C

(
∫ 2−k0K0R

0

∫

∂Br

(∫

QR

(gk (x, t)

+gk (x + h, t))
p

p−1 |Du (x, t)|p dxdt
) q

p
dS(h) dr

) 1
q

≤ C

⎛

⎝

∞
∑

k=k0

∫ rk

rk+1

∫

∂Br

(∫

QR

(gk (x, t)

+gk (x + h, t))
p

p−1 |Du (x, t)|p dxdt
) q

p
dS(h) dr

) 1
q

≤ C ‖Du‖q
L

np(p−1)
n(p−1)−pα (QR)

⎡

⎣

∞
∑

k=k0

∫ rk

rk+1

∫

∂Br

(

‖gk (x, t)‖q
L

n+2
α (Q2R)

+ 1

)

dS(h) dr

] 1
q

≤ C ‖Du‖q
L

np(p−1)
n(p−1)−pα (QR)

[

‖{gk}k‖
lq
(

L
n+2
α (Q2R)

) + 1

]

< +∞,

where we have used (1.13) and

(∫

QR

(gk (x, t) + gk (x + h, t))
p

p−1 |Du (x, t)|p dxdt
) q

p

≤
(∫

QR

(gk (x, t) + gk (x + h, t))
n
α dxdt

) qα
n(p−1)

(∫

QR

|Du| pn(p−1)
n(p−1)−α p dxdt

) q
p · n(p−1)−α p

n(p−1)

≤ C ‖gk (x, t)‖
q

p−1

L
n
α (Q2R)

‖Du‖q
L

np(p−1)
n(p−1)−pα (QR)

≤ C ‖gk (x, t)‖
q

p−1

L
n+2
α (Q2R)

‖Du‖q
L

np(p−1)
n(p−1)−pα (QR)

≤ C

(

‖gk (x, t)‖q
L

n+2
α (Q2R)

+ 1

)

‖Du‖q
L

np(p−1)
n(p−1)−pα (QR)
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for p ≥ 2. Finally, combining the estimates of J1, J2, J3 and using (2.5), we obtain

⎛

⎝

∫

Bδ

(
∫

QR/2

∣
∣
∣
∣
∣


h Du

|h| α
p−1

∣
∣
∣
∣
∣

p

dxdt

) q
p dh

|h|n

⎞

⎠

1
q

< +∞.

Therefore, we obtain the desired result Du ∈ B
α

p−1
p,q (�T ) locally for 0 < α < β <

1 and 1 ≤ q(p−1)
p ≤ min

{
n(p−1)

n(p−1)−pβ ,
(n+2)(p−1)

pβ

}

. This completes the proof of

Theorem 1.6. ��
Acknowledgements The authors wish to thank the anonymous reviewers for many valuable comments and
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