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Abstract
The number of spanning trees of a graph G is the total number of distinct spanning
subgraphs ofG that are trees. Feng et al. determined themaximumnumber of spanning
trees in the class of connected graphs with n vertices and matching number β for
2 ≤ β ≤ n/3 and β = �n/2�. They also pointed out that it is still an open problem to
the case of n/3 < β ≤ �n/2� − 1. In this paper, we solve this problem completely.
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1 Introduction

Throughout this paper, we consider simple graph G = (V , E) with vertex set V (G)

(|V (G)| = n) and edge set E(G). The Laplacian matrix of graph G is L(G) =
D(G) − A(G), where D(G) is the diagonal matrix of vertex degrees and A(G) is the
adjacency matrix of G. Let μ1 ≥ μ2 ≥ · · · ≥ μn−1 ≥ μn = 0 be the eigenvalues of
L(G). The number of spanning trees of G, denoted by κ(G), is the total number of
distinct spanning subgraphs of G that are trees. It is well known that
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κ(G) = 1

n

n−1∏

i=1

μi .

We consider the problem of determining the extremal graphs with the maximum
number of spanning trees from some special classes of graphs. The application of
this problem is (i) in the area of experimental design [2] and (i i) in the network
theory [15]. For calculating κ(G) of a graph G, we do not have any clear formula
in the literature except for some special cases. However, in the design of reliable
probabilistic networks, the value (or the bound) on the number of spanning trees is
very important (see, [22]).

As usual, we denote by Kn and K1,n−1, the complete graph and the star of order
n, respectively. We now recall some definitions in graph theory. Two distinct edges in
a graph G are independent if they do not have a common end vertex. A matching in
G is a set of pairwise independent edges. Amaximum matching in G is a matching
of maximum cardinality. Thematching number of the graph G, denoted by β(G), is
the number of edges in a maximummatching. Obviously, β(G) = 0 if and only ifG is
an empty graph. For a connected graph G with n ≥ 2 vertices, β(G) = 1 if and only
if G ∼= K1,n−1 or G ∼= K3. Thus, we consider graphs with matching number at least
2. The vertex disjoint union of the graphs G and H is denoted by G ∪ H . The joint of

two graphs G and H is G ∨ H = G ∪ H , where G is the complement of graph G.

Problem 1.1 Given a set G of graphs, find an upper bound for the number of spanning
trees in this set and characterize the graphs at which the maximal number of spanning
trees is attained.

This problem attracts much attention in the literature. Li et al. [16] completely
resolved this problem for given connectivity or chromatic number of graphs. For
bicyclic and tricyclic graphs, this problem has been resolved in [21,22]. In [1], the
authors obtained several sharp upper bounds for κ(G) based on the so-called nor-
malized Laplacian eigenvalues (for details on this subject, see [3,4]). Ma and Yao
[18] studied the number of spanning trees of a class of self-similar fractal models
and obtained an approximate numerical value of its spanning tree entropy. For some
other excellent results on this topic including lower and upper bounds, please refer to
[5,6,8–15,17,19,20].

Let Gn,β be the set of graphs on n vertices with matching number β, and denote by
G the complement graph of G. Feng et al. presented the following result in the proof
of Theorem 1.1 [7].

Proposition 1.2 [7] Let G ∈ Gn,β and 2 ≤ β ≤ � n
2 �. Then

κ(G) ≤ max
{
nk(k + 1)n−2β+k(2β − k)2β−2k−2 : 0 ≤ k ≤ β − 1

}
,

where equality holds if and only if G ∼= Kk+1 ∨ (
K2β−2k−1 ∪ Kn+k−2β

)
.
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Hereafter, let

f (x) = nx (x + 1)n−2β+x (2β − x)2β−2x−2, and

ϕ(x) = ln f (x) = x ln n + (n − 2β + x) ln (x + 1) + (2β − 2x − 2) ln (2β − x).

Then,

ϕ′(x) = ln n + ln (x + 1) − 2 ln (2β − x) + n − 2β − 1

x + 1
+ x + 2

2β − x

and

ϕ′(0) = n − 2β − 1 + 1

β
+ ln

(
n

4β2

)
, ϕ′(β − 1)

= n − β − 1

β
+ ln

(
nβ

(β + 1)2

)
> 0. (1.1)

In [7], Feng et al. obtained a sharp upper bound on the number of spanning trees of
graph G with given matching number β and the statement is as follows:

Theorem 1.3 [7] Let G ∈ Gn,β and 2 ≤ β ≤ � n
2 �. The following statements hold:

(1) For β = � n
2 �, κ(G) ≤ nn−2 with equality if and only if G ∼= Kn;

(2) For 2 ≤ β ≤ n
3 , κ(G) ≤ nβ−1βn−β−1 with equality if and only if G ∼=

Kβ ∨ Kn−β .

For the case of n = 2β + 2 and β ≥ 9, Feng et al. pointed out that (See Remark 1 of
[7]), in the class of Gn,β , K1 ∨ (

K2β−1
⋃

Kn−2β
)
is the maximal graph of κ(G). They

also raised the problem to solve the case of n
3 < β < � n

2 � − 1. In this paper, we give
a solution to this problem completely (as they have solved the situation of β = � n

2 �
and n = 2β + 2, we only consider the case of n ≥ 2β + 3 in the following).
For n ≥ 2.3β and β ≥ 9, in this paper, we give an upper bound on the number of
spanning trees of graph G in terms of n and β, and the statement is as follows.

Theorem 1.4 Let G ∈ Gn,β with n ≥ 2.3β and β ≥ 9. Then

κ(G) ≤ nβ−1βn−β−1,

with equality if and only if G ∼= Kβ ∨ Kn−β .

For 2β + 3 ≤ n < 2.3β, in this paper, we present an upper bound on the number of
spanning trees of graph G in terms of n and β, and the statement is as follows.

Theorem 1.5 Let G ∈ Gn,β with 2β + 3 ≤ n < 2.3β.

(1) If n − 2β − 1 + 1
β

+ ln
(

n
4β2

)
< 0, then

κ(G) ≤ max
{
(2β)2β−2, nβ−1 βn−β−1

}
.
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(2) If n− 2β − 1+ 1
β

+ ln
(

n
4β2

)
> 0, then ϕ′(x) contains exactly two roots in the

interval (0, β − 1). Let α be the smallest root of ϕ′(x) in the interval (0, β − 1).
Then,

κ(G) ≤ max
{
f (β − 1), f (�α�), f (�α�)

}
.

As Kn is a special case, by comparing the results of Theorem1.3 (2) andTheorems 1.4–
1.5, it is natural to ask the following problem:

Problem 1.6 Let G ∈ Gn,β with 2β + 3 ≤ n < 2.3β. Whether κ(G) ≤ nβ−1βn−β−1

is true or not, that is, whether nβ−1βn−β−1 also uniquely maximizes κ(G) in Theo-
rem 1.5?

However, the answer to Problem 1.6 is negative, as we have the following example.

Example 1.7 Let G ∈ Gn,β , where 2β + 3 ≤ n < 2.3β.

(i) Let β = 10000 and n = 20004. Then, ϕ′(0) < 4 + ln
(

5001
100002

)
< −5.9, and

thus, the condition of Theorem 1.5 (1) is satisfied. Using MATLAB, we have

2(β − 1) ln 2β − (β − 1) ln n − (n − β − 1) ln β

= 2 × 9999 × ln(2 × 10000) − 9999 × ln 20004 − 10003 × ln 10000 > 6891,

and thus,

2(β − 1) ln 2β > (β − 1) ln n + (n − β − 1) ln β,

which implies that (2β)2β−2 > nβ−1 βn−β−1.
(ii) Let β = 10000 and n = 21000. Then, usingMatlab it follows that

ϕ′(0) > 999 + ln

(
5250

100002

)
> 989, ϕ′(226) > 0.005, ϕ′(227) < −0.009,

ϕ′(5598) < −3.6 × 10−4 and ϕ′(5599) > 1.79 × 10−5,

and thus, Theorem 1.5 (2) implies that the smallest root of ϕ′(x) is in (226, 227).
Using Matlab, one can easily see that

f (226) = max
{
f (226), f (227), f (9999)

}
.

2 Proofs of Theorems 1.4 and 1.5

This section is dedicated to the proofs of Theorems 1.4 and 1.5 . We firstly give the
proof to Theorem 1.4.
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Proof of Theorem 1.4 Let g(x) = 2.3β2.3−(2β−x)2(x+1)0.3, where 0 ≤ x ≤ β−1.
Then,

g′(x) = 0.1(x + 1)−0.7(23x + 20 − 6β)(2β − x). (2.1)

Since 2β − x > 0 always holds for 0 ≤ x ≤ β − 1 and β ≥ 9, by (2.1) we have

g(x) ≥ g

(
6β − 20

23

)

= 2.3β2.3 − 400

12167
× 30.3 × 230.7(2β + 1)2.3

= 1

121670
β2.3

(
279841 − 4000 × 30.3 × 230.7

(
2 + 1

β

)2.3
)

≥ 1

121670
β2.3

(
279841 − 4000 × 30.3 × 230.7

(
2 + 1

9

)2.3
)

> 0. (2.2)

When n ≥ 2.3β and 0 ≤ k ≤ β − 2, by (2.2), we obtain

(
n(k + 1)

(2β − k)2

)β−k−1 (
β

k + 1

)n−β−1

=
(

nβ1.3(k + 1)

(2β − k)2(k + 1)1.3

)β−k−1 (
β

k + 1

)n−2.3β+1.3k+0.3

≥
(

nβ1.3

(2β − k)2(k + 1)0.3

)β−k−1

≥
(

2.3β2.3

(2β − k)2(k + 1)0.3

)β−k−1

> 1.

Thus, for 0 ≤ k ≤ β − 2 and β ≥ 9,

nk(k + 1)n−2β+k(2β − k)2β−2k−2 < nβ−1βn−β−1,

and hence, the result follows from Proposition 1.2. �
To present the proof of Theorem 1.5, we need more lemmas as follows:

Lemma 2.1 If 2β + 3 ≤ n < 2.3β, then there exists some real number p with 0 <

p < β − 1 such that ϕ′(x) is a strictly decreasing function for 0 ≤ x ≤ p, and ϕ′(x)
is a strictly increasing function for p ≤ x ≤ β − 1.
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Proof For 0 ≤ x ≤ β − 1, we define ψ(x) as follows:

ψ(x) = (x + 1)2 (2β − x)2 ϕ′′(x)
= −x3 + (4β − n)x2 + 2 (2nβ

−2β2 + 2β + 1
)
x + 8β3 + 8β2 + 6β + 2 − 4nβ2.

Claim 1 ψ(x) is a strictly increasing function on [0, β − 1].
Proof of Claim 1 Note thatψ ′′(x) = 2 (4β−n−3x). Thenψ ′′(x) < 0 for x > 1

3 (4β−
n) and ψ ′′(x) > 0 for x < 1

3 (4β − n), that is, ψ ′(x) is a strictly increasing function
on 0 ≤ x ≤ 1

3 (4β −n) and a strictly decreasing function on 1
3 (4β −n) ≤ x ≤ β −1.

Thus,

ψ ′(x) ≥ min
{
ψ ′(0), ψ ′(β − 1)

}
.

Recall that 0 ≤ x ≤ β−1 and n ≥ 2β. Thus,ψ ′(β−1) = β2+2(β+1)(n+1)−3 > 0
and ψ ′(0) = 4nβ − 4β2 + 4β + 2 ≥ 4β2 + 4β + 2 > 0. Therefore, ψ ′(x) > 0, and
hence, ψ(x) is a strictly increasing function on [0, β − 1]. This completes the proof
of Claim 1.
Since 0 ≤ x ≤ β − 1 and by Claim 1, we have ψ(0) ≤ ψ(x) ≤ ψ(β − 1). Again
since β ≥ 11 by 2β + 3 ≤ n < 2.3β, we obtain

ψ(0) = −4β2 n + 8β3 + 8β2 + 6β + 2

≤ −4β2(2β + 3) + 8β3 + 8β2 + 6β + 2 = −2(2β2 − 3β − 1) < 0,

and

ψ(β − 1) = (β + 1)(4β − n(β + 1) + 7β2 + 1)

> (β + 1)
(
4 β − 2.3β (β + 1) + 7β2 + 1

)

= (β + 1)(1.7β + 4.7β2 + 1) > 0.

Combining with Claim 1 and ψ(0) < 0 < ψ(β − 1), we can conclude that there is
some real number p with 0 < p < β − 1 such that ψ(p) = 0. Once again, Claim 1
implies that ψ(x) < 0 for 0 ≤ x < p, ψ(x) > 0 for p < x ≤ β − 1 and ψ(p) = 0.
Recall that ψ(x) = (x + 1)2(2β − x)2ϕ′′(x) and 0 ≤ x ≤ β − 1. Thus, ϕ′′(x) < 0
for 0 ≤ x < p, ϕ′′(x) > 0 for p < x ≤ β − 1 and ϕ′′(p) = 0. This completes the
proof of this result. �
Lemma 2.2 If n − 2β − 1 + 1

β
+ ln

(
n

4β2

)
> 0 and 2β + 3 ≤ n < 2.3β, then

ϕ′(0.2β) < 0 and ϕ′(x) contains exactly two roots in the interval (0, β − 1).

Proof By (1.1),wehaveϕ′(0) > 0 andϕ′(β−1) > 0.Combining thiswithLemma2.1,
to complete the proof, it suffices to show that ϕ′(0.2β) < 0.
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Since 2β + 3 ≤ n < 2.3β, we have

ϕ′(0.2β) = ln (0.2β + 1) − 2 ln (1.8β) + ln n + n − 2β − 1

0.2β + 1
+ 0.2β + 2

1.8β

< ln (0.2β + 1) − 2 ln (1.8β) + ln (2.3β) + 0.3β − 1

0.2β + 1
+ 0.2β + 2

1.8β

= ln

(
2.3β (0.2β + 1)

(1.8β)2

)
+ 29β2 − 60β + 100

18β(β + 5)
. (2.3)

Denote by

h(t) = ln

(
2.3t (0.2t + 1)

(1.8t)2

)
+ 29t2 − 60t + 100

18t(t + 5)
.

Then, h′(t) = 5(23t2 − 130t − 100)

18t2(t + 5)2
, which implies that h′(t) > 0 for t >

65 + 15
√
29

23
and h′(t) < 0 for 11 ≤ t <

65 + 15
√
29

23
. Furthermore, since

h(11) < −0.64 and h(+∞) = ln
( 23
162

)+ 29
18 < −0.34, we can conclude that h(t) < 0

for t ≥ 11. Combining this with β ≥ 11 by 2β+3 ≤ n < 2.3β, we have ϕ′(0.2β) < 0
by (2.3), as desired. �
We are now ready to prove Theorem 1.5.

Proof of Theorem 1.5 (1) n − 2β − 1 + 1
β

+ ln
(

n
4β2

)
< 0. Then ϕ′(0) < 0 and

ϕ′(β − 1) > 0, by (1.1). Combining this with ϕ′(x) being a strictly decreasing
function on [0, p] and a strictly increasing function on [p, β − 1] by Lemma 2.1,
we can conclude the existence of some real number q with 0 < q < β − 1 such
that ϕ′(x) < 0 holds for 0 ≤ x < q, ϕ′(x) > 0 holds for q < x ≤ β − 1 and
ϕ′(q) = 0. Thus, ϕ(x) is a strictly decreasing function on [0, q] and a strictly
increasing function on [q, β −1]. Since ϕ(x) = ln f (x) with Proposition 1.2, we
obtain

κ(G) ≤ max
{
nk(k + 1)n−2β+k(2β − k)2β−2k−2 : 0 ≤ k ≤ β − 1

}

= max
{
(2β)2β−2, nβ−1 βn−β−1

}
.

(2) n − 2β − 1 + 1
β

+ ln
(

n
4β2

)
> 0. By Lemma 2.2, ϕ′(0.2β) < 0 and ϕ′(x)

contains exactly two roots in the interval (0, β − 1). Let α be the smallest root of
ϕ′(x) in the interval (0, β−1). Then ϕ′(x) > 0 holds for 0 < x < α, as ϕ′(0) > 0.
Recall that ϕ′(x) is strictly decreasing on [0, p] and strictly increasing on [p, β−1]

by Lemma 2.1. Combining this with ϕ′(x) > 0 = ϕ′(α) holds for 0 ≤ x < α,
ϕ′(β −1) > 0 and ϕ′(0.2β) < 0 by Lemma 2.2, we can conclude that α < p < β −1.

In this case, ϕ′(p) < ϕ′(α) = 0. Since ϕ′(x) is strictly increasing on [p, β − 1] by
Lemma 2.1 and since ϕ′(β − 1) > 0, there exists γ ∈ (p, β − 1) such that ϕ′(γ ) = 0.
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Once again, Lemma 2.2 implies that ϕ′(x) < 0 for x ∈ (α, γ ) and ϕ′(x) > 0 for
x ∈ (0, α)

⋃
(γ, β − 1). Thus, ϕ(x) is strictly increasing for x ∈ [0, α], ϕ(x) is

strictly decreasing for x ∈ [α, γ ] and ϕ(x) is strictly increasing for x ∈ [γ, β − 1].
This completes the proof of (2). �
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