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Abstract
The Mostar index of a graph was defined by Došlić, Martinjak, Škrekovski, Tipurić
Spužević and Zubac in the context of the study of the properties of chemical graphs.
It measures how far a given graph is from being distance-balanced. In this paper, we
determine the Mostar index of two well-known families of graphs: Fibonacci cubes
and Lucas cubes.
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1 Introduction

We consider what is termed theMostar index of Fibonacci and Lucas cubes. These two
families of graphs are special subgraphs of hypercube graphs. Theywere introduced as
alternative interconnection networks to hypercubes and have been studied extensively
because of their interesting graph theoretic properties. The Mostar index of a graph
was introduced in [4].
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Let G = (V (G), E(G)) be a graph with vertex set V (G) and edge set E(G). For
any uv ∈ E(G), let nu,v(G) denote the number of vertices in V (G) that are closer
(w.r.t. the standard shortest path metric) to u than to v, and let nv,u(G) denote the
number of vertices in V (G) that are closer to v than to u. The Mostar index of G is
defined in [4] as

Mo(G) =
∑

uv∈E(G)

|nu,v(G) − nv,u(G)| .

When G and uv is clear from the context, we will write nu = nu,v(G) and nv =
nv,u(G).

Distance-related properties of graphs such as the Wiener index, irregularity and
Mostar index have been studied for various families of graphs in the literature.

The Wiener indexW (G) of a connected graph G is defined as the sum of distances
over all unordered pairs of vertices of G. It is determined for Fibonacci cubes and
Lucas cubes in [9]. The irregularity of a graph is another distance invariant measuring
how much the graph differs from a regular graph, and Albertson index (irregularity) is
defined as the sum of |deg(u) − deg(v)| over all edges uv in the graph [1]. The irreg-
ularity of Fibonacci cubes and Lucas cubes is studied in [2,5]. The relation between
the Mostar index and the irregularity of graphs and their difference is investigated in
[6]. Recently, the Mostar index of trees and product graphs has been investigated in
[3].

In this work, we determine the Mostar index of Fibonacci cubes and Lucas cubes.
As a consequence, we derive a relation between the Mostar and the Wiener indices
for Fibonacci cubes, giving an alternate expression to the closed formula for W (Γn)

calculated in [9].

2 Preliminaries

We use the notation [n] = {1, 2, . . . , n} for any n ∈ Z
+. Let B = {0, 1} and

Bn = {b1b2 . . . bn | ∀i ∈ [n] bi ∈ B}

denote the set of all binary strings of length n. Special subsets of Bn defined as

Fn = {b1b2 . . . bn | ∀i ∈ [n − 1] bi · bi+1 = 0}

and

Ln = {b1b2 . . . bn | ∀i ∈ [n − 1] bi · bi+1 = 0 and b1 · bn = 0}

are the set of all Fibonacci strings and Lucas strings of length n, respectively.
The n-dimensional hypercube Qn has vertex set Bn . Two vertices are adjacent if

and only if they differ in exactly one coordinate in their string representation. For
n ≥ 1, the Fibonacci cube Γn and the Lucas cube Λn are defined as the subgraphs of
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The Mostar Index of Fibonacci and Lucas Cubes 3679

Qn induced by the Fibonacci strings Fn and Lucas strings Ln of length n [7,10]. For
convenience, we take Γ0 = K1 whose only vertex is represented by the empty string.

One can classify the binary strings defining the vertices of Γn by the value of b1.
In this way, Γn decomposes into a subgraph Γn−1 whose vertices start with 0 and a
subgraph Γn−2 whose vertices start with 10 in Γn . This decomposition can be denoted
by

Γn = 0Γn−1 + 10Γn−2 .

Furthermore, 0Γn−1 in turn has a subgraph 00Γn−2 and there is a perfect matching
between 00Γn−2 and 10Γn−2, whose edges are called link edges. This decomposition
is the fundamental decomposition of Γn . In a similar way, we can also decompose Γn

as

Γn = Γn−10 + Γn−201 .

We refer to [8] for further details on Γn .
For n ≥ 2, Λn is obtained from Γn by deleting the vertices that start and end with

1. This gives the fundamental decomposition of Λn as

Λn = 0Γn−1 + 10Γn−30 .

Here, 0Γn−1 has a subgraph 00Γn−30 and there is a perfectmatching between 00Γn−30
and 10Γn−30.

Fibonacci numbers fn are definedby the recursion fn = fn−1+ fn−2 forn ≥ 2,with
f0 = 0 and f1 = 1. Similarly, theLucas numbers Ln are defined by Ln = Ln−1+Ln−2
for n ≥ 2, with L0 = 2 and L1 = 1. It is well known that |V (Qn)| = |Bn| = 2n ,
|V (Γn)| = |Fn| = fn+2 and |V (Λn)| = |Ln| = Ln .

For any binary string s, let wH (s) denote the Hamming weight of s, that is, the
number of its nonzero coordinates. The XOR of two binary strings s1 and s2 of length
n, denoted by s1 ⊕ s2, is defined as the string of length n whose coordinates are the
modulo 2 sum of the coordinates of s1 and s2. The distance d(u, v) between two
vertices u and v of the hypercube, the Fibonacci cube and the Lucas cube is equal to
the Hamming distance between the string representations of u and v. In other words,
d(u, v) = dH (s1, s2) = wH (s1 ⊕ s2) for any of these graphs, by assuming u and v

have string representations s1 and s2, respectively.

3 TheMostar Index of Fibonacci Cubes

For any uv ∈ E(Γn), let the string representations of u and v be u1u2 . . . un and
v1v2 . . . vn , respectively. By the structure of Γn , we know that d(u, v) = 1; that is,
there is only one index k for which uk �= vk .

Lemma 1 For n ≥ 2, assume that uv ∈ E(Γn) with uk = 0 and vk = 1 for some
k ∈ [n]. Then, nu,v(Γn) = fk+1 fn−k+2 and nv,u(Γn) = fk fn−k+1.

123



3680 Ö. Eğecioğlu et al.

Proof The result is clear for n = 2. Assume that n ≥ 3, 1 < k < n and let α ∈ V (Γn)

have string representation b1b2 . . . bn . Since uv ∈ E(Γn), u and v must be of the form
a1 . . . ak−10ak+1 . . . an and a1 . . . ak−11ak+1 . . . an , respectively. Since v ∈ V (Γn),
we must have ak−1 = ak+1 = 0. From these representations, we observe that the
difference between d(α, u) and d(α, v) depends on the value of bk only. If bk = 0, we
have d(α, u) = d(α, v)−1, and if bk = 1, we have d(α, u) = d(α, v)+1. Therefore,
the vertices whose kth coordinate is 0 are closer to u than v, and the vertices whose
kth coordinate is 1 are closer to v than u. Hence, nu,v(Γn) is equal to the number of
vertices in Γn whose kth coordinate is 0. These vertices have string representation
of the form β10β2 where β1 is any Fibonacci string of length k − 1 and β2 is any
Fibonacci string of length n − k. Consequently, nu,v(Γn) = fk+1 fn−k+2. Similarly,
nv,u(Γn) is number of vertices of the form β3010β4, and this is equal to fk fn−k+1.

For the case k = 1, we have u ∈ V (0Γn−1) and v ∈ V (10Γn−2). Then, nu,v(Γn) =
|V (0Γn−1)| = fn+1 and nv,u(Γn) = |V (10Γn−2)| = fn . Similarly, for k = n we
have u ∈ V (Γn−10) and v ∈ V (Γn−201). This gives again nu,v(Γn) = fn+1 and
nv,u(Γn) = fn for k = n. As f1 = f2 = 1, these are also of the form claimed. ��

To find the Mostar index of Fibonacci cubes, we only need to find the number of
edges uv in Γn for which uk = 0 and vk = 1 for a fixed k ∈ [n] and add up these
contributions over k.

Lemma 2 For n ≥ 2, assume that uv ∈ E(Γn) with uk = 0 and vk = 1 for some
k ∈ [n]. Then, the number of such edges in Γn is equal to fk fn−k+1.

Proof As in the proof of Lemma 1, the result is clear for n = 2. Assume that n ≥ 3.
For 1 < k < n, we know that u and v are of the form a1 . . . ak−2000ak+2 . . . an and
a1 . . . ak−2010ak+2 . . . an . Then, the number of edges uv in Γn satisfying uk = 0 and
vk = 1 is equal to the number of vertices of the form a1 . . . ak−2000ak+2 . . . an , which
gives the desired result.

For the boundary cases k = 1 and k = n, we need to find the number of vertices of
the form 00a3 . . . an and a1 . . . an−200, respectively. Clearly, this number is equal to
|V (00Γn−2)| = fn and f1 = 1. This completes the proof. ��

Using Lemma 1 and Lemma 2, we obtain the following main result.

Theorem 1 The Mostar index of Fibonacci cube Γn is given by

Mo(Γn) =
n∑

k=1

fk fn−k+1 ( fk+1 fn−k+2 − fk fn−k+1) . (1)

Proof Let uv ∈ E(Γn)with uk = 0 and vk = 1 for some k ∈ [n]. Then, fromLemma 1
we know that

|nu − nv| = fk+1 fn−k+2 − fk fn−k+1
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and therefore using Lemma 2, we have

Mo(Γn) =
∑

uv∈E(Γn)

|nu − nv|

=
n∑

k=1

fk fn−k+1 ( fk+1 fn−k+2 − fk fn−k+1) .

��
Note that fk+1 fn−k+2− fk fn−k+1 = fk fn−k+ fk−1 fn−k+2 so thatwe can equivalently
write

Mo(Γn) =
n∑

k=1

fk fn−k+1 ( fk fn−k + fk−1 fn−k+2) .

In Sect. 5, Theorem 3, we present a closed-form formula for Mo(Γn) obtained by
using the theory of generating functions.

Next, we consider the Mostar index of Lucas cubes.

4 TheMostar Index of Lucas Cubes

We know that Λ2 = Γ2 and therefore Mo(Γ2) = Mo(Λ2) = 2.
For any uv ∈ E(Λn), let the string representations of u and v be u1u2 . . . un and

v1v2 . . . vn , respectively. We know that d(u, v) = 1 and there is only one index k for
which uk �= vk . Similar to Lemma 1 and Lemma 2, we have the following result.

Lemma 3 For n ≥ 3, assume that uv ∈ E(Λn) with uk = 0 and vk = 1 for some
k ∈ [n]. Then, nu,v(Λn) = fn+1 and nv,u(Λn) = fn−1.

Proof Assume that 1 < k < n and let α ∈ V (Λn) having string representation
b1b2 . . . bn . Since uv ∈ E(Λn), u must be of the form a1 . . . ak−2000ak+2 . . . an and
v must be of the form a1 . . . ak−2010ak+2 . . . an . Then, if bk = 0, we have d(α, u) =
d(α, v) − 1 and if bk = 1, we have d(α, u) = d(α, v) + 1. Therefore, nu,v(Λn) and
nv,u(Λn) are equal to the number of vertices in Λn whose kth coordinate is 0 and
1, respectively. Therefore, we need to count the number of Lucas strings of the form
β10β2 and β3010β4 which gives nu,v(Λn) = fn+1 and nv,u(Λn) = fn−1.

For the case k = 1, using the fundamental decomposition of Λn we have
u ∈ V (0Γn−1) and v ∈ V (10Γn−30). Then, nu,v(Λn) = |V (0Λn)| = fn+1 and
nv,u(Λn) = |V (10Γn−30)| = fn−1. Similarly, for k = n we have the same results
nu,v(Λn) = fn+1 and nv,u(Λn) = fn−1. ��
For any uv ∈ E(Λn) using Lemma 3, we have

|nu,v(Λn) − nv,u(Λn)| = fn+1 − fn−1 = fn .

Since the number of edges in Λn is n fn−1 [10], similar to Theorem 1 we have the
following result.
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Theorem 2 The Mostar index of Lucas cube Λn is given by

Mo(Λn) = n fn fn−1 .

Here,we remark that the vertices ofLucas cubes are represented byLucas stringswhich
are circular binary strings that avoid the pattern “11." Because of this symmetry, the
derivation of a closed formula of Theorem 2 for the Mostar index of Lucas cube Λn is
easier than the one for Γn , in which the first and the last coordinates behave differently
from the others.

5 A Closed Formula for Mo(0n)

By the fundamental decomposition of Γn , the set of edges E(Γn) consists of three
distinct types:

1. The edges in 0Γn−1, which we denote by E(0Γn−1).
2. The link edges between 10Γn−2 and 00Γn−2, denoted by Cn .
3. The edges in 10Γn−2, which we denote by E(10Γn−2) .

In other words, we have the partition

E(Γn) = E(0Γn−1) ∪ Cn ∪ E(10Γn−2) .

We keep track of the contribution of each part of this decomposition by setting for
n ≥ 2,

Mn(x, y, z) =
∑

uv∈E(0Γn−1)

|nu − nv|x +
∑

uv∈Cn

|nu − nv|y

+
∑

uv∈E(10Γn−2)

|nu − nv|z . (2)

Clearly, Mo(Γn) = Mn(1, 1, 1). By direct inspection, we observe that

M2 = x + y

M3 = 4x + 2y + z

M4 = 16x + 6y + 6z

M5 = 54x + 15y + 23z

which gives

Mo(Γ2) = M2(1, 1, 1) = 2

Mo(Γ3) = M3(1, 1, 1) = 7

Mo(Γ4) = M4(1, 1, 1) = 28

Mo(Γ5) = M5(1, 1, 1) = 92 ,
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consistent with the values that are calculated using Theorem 1.
By using the fundamental decomposition of Γn , we obtain the following useful

result.

Proposition 1 For n ≥ 2, the polynomial Mn(x, y, z) satisfies

Mn(x, y, z) = Mn−1(x + z, 0, x) + Mn−2(2x + z, x + z, x + z)

+ fn−1 ( fn + fn−2) x + fn fn−1y

where M0(x, y, z) = M1(x, y, z) = 0.

Proof By the definition (2), there are three cases to consider:

1. Assume that uv ∈ Cn such that u ∈ V (0Γn−1) and v ∈ V (10Γn−2):
We know that d(u, v) = 1 and the string representations of u and v must be of the
form 00b3 . . . bn and 10b3 . . . bn , respectively. Then, using Lemma 1 with k = 1
we have |nu − nv| = fn+1 − fn = fn−1 for each edge uv in Cn . As |Cn| = fn , all
of these edges contribute fn fn−1y to Mn(x, y, z).

2. Assume that uv ∈ E(10Γn−2):
Let the string representations of u and v be 10u3 . . . un and 10v3 . . . vn , respectively.
Using the fundamental decomposition of Γn , there exist vertices of the form u′ =
0u3 . . . un and v′ = 0v3 . . . vn in V (Γn−1); u′′ = u3 . . . un and v′′ = v3 . . . vn
in V (Γn−2). Then, nu counts the number of vertices 0α ∈ V (0Γn−1) and 10β ∈
V (10Γn−2) satisfying

d(0α, u) < d(0α, v) and d(10β, u) < d(10β, v) .

For any 0α ∈ V (0Γn−1), we know that d(0α, u) = d(α, u′) + 1 and d(0α, v) =
d(α, 0v′) + 1. Therefore, for a fixed 0α ∈ V (0Γn−1), d(α, u′) < d(α, v′) if
and only if d(0α, u) < d(0α, v). Similarly, for any 10β ∈ V (10Γn−2) we have
d(10β, u) = d(β, u′′) and d(β, v) = d(β, v′′). Then, we can write

∑

uv∈E(10Γn−2)

∣∣nu,v(Γn) − nv,u(Γn)
∣∣ =

∑

u′v′∈E(Γn−1)

∣∣nu′,v′(Γn−1) − nv′,u′(Γn−1)
∣∣

+
∑

u′′v′′∈E(Γn−2)

∣∣nu′′,v′′(Γn−2) − nv′′,u′′(Γn−2)
∣∣ .

Note that Γn−1 = 0Γn−2 + 10Γn−3 and the edge u′v′ ∈ E(Γn−1) is an edge in the
set E(0Γn−2). Furthermore, u′′v′′ ∈ E(Γn−2) is an arbitrary edge. Then, by the
definition (2) of Mn we have

∑

u′v′∈E(Γn−1)

∣∣nu′,v′(Γn−1) − nv′,u′(Γn−1)
∣∣ = Mn−1(1, 0, 0)

and
∑

u′′v′′∈E(Γn−2)

∣∣nu′′,v′′(Γn−2) − nv′′,u′′(Γn−2)
∣∣ = Mn−2(1, 1, 1) .
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Hence, all of these edges uv ∈ E(10Γn−2) contribute
(
Mn−1(1, 0, 0) +

Mn−2(1, 1, 1)
)
z to Mn(x, y, z).

3. Assume that uv ∈ E(0Γn−1):
Since 0Γn−1 = 00Γn−2 + 010Γn−3, we have three subcases to consider here.

(a) Assume that uv ∈ Cn−1 such that u ∈ 00Γn−2 and v ∈ 010Γn−3 .
Then, using Lemma 1 with k = 2 we have

|nu − nv| = f3 fn − f2 fn−1 = 2 fn − fn−1 = fn + fn−2

for each edge uv in Cn . As |Cn−1| = fn−1, all of these edges contribute
fn−1( fn + fn−2)x to Mn(x, y, z).

(b) Assume that uv ∈ E(010Γn−3):
Let the string representations of u and v are of the form 010u4 . . . un and
010v4 . . . vn , respectively. Using the fundamental decomposition of Γn , there
exist vertices of the form u′ = 000u4 . . . un and v′ = 000v4 . . . vn in
V (0Γn−1); u′′ = 0u4 . . . un and v′′ = 0v4 . . . vn in V (Γn−2). Then, for any
10α ∈ V (10Γn−2) we know that d(10α, u) = d(10α, u′) + 1 = d(α, u′′) + 2
andwe know that d(10α, v) = d(10α, v′)+1 = d(α, v′′)+2. Therefore, for all
10α ∈ V (10Γn−2)we count their total contribution toMn byMn−2(1, 0, 0)x in
this case. Furthermore, as uv ∈ E(010Γn−3), we have uv ∈ E(0Γn−1), and for
all 0α ∈ V (0Γn−1), we count their total contribution to Mn by Mn−1(0, 0, 1)x
by using the definition ofMn−1. Hence, the edges uv ∈ E(010Γn−3) contribute(
Mn−1(0, 0, 1) + Mn−2(1, 0, 0)

)
x to Mn(x, y, z).

(c) Assume that uv ∈ E(00Γn−2).
These edges are the ones of E(0Γn−1) that are not in E(010Γn−3) and Cn−1
(not created during the connection of 00Γn−2 and 010Γn−3). Then, simi-
lar to the Case 2 and using the definition (2) of Mn these edges contribute(
Mn−1(1, 0, 0) + Mn−2(1, 1, 1)

)
x to Mn(x, y, z).

Combining all of the above cases and noting Mn−1(0, 0, 1)x = Mn−1(0, 0, x),
Mn−2(1, 0, 0)x = Mn−2(x, 0, 0), Mn−2(1, 1, 1)x = Mn−2(x, x, x), we complete
the proof. ��

If wewriteMn(x, y, z) = anx+bn y+cnz, then from the recursion in Proposition 1,
we obtain for n ≥ 2

an = an−1 + cn−1 + 2an−2 + bn−2 + cn−2 + fn−1( fn + fn−2)

bn = fn fn−1

cn = an−1 + an−2 + bn−2 + cn−2 .

Eliminating bn , this is equivalent to the system

an = an−1 + 2an−2 + cn−1 + cn−2 + fn−2 fn−3 + fn−1 fn−2 + fn fn−1

cn = an−1 + an−2 + cn−2 + fn−2 fn−3 . (3)
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Let A(t), B(t),C(t) be the generating functions of the sequences an, bn, cn , (n ≥ 2),
respectively. We already know that ( [11, A001654])

B(t) =
∑

n≥2

fn fn−1t
n = t2

(1 + t)(1 − 3t + t2)
. (4)

From (3), we obtain

A(t) = (t + 2t2)A(t) + (t + t2)C(t) + (1 + t + t2)B(t)

C(t) = (t + t2)A(t) + t2C(t) + t2B(t) . (5)

Solving the system of equations (5) and using (4), we calculate

A(t) = t2

(1 + t)2(1 − 3t + t2)2
,

C(t) = t3 + 2t4 − t5

(1 + t)2(1 − 3t + t2)2
. (6)

Since Mo(Γn) = Mn(1, 1, 1) = an + bn + cn , adding the generating functions
A(t), B(t),C(t) we obtain

∑

n≥2

Mo(Γn)t
n = (2 − t)t2

(1 + t)2(1 − 3t + t2)2
. (7)

Using partial fractions decomposition in (7) and the expansions

1

1 − 3t + t2
=

∑

n≥0

f2n+2t
n , (8)

1

(1 − 3t + t2)2
=

∑

n≥0

1

5

(
(4n + 2) f2n+2 + (3n + 3) f2n+1

)
tn, (9)

we obtain

Mo(Γn) = 1

25

(
(3n + 2)(−1)n + (4n − 5) f2n+2 + (3n + 3) f2n+1 − (4n − 3) f2n − 3n f2n−1

)
,

which can be simplified to the closed-form expression for Mo(Γn) in Theorem 3. This
is another way of writing the sum given in Theorem 1.

Theorem 3 The Mostar index of Fibonacci cube Γn is

Mo(Γn) = 1

25

(
(3n − 2) f2n+2 + n f2n+1 + (3n + 2)(−1)n

)
.
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6 TheWiener Index and Remarks

In [9], it is shown that

W (Γn) =
n∑

k=1

fk fk+1 fn−k+1 fn−k+2 (10)

and that this sum can be evaluated as

W (Γn) = 1

25

(
4(n + 1) f 2n + (9n + 2) fn fn+1 + 6n f 2n+1

)
. (11)

In view of our formula (1) of Theorem 1 and (10), this means that

W (Γn) = Mo(Γn) +
n∑

k=1

( fk fn−k+1)
2 .

The sum above is the sequence [11, A136429] with generating function

t(1 − t)2

(1 + t)2(1 − 3t + t2)2
.

Adding the generating function (7) to this, we get

∑

n≥1

W (Γn)t
n = t

(1 + t)2(1 − 3t + t2)2
. (12)

Using partial fractions and the expansions (8) and (9), W (Γn) (n ≥ 2) is found to be

W (Γn) = 1

25

(
(3n + 2) f2n+3 + (n − 2) f2n+2 − (n + 2)(−1)n

)

which is a somewhat simpler expression than (11).
It is also curious that in view of their generating functions (6) and (12) which differ

only by factor of t , we have

an = Mn(1, 0, 0) = W (Γn−1) .
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References

1. Albertson, M.O.: The irregularity of a graph. Ars Combin. 46, 219–225 (1997)
2. Alizadeh, Y., Deutsch, E., Klavžar, S.: On the irregularity of π -permutation graphs, Fibonacci cubes,

and trees. Bull. Malays. Math. Sci. Soc. 43, 4443–4456 (2020)

123



The Mostar Index of Fibonacci and Lucas Cubes 3687

3. Alizadeh, Y., Xu, K., Klavžar, S.: On the Mostar index of trees and product graphs, preprint https://
www.fmf.uni-lj.si/~klavzar/preprints/Mostar.pdf
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