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Abstract
Let G = (V (G), E(G)) be a simple graph. A set S ⊆ V (G) is a strong edge geodetic
set if there exists an assignment of exactly one shortest path between each pair of
vertices from S, such that these shortest paths cover all the edges E(G). The cardinality
of a smallest strong edge geodetic set is the strong edge geodetic number sge(G) of
G. In this paper, the strong edge geodetic problem is studied on the Cartesian product
of two paths. The exact value of the strong edge geodetic number is computed for
Pn � P2, Pn � P3 and Pn � P4. Some general upper bounds for sge(Pn � Pm) are also
proved.

Keywords Strong geodetic problem · Strong edge geodetic problem · Cartesian
product of paths

Mathematics Subject Classification 05C12 · 05C70

1 Introduction

Different covering problems with shortest paths were studied in the literature. For
example, the geodetic problem was introduced in 1993 in [3] and its edge version in
2007 in [11]. In 2016, the strong geodetic problem was introduced, the seminal paper
[9] being published only recently. Since then, a lot of work was done on the strong
geodetic problem.

The exact value of the strong geodetic number was computed for different families
of graphs. For example, for complete bipartite graphs Kn,m it was first computed for
cases when n = m, and for n � m in [4], and later in the general case in [1]. In [6],
the strong geodetic number was computed for some balanced multipartite complete
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graphs and it was shown that computing the strong geodetic number of general com-
plete multipartite graphs is NP-complete. The exact strong geodetic number was also
computed for crown graphs Sn0 in [1], Hamming graphs Km � Kn in [5], Cartesian
products K1,n � Pl in [5], thin (n � m) grids Pn � Pm , and thin (n � m) cylinders
Pn �Cm in [7], and i-level complete Apollonian networks A(i) in [9].

Several general bounds on the strong geodetic number were given using different
graphical invariants. In [4], bounds on sge(G) were given depending on the diameter
diam(G) ofG. In [12], an upper bound on the strong geodetic number was given using
the connectivity number. In [9], lower and upper bounds were given using isometric
path number. Gledel at al. [2] proved an upper bound on the strong geodetic number of
Cartesian product graphs using the so-called strong geodetic core number. In [1], an
upper bound on the strong edge geodetic number was given for hypercubes. A general
upper bound was in [5] computed for the strong geodetic number of Cartesian product
graphs, and an upper bound for the strong geodetic number of the Cartesian product
of a path with an arbitrary graph was computed in [7].

Using reduction from NP-completeness of dominating set problem, Manuel et al.
in [9] proved that the strong geodetic problem is NP-complete. On the positive side,
Mezzini in [10] gave a polynomial algorithm for computing the strong geodetic number
of outerplanar graphs. Some general properties about the strong geodetic number were
also given. For example, in [12] the graphs with the strong geodetic number 2, n(G),
or n(G)− 1, were characterized. In [5], relation between the strong geodetic number
of a graph and its induced, convex, or gated subgraphs was derived.

Like geodetic problem and many other problems in graph theory, there is an inter-
esting edge version of the problem. In 2017, the edge version of the strong geodetic
problem, called the strong edge geodetic problem, was introduced in [8], but it did not
get as much attention as the vertex version, with the exception of the very recent paper
[13]. This gap is in part filled in this paper. In the seminal paper [8], it was proved
that the strong edge geodetic problem is NP-complete and some general upper and
lower bounds were given using the isometric path number, the number of simplicial
vertices in a graph, and the number of convex components in graph. In this article, we
will show that even though the vertex and edge version of the strong geodetic problem
seem similar at the first sign, they differ a lot. For example, in [7] it was proved that if
2 ≤ n ≤ m, then sg(Pn � Pm) ≤ ⌈

2
√
n

⌉
, while we will prove that this is not true for

the strong edge geodetic number sge(Pn � Pm) when m = 3 or 4. The main results of
this article are the following three theorems.

Theorem 1.1 If n ≥ 2, then sge(Pn � P2) = ⌈
2
√
n

⌉
.

Theorem 1.2 If n ≥ 2, then sge(Pn � P3) = ⌈
2
√
n + 1

⌉
.

Theorem 1.3 If n ≥ 2, then

sge(Pn � P4) =

⎧
⎪⎨

⎪⎩

2k + 1; n = k2 + h, 0 ≤ h ≤ k − 1,

2k + 2; n = k2 + h, k ≤ h ≤ 2k − 1,

2k + 3; n = k2 + 2k.
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Theorem 1.3 implies that sge(Pn � P4) = ⌈
2
√
n + 2

⌉
for all n ∈ N except when

n = k2 + k − 1 for some k ∈ N. This can also be interpreted as sge(Pn � P4) =⌈
2
√
n + 1

⌉
for all n ∈ N except when n = k2 + 2k for some k ∈ N. This shows that

the pattern from Theorems 1.1 and 1.2 does not extend to n ≥ 4.
In the next section, we formally define concepts needed in this paper and prepare

several preliminary results. Then, in Sects. 3-5, we prove Theorems 1.1, 1.2, 1.3,
respectively. In the last section, we give three general upper bounds on sge(Pn � Pm).

2 Preliminaries

Let G = (V (G), E(G)) be a simple graph. A x, y-geodesic is a shortest path between
vertices x and y. With P(G; x, y), we denote the set of all shortest paths inG between
vertices x and y. A set S ⊆ V (G) is a strong edge geodetic set if there exists an
assignment of shortest paths Px,y ∈ P(G; x, y) for every pair x, y ∈ V (G), such that

⋃

{x,y}∈(S2)
E(Px,y) = E(G),

where E(Px,y) denotes the set of edges from the selected shortest path Px,y . The set
of these shortest paths is called the strong edge geodetic covering. The strong edge
geodetic number of G, denoted by sge(G), is the cardinality of a smallest strong edge
geodetic set of G.

The Cartesian product G � H of graphs G and H is the graph on the vertex set
V (G � H) = V (G)×V (H), where twovertices (g1, h1) and (g2, h2), g1, g2 ∈ V (G),
h1, h2 ∈ V (H) are adjacent if g1g2 ∈ E(G) and h1 = h2, or if g1 = g2 and h1h2 ∈
E(H). An edge (g1, h1)(g2, h2) ∈ E(G � H) is said to be horizontal if h1 = h2 and is
said to be vertical if g1 = g2. A grid is theCartesian product of two paths. The i -th row,
1 ≤ i ≤ m, in Pn � Pm is the vertex set {(1, i), . . . , (n, i)} together with the horizontal
edges between them. Similarly, the j -th column, 1 ≤ j ≤ n, in Pn � Pm is the vertex
set {( j, 1), . . . , ( j,m)} together with the vertical edges between them. Because of
the commutativity of the Cartesian product operation, sge(G � H) = sge(H �G). A
subgraph H of a graph G is convex if for every pair of vertices {x, y} in H , every
x, y-geodesic lies completely in H . A set of edges F ⊆ E(G) is a convex edge cut if
G − F has precisely two convex components.

Lemma 2.1 If n ≥ 2 and m ≥ 2, then sge(Pn � Pm) ≥ ⌈
2
√
n

⌉
.

Proof In [8, Corollary 6.4], it is proved that if F is a convex edge cut of a graphG, then
sge(G) ≥ �2√|F |	. In our case, all vertical edges between the first and the second
row in Pn � Pm represent a convex edge-cut set of Pn � Pm (see Fig. 1). Because
there are exactly n vertical edges between the first and the second row in Pn � P2, the
inequality holds.

Throughout the rest of this paper, we will use Algorithm 1 to prove upper bounds
on the strong edge geodetic number. The input of this algorithm is an integer n and
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Fig. 1 Edge cut in Pn � Pm

an integer m. Integer n can be uniquely written as the sum n = k2 + h, where k and
h are integers and 0 ≤ h ≤ 2k. Algorithm defines a set of vertices S and a set of
shortest paths, where for each pair of vertices in S it uses at most one shortest path
between them, such that the union of this shortest paths covers all the vertical edges
in Pn � Pm .

Algorithm 1 first takes two vertices, a1 = (1, 1) and b1 = (1,m) from the first
column, and covers the vertical edges in the first column by the unique a1, b1-geodesic.
In next step, if k2 ≥ 4, the algorithm takes vertices a2 = (22, 1) and b2 = (22,m) and
covers the second column of edges by the a1,b2-geodesic, the third column of edges
by the a2, b1-geodesic and the fourth column of edges by the a2, b2-geodesic. After
the (i − 1)-th, (i − 1)2 ≤ n, step, all the first (i − 1)2 columns are already covered.
In the i-th step, if i2 ≤ n, we add vertices ai = (i2, 1) and bi = (i2,m). We cover the
next i − 1 columns by a1, bi -, …, ai−1, bi -geodesic, respectively, and the way every
geodesic covers the leftmost not yet covered column of edges. Similarly, we cover i−1
edges from the (i −1)2 + (i −1)+1-th to the (i −1)2 +2(i −1)-th column by ai , b1-,
…, ai , bi−1-geodesic, respectively, covering the leftmost not yet covered column of
edges. The algorithm covers the i-th column of edges by the unique ai , bi -geodesic.
This way we cover all the vertical edges from the first k2 columns.

If 1 ≤ h ≤ k, we add the vertex bk+1 = (n,m) and then cover the remain-
ing columns of edges by a1, bk+1-, …, ah, bk+1-geodesic, respectively, covering the
leftmost not yet covered column of edges. If k + 1 ≤ h ≤ 2k, we add vertices
ak+1 = (n, 1) and bk+1 = (n,m). We cover the next k columns by a1, bk+1-, …,
ak, bk+1-geodesic, respectively, and the way every geodesic covers the leftmost not
yet covered column of edges. Similarly, we cover the remaining columns of edges by
ak+1, b1-,…, ak+1, bh−k-geodesic, respectively, covering the leftmost not yet covered
column of edges.

We conclude the preliminaries with the following technical lemma to be used in
our proofs.

Lemma 2.2

⌈
2
√
n
⌉ =

⎧
⎪⎨

⎪⎩

2k; n = k2, k ∈ N,

2k + 1; n = k2 + h, k ∈ N, 1 ≤ h ≤ k,

2k + 2; n = k2 + h, k ∈ N, k + 1 ≤ h ≤ 2k.
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Algorithm 1: Covering vertical edges in grids

Input: integer n = k2 + h, where 0 ≤ h ≤ 2k, and integer m

Result: the set of vertices V in Pn � Pm , m ≥ 2, and the set of shortest paths between pairs of
vertices from V that cover all vertical edges

1 for i = 1, . . . , k do

2 ai =
(
i2, 1

)
;

3 bi =
(
i2,m

)
;

4 for j = 1, . . . , i − 1 do
5 connect vertices ai and b j with a geodesic that covers all vertical edges in ((i − 1)2 + j)-th

column of Pn � Pm
6 end
7 for j = 1, . . . , i − 1 do
8 connect vertices a j and bi with a geodesic that covers all vertical edges in (i(i − 1) + j)-th

column of Pn � Pm
9 end

10 connect vertices ai and bi with the unique geodesic between them
11 end
12 if 1 ≤ h ≤ k then
13 bk+1 = (n,m);
14 for j = 1, . . . , h do
15 connect vertices a j and bk+1 with a geodesic that covers all vertical edges in (k2 + j)-th

column of Pn � Pm
16 end
17 end
18 else if k + 1 ≤ h ≤ 2k then
19 ak+1 = (n, 1);
20 bk+1 = (n,m);
21 for j = 1, . . . , k do
22 connect vertices a j and bk+1 with a geodesic that covers all vertical edges in (k2 + j)-th

column of Pn � Pm
23 end
24 for j = 1, . . . , h − k do
25 connect vertices ak+1 and b j with a geodesic that covers all vertical edges in (k(k+1)+ j)-th

column of Pn � Pm
26 end
27 end

Proof If n = k2 for some k ∈ N, then
⌈
2
√
n
⌉ =

⌈
2
√
k2

⌉
= 2k.

Suppose n = k2 + h for some k, h ∈ N where 1 ≤ h ≤ k. Then, because h > 0

and
⌈
2
√
k2

⌉
is an integer, it holds

⌈
2
√
n
⌉ =

⌈
2
√
k2 + h

⌉
>

⌈
2
√
k2

⌉
= 2k.
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Also, because h ≤ k and
⌈
2
√
k2

⌉
is an integer, it holds

⌈
2
√
n
⌉ ≤

⌈
2
√
k2 + k

⌉
=

⌈
2
√
(k2 + 1/2)2 − 1/4

⌉
≤

⌈
2
√
(k + 1/2)2

⌉
= 2k + 1.

Because
⌈
2
√
n

⌉
is an integer greater than 2k and is also less or equal to 2k + 1, we

conclude that
⌈
2
√
n

⌉ = 2k + 1 when n = k2 + h, 1 ≤ h ≤ k.
Now, suppose that n = k2 + h for some k, h ∈ N where k + 1 ≤ h ≤ 2k. Then,

because h ≥ k + 1 and
⌈
2
√
(k + 1/2)2

⌉
is an integer, it holds

⌈
2
√
n
⌉ ≥

⌈
2
√
k2 + k + 1

⌉
=

⌈
2
√
(k + 1/2)2 + 3/4

⌉
>

⌈
2
√
(k + 1/2)2

⌉
= 2k + 1.

Also, because h ≤ 2k and
⌈
2
√
k2

⌉
is an integer, it holds

⌈
2
√
n
⌉ ≤

⌈
2
√
k2 + 2k

⌉
≤

⌈
2
√
k2 + 2k + 1

⌉
= 2k + 2.

Because
⌈
2
√
n

⌉
is an integer greater than 2k + 1 and is also less or equal to 2k + 2,

we get
⌈
2
√
n

⌉ = 2k + 2 when n = k2 + h, k + 1 ≤ h ≤ 2k. 
�

3 Proof of Theorem 1.1

The lower bound sge(Pn � P2) ≥ ⌈
2
√
n

⌉
follows from Lemma 2.1. It remains to

prove the upper bound sge(Pn � P2) ≤ ⌈
2
√
n

⌉
.

We will use Algorithm 1 form = 2 to cover all the vertical edges in Pn � P2. When
n = k2 for some k ∈ N, the number of vertices used in Algorithm 1 is exactly 2k, and
these are the vertices a1, . . . , ak, b1, . . . , bk . When n = k2 + h, k ∈ N, 1 ≤ h ≤ k,
the number of vertices used in Algorithm 1 is exactly 2k + 1, and when n = k2 + h,
k ∈ N, k + 1 ≤ h ≤ 2k, exactly 2k + 1 vertices are used. By Lemma 2.2, we see that
Algorithm 1 uses exactly �2√n 	 vertices.

It remains to cover the horizontal edges. Observe that Algorithm 1 uses only the
a j1 ,b j2 -geodesics for some j1, j2 ∈ N.

If n = k2, all horizontal edges from the first row can be covered by the unique
a1,ak-geodesic. Similarly, all horizontal edges from the second row can be covered by
the unique b1,bk-geodesic.

If n = k2 + h, where 1 ≤ h ≤ k, we can cover the horizontal edges in the first
row with the unique a1,ak-geodesic. The remaining horizontal edges in the first row
are already covered with the shortest path from Algorithm 1 that covers vertical edges
in the n-th column. We can cover the horizontal edges from the second row with the
unique b1,bk+1-geodesic.
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Fig. 2 Strong edge geodetic set for graphs P16 � P2, P20 � P2 and P24 � P2

Fig. 3 Shortest path between (1, 1) and (n, 2)

If n = k2 + h, where k + 1 ≤ h ≤ 2k, we can cover the horizontal edges from the
first row with the unique a1,ak+1-geodesic, and the horizontal edges from the second
row with the unique b1,bk+1-geodesic.

This proves Theorem 1.1. See Fig. 2 for some typical optimal strong edge geodetic
sets in Pn � P2.

4 Proof of Theorem 1.2

We first show:

Lemma 4.1 If n ≥ 2, then sge(Pn � P3) ≤ ⌈
2
√
n

⌉ + 1.

Proof Use Algorithm 1 and then cover horizontal edges in the first row and in the
last row in the same way as in the proof of Theorem 1.1. Add the vertex (n, 2) to the
existing vertex set from Algorithm 1, and connect it with (1, 1) by a geodesic that
covers all horizontal edges from the second row, see Fig. 3. 
�

By Lemmas 4.1 and 2.1 (for m = 3), we know that for every n ≥ 2, the strong
edge geodetic number sge(Pn � P3) is either

⌈
2
√
n

⌉
or

⌈
2
√
n

⌉ + 1. Because by
Lemma 2.2, it holds

⌈
2
√
n

⌉ = ⌈
2
√
n + 1

⌉
, except when n = k2 or n = k2 + k for

some k ∈ N, it is enough to prove that when n = k2 or n = k2 + k, there is no strong
edge geodetic set of size

⌈
2
√
n

⌉
and to find a strong edge geodetic set of size

⌈
2
√
n

⌉

in the other cases.
First, let us show that there exists a strong edge geodetic set of size

⌈
2
√
n

⌉
on

Pn � P3 for n = k2 + h, where 1 ≤ h ≤ k − 1 or k + 1 ≤ h ≤ 2k.

Proposition 4.2 If n = k2+h, n ≥ 3, k ≥ 1, where 1 ≤ h ≤ k−1 or k+1 ≤ h ≤ 2k,
then

sge(Pn � P3) ≤ sge(Pn � P2).
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Fig. 4 Strong edge geodetic set in P32+2 � P3

Proof To cover all the vertical edges and all the horizontal edges in the second row,
we will adjust Algorithm 1. We will divide this adjustment into two cases.

Case 1: n = k2 + h, 1 ≤ h ≤ k − 1 (see Fig. 4).
We can see that in this case, because h ≤ k − 1, Algorithm 1 never uses a ak ,bk+1-
geodesic and that aa1,bk+1-geodesic covers all vertical edges in the (k2+1)-th column.
Because ak = (k2, 1), we can add a ak ,bk+1-geodesic that covers all the vertical edges
in the (k2 + 1)-th column and then replace the existing a1,bk+1-geodesic with the one
that covers all the horizontal edges in the second row. This way we have covered all
the vertical edges in Pn � P3 and also all the horizontal edges in the second row.

In the same way as in Pn � P2, we can cover the horizontal edges in the first row
(using the a1,ak-geodesic and also the existing ah ,bk+1-geodesic) and in the third row
(using the b1,bk+1-geodesic) of Pn � P3.

Case 2: n = k2 + h, k + 1 ≤ h ≤ 2k (see Fig. 5).
In this case, Algorithm 1 does not use the ak+1,bk+1-geodesic. This shortest path
covers all the vertical edges in the n-th column. Because a ak+1,bh-geodesic from
Algorithm 1 also covers all the vertical edges from the n-th column, we can add a
ak+1,bk+1-geodesic and then replace an existing ak+1,bh-geodesic with the one that
covers all the vertical edges in the (k2+1)-th column. This way we can then similar to
the previous case replace the existing a1,bk+1-geodesic (which covers all the vertical
edges in the (k2 + 1)-th column in Algorithm 1) with the one that covers all the
horizontal edges in the second row of Pn � P3.

In the same way as in Pn � P2, we now cover the horizontal edges in the first
row (using the a1,ak+1-geodesic) and in the third row (using the b1,bk+1-geodesic) of
Pn � P3.

In both cases, we have adjusted Algorithm 1 such that all the vertical edges together
with all the horizontal edges are covered without changing the set of vertices used in
the algorithm. It follows that sge(Pn � P3) ≤ ⌈

2
√
n

⌉ = ⌈
2
√
n + 1

⌉
for all n ∈ N

when n �= k2 or n �= k2 + k for some k ∈ N. 
�
In the second part of the proof, we will prove that there is no strong edge geodetic

set of size
⌈
2
√
n

⌉
if n = k2 or n = k2 + k.
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→

→

Fig. 5 Strong edge geodetic set in P32+2·3 � P3

Proposition 4.3 If n = k2 or n = k2 + k for some k ≥ 2, k ∈ N, then

sge(Pn � P3) > sge(Pn � P2).

Proof Let us define the function

fs(a, b, c) = ab + bc + 2ac

which gives an upper bound on howmany different vertical edges can be covered with
shortest paths between s vertices, where a vertices lie in the first row, b vertices in
the second row, and c vertices in the third row in Pn � P3, and for each pair of these
vertices, we use at most one shortest path. The extremes of fs can be obtained by
computer. For example, if a ≥ 0, b ≥ 0, and c ≥ 0, a, b, c ∈ R, then the maximum of
fs is equal to s2/2 and if a ≥ 0, b ≥ 1, and c ≥ 0, a, b, c ∈ R, then the maximum of
fs is equal to (s2 − 1)/2. We prove Proposition 4.3 by assuming the opposite in each
case.

Case 1: n = k2.
Suppose that there exists a strong edge geodetic set S in Pn � P3 with 2k elements. If
this set contains a vertex from the second row (in which case b ≥ 1), fs(a, b, c) is at
most (s2 − 1)/2, which is in our case (when s = 2k) equal to (4k2 − 1)/2. This is less
than the number 2k2 of all the vertical edges in Pn � P2, which in turn means that if
there exists such a strong edge geodetic set, then all the vertices from it are in the first
and the third row (b = 0).

Now, consider the edge (1, 2)(2, 2). A shortest path that covers this edge has to
have one endpoint at (1, 1) or (1, 3), which means that at least one of these vertices
is in S. Without loss of generality, we can assume that it has one endpoint at (1, 1)
(Fig. 6a). This shortest path then also covers the edge (1, 1)(1, 2). If (1, 3) ∈ S, then
the edge (1, 1)(1, 2) is also covered with the unique (1, 1),(1, 3)-geodesic (Fig. 6b).
Otherwise, the shortest path that covers the edge (1, 2)(1, 3) also covers the edge
(1, 1)(1, 2) (Fig. 6c). In both ways, the edge (1, 1)(1, 2) is covered at least twice,

123



3714 E. Zmazek

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

a b c

Fig. 6 Covering the edge (1, 2)(2, 2) in Pn � P3 when n = k2

which means that with the set of 2k vertices, we can only find shortest paths between
them that cover at most max( f2k − 1) ≤ 2k2 − 1 different vertical edges which is
again less that the number 2k2 of all the vertical edges in Pn � P2. This implies that
such a strong edge geodetic set S cannot exist.

Case 2: n = k2 + k.
Suppose that there exists a strong edge geodetic set S of Pn � P3 with 2k+1 elements.
If this set does not include a vertex (1, 2), we can similarly as in the previous case
without loss of generality conclude that the edge (1, 1)(1, 2) is covered at least twice,
which implies that with a set of 2k+1 vertices, we can only find shortest paths between
them that cover at most max( f2k+1−1) ≤ (2k+1)2/2−1 = 2k2+2k−1/2 different
vertical edgeswhich is less that the number 2(k2+2)of all the vertical edges in Pn � P3.
This implies that if such a strong edge geodetic set in Pn � P3 exists, it includes the
vertex (1, 2). By symmetry, it also includes the vertex (n, 2). But then, because b ≥ 2,
the value of f2k+1(a, b, c) is less or equal to ((2k + 1)2 − 4)/2 which is again less
than the number 2k2 + 2k of different vertical edges in Pn � P3.

Since in both cases we got a contradiction, we conclude that sge(Pn � P3) >

sge(Pn � P2). 
�
Propositions 4.2 and 4.3, together with Lemma 2.1 for m = 3, and Lemma 4.1

imply Theorem 1.2.

5 Proof of Theorem 1.3

Lemma 5.1 sge(Pn � P4) ≤ ⌈
2
√
n

⌉ + 1.

Proof Use Algorithm 1 and cover horizontal edges in the first row and in the last
row in the same way as in the proof of Theorem 1.1. To the existing vertex set from
Algorithm 1, add vertex (n, 2) and connect it with (1, 1) by a geodesic that covers
all horizontal edges from the second row (Fig. 7a) and with (1, 4) by a geodesic that
covers all horizontal edges from the third row (Fig. 7b).

By Lemmas 5.1 and 2.1 for m = 4, we know that for every n ≥ 2, the strong edge
geodetic number sge(Pn � P4) is either

⌈
2
√
n

⌉
or

⌈
2
√
n

⌉ + 1. From Lemma 2.2,
we see that Theorem 1.3 says that sge(Pn � P4) = ⌈

2
√
n

⌉
except when n = k2,

n = k2 + k, or n = k2 + 2k for some k ∈ N. Hence, it is enough to prove that when
n = k2, n = k2 + k, or n = k2 + 2k, there is no strong edge geodetic set of size⌈
2
√
n

⌉
and to find a strong edge geodetic set of size

⌈
2
√
n

⌉
in the other cases.
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a b

Fig. 7 (1, 1),(n, 2)-geodesic and (1, 4),(n, 2)-geodesic

First, let us show that there exists a strong edge geodetic set of size
⌈
2
√
n

⌉
for

Pn � P4 when n = k2+h for some k ∈ N, where 1 ≤ h ≤ k−1, or k+1 ≤ h ≤ 2k−1.

Proposition 5.2 If n = k2 + h, n ≥ 3, k ≥ 1, where 1 ≤ h ≤ k − 1 or k + 1 ≤ h ≤
2k − 1, then

sge(Pn � P4) ≤ sge(Pn � P2).

Proof To cover all the vertical edges and the horizontal edges in the second row, we
will adjust Algorithm 1. We divide this adjustment into two cases.

Case 1: n = k2 + h, 1 ≤ h ≤ k − 1 (see Fig. 8).
First, let us useAlgorithm 1. In the next step, replace the existing vertex bk+1 = (k2, 1)
with the vertex c = (n, 3) and for j = h, . . . , 1, replace the existing a j ,bk+1-geodesic
with two shortest paths, the a j+1,c-geodesic (it exists because h ≤ k − 1) that covers
the edges (k2 + j, 1)(k2 + j, 2) and (k2 + j, 2)(k2 + j, 3), and the b j+1,c-geodesic
that covers the edge (k2 + j, 3)(k2 + j, 4). This replacement is well defined because
we replaced all the shortest paths that had one endpoint at bk+1 and added some
new shortest paths that have one endpoint at c, so the condition that for each pair of
vertices from the set {a1, . . . , ak, b1, . . . , bk, c} we only use at most one shortest path
still holds.

In this way we have adjusted Algorithm 1 such that it covers all vertical edges in
Pn � P4, while it uses neither the a1,c-geodesics nor the b1,c-geodesics. This means
that we can add the a1,c-geodesic that covers all the horizontal edges in the second
row and the b1,c-geodesic that covers all the horizontal edges in the third row. Some
edges from the first row are already covered with the ah+1,c-geodesic, but the rest
of them can be covered with the unique a1,ak-geodesic. By symmetry, some of the
horizontal edges from the fourth row are covered with the bh+1,c-geodesic, and the
other ones are covered by the b1,bk-geodesic.

Case 2: n = k2 + h, k + 1 ≤ h ≤ 2k − 1 (see Fig. 9).
In this case, because h ≤ 2k − 1, Algorithm 1 never uses a ak+1,bk-geodesic. It also
never uses the unique ak+1,bk+1-geodesic. If we add this shortest path, we can replace
the existing bh−k ,ak+1-geodesic (this shortest path covers the vertical edges in the n-th
column) with the one that covers the vertical edges in the (k(k + 1) + 1)-th column
(in Algorithm 1 covered by the ak+1,b1-geodesic). Observe that this step does nothing
if h = 1. This way we can replace the existing ak+1,b1-geodesic with the one that
covers all the horizontal edges in the third row.
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→

→ +

→ +

Fig. 8 Strong edge geodetic set in P32+2 � P4

Also, if we add the ak+1,bk-geodesic that covers all the vertical edges in the (k2+1)-
th column, we can replace the existing a1,bk+1-geodesic with the one that covers all
the horizontal edges in the second row.

In the same way as in Pn � P2, we now cover the horizontal edges in the first row
(using the a1,ak+1-geodesic) and in the fourth row (using the b1,bk+1-geodesic) of
Pn � P4.

Since in all three cases we found a strong edge geodetic set of size sge(Pn � P2),
we can conclude that sge(Pn � P4) ≤ sge(Pn � P2) for all n ∈ N when n �= k2,
n �= k2 − 1, and n �= k2 + k for some k ∈ N. 
�

We will now show that there is no strong edge geodetic set of size
⌈
2
√
n
⌉
for

Pn � P4 when n = k2 − 1, k2, or k2 + k for some k ∈ N.

Proposition 5.3 If n = k2, n = k2 − 1, or n = k2 + k for some k ≥ 2, k ∈ N, then

sge(Pn � P4) > sge(Pn � P2).

Proof Let us define the function

fs(a, b, c, d) = ab + bc + cd + 2ac + 2bd + 3ad

which gives an upper bound on howmany different vertical edges can be covered with
shortest paths between s vertices, where a vertices are in the first row, b vertices in the
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→

→

→

Fig. 9 Strong edge geodetic set in P32+2·3−1 � P4

Table 1 Maximal values of
function fs (a, b, c, d)

Conditions Upper bound

a, b, c, d ≥ 0 fs (a, b, c, d) ≤ 1
4 (3s

2)

a, c, d ≥ 0, b ≥ 1 fs (a, b, c, d) ≤ 1
12 (9s

2 − 8)

a, b, c, d ≥ 0, b + c ≥ 2 fs (a, b, c, d) ≤ 1
4 (3s

2 − 8)

a, b, c, d ≥ 0, b + c ≥ 3 fs (a, b, c, d) ≤ 1
4 (3s

2 − 18)

second row, c vertices in the third row, and d vertices in the fourth row of Pn � P4. The
maximum values of function fs under some bounds are again computed by computer
and are gathered in Table 1.

Every strong edge geodetic set S has to include at least one vertex from the first
column; otherwise, it would not be possible to cover the edge (1, 1)(1, 2). Similarly,
every strong edge geodetic set includes at least one vertex from the last column.
Depending on a strong edge geodetic set S in Pn � P4, we will define a type of
first or last column of vertices. All the types for a strong edge geodetic set with at
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Type T type in first column r(T )

A 7

B 2

C 4

D 1

E 1

F 2

G 0

H 3

I 1

Fig. 10 Different types of a strong edge geodetic set in the first or the last column

least one vertex in the first and at least one vertex in the last column are gathered in
Fig. 10. For example, if (1, 1), (1, 2) ∈ S and (1, 3), (1, 4) /∈ S, we say that the first
column of vertices in Pn � P4 is of type D. Symmetrically, if (1, 1), (1, 2) /∈ S and
(1, 3), (1, 4) ∈ S, we also say that the first column of vertices in Pn � P4 is of type
D. We symmetrically define the type of the last column.

For a shortest path P in Pn � P4, let Ei (P) denote the set of edges in i-th column,
that is,

123



Strong Edge Geodetic Problem on Grids 3719

Ei (P) = E(P) ∩ {(i, 1)(i, 2), (i, 2)(i, 3), (i, 3)(i, 4)}.

For a strong edge geodetic covering C = {Px,y} set

r1C =
∑

{x,y}∈(S2)
|E1(Px,y)| − 3.

Roughly speaking, r1C measures redundancy of the strong edge geodetic covering in
the first column of Pn � P4. Analogously, the redundancy rnC with respect to the last
column is introduced.

For each type T of the first column determined by S, we can now compute the
minimum number of redundant coverings in the first column of edges as r1(T ) =
minC {r1C }, where C is a strong edge geodetic covering for a strong edge geodetic set
S, where the first column in Pn � P4 is of type T . Similarly, we can define theminimum
number of redundant coverings in the last column of edges, rn(T ). By symmetry, these
two numbers are the same, so we can denote r(T ) = r1(T ) = rn(T ). For each type
T , the number r(T ) is listed in the last column of Fig. 10.

We will show how to compute r(C) for type C , for other types it is similar. We can
without loss of generality assume {(1, 1), (1, 2), (1, 4)} ⊂ S. Between the pairs of
these three vertices, there are three unique shortest paths P1, P2, and P3. To cover the
horizontal edge (1, 3)(2, 3), we need another shortest path P4 that has one end vertex
in the vertex set {(1, 1), (1, 2), (1, 4)}. Because (1, 3) /∈ S, this path includes at least
one vertical edge from the first column, which implies

∑

{x,y}∈(S2)
|E1(Px,y)| − 3 ≥ |E1(P1)| + |E1(P2)| + |E1(P3)| + |E1(P4)| − 3 ≥ 4.

Suppose now that S is a strong edge geodetic set for Pn � P4 of cardinality |S| =
sge(Pn � P2). We distinguish four different cases.

Case 1: S does not contain any vertex from the set {(1, 2), (1, 3), (n, 2), (n, 3)}.
In this case, the first and the last column is either of type F or type G, which implies
that r1 + rn ≥ 4. Because fs(a, b, c, d) ≤ 3s2

4 when a, b, c, d ≥ 0, it holds

fs(a, b, c, d) − 4 ≤ 3 · (2k)2
4

− 4 = 3k2 − 4 < 3n for n = k2 − 1;

fs(a, b, c, d) − 4 ≤ 3 · (2k)2
4

− 4 = 3k2 − 4 < 3n for n = k2;

fs(a, b, c, d) − 4 ≤ 3 · (2k + 1)2

4
− 4 = 3k2 + 3k − 13

4
< 3n for n = k2 + k,

for s = sge(Pn � P2).
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Case 2: S contains at least three vertices from the second and the third row.
Because fs(a, b, c, d) ≤ 1

4 (3s
2 − 18) when a, b, c, d ≥ 0, b + c ≥ 3, it holds

fs(a, b, c, d) ≤ 1

4
(3(2k)2 − 18) = 3k2 − 18

4
< 3n for n = k2 − 1;

fs(a, b, c, d) ≤ 1

4
(3(2k)2 − 18) = 3k2 − 18

4
< 3n for n = k2;

fs(a, b, c, d) ≤ 1

4
(3(2k + 1)2 − 18) = 3k2 + 3k − 15

4
< 3n for n = k2 + k,

for s = sge(Pn � P2).

Case 3: S contains exactly two vertices from the set {(1, 2), (1, 3), (n, 2), (n, 3)} and
no other vertex from the second and the third row.
If we look at all types of the first and the last column such that the condition holds,
we see that r1 + rn is always at least 2. (Observe that type G can only be combined
with types F and H .) Because fs(a, b, c, d) ≤ 1

4 (3s
2 − 8) when b + c ≥ 2, and

a, b, c, d ≥ 0, it holds

fs(a, b, c, d) − 2 ≤ 1

4
(3(2k)2 − 8) − 2 = 3k2 − 4 < 3n for n = k2 − 1;

fs(a, b, c, d) − 2 ≤ 1

4
(3(2k)2 − 8) − 2 = 3k2 − 4 < 3n for n = k2;

fs(a, b, c, d) − 2 ≤ 1

4
(3(2k + 1)2 − 8) − 2 = 3k2 + 3k − 13

4
< 3n for n = k2 + k,

for s = sge(Pn � P2).

Case 4: S contains exactly one vertex from the set {(1, 2), (1, 3), (n, 2), (n, 3)} and
no other vertex from the second and the third row.
By symmetry, we can without loss of generality assume that (1, 3), (n, 2), (n, 3) /∈ S
and (1, 2) ∈ S. This implies that the first column is of type C , D, E , or H and the
last column is of type F or G. The sum of the number of redundant coverings for the
first and the last column is than at least 3. Because fs(a, b, c, d) ≤ 1

12 (9s
2 − 8) when

b + c ≥ 2 and a, b, c, d ≥ 0, it holds

fs(a, b, c, d) − 2 ≤ 1

12
(9(2k)2 − 8) − 3 = 3k2 − 11

3
< 3n for n = k2 − 1;

fs(a, b, c, d) − 2 ≤ 1

12
(9(2k)2 − 8) − 3 = (3k2 − 3) − 2

3
< 3n for n = k2;

fs(a, b, c, d) − 2 ≤ 1

12
(9(2k + 1)2 − 8) − 3 = (3k2 + 3k) − 37

12
< 3n for n = k2 + k,

for s = sge(Pn � P2).
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Since 3n is the number of all vertical edges in Pn � P4, it holds |S| > sge(Pn � P2)
in every case above. This is a contradiction with the assumption that S is a strong edge
geodetic set of Pn � P4 of cardinality sge(Pn � P2).

Because all four cases led us to a contradiction, we can conclude that for Pn � P4,
where n = k2−1, k2, or k2+k for some k ∈ N, there is no strong edge geodetic set of
size sge(Pn � P2). By Lemma 5.1, this means that sge(Pn � P4) = sge(Pn � P2)+ 1
when n = k2 − 1, k2, or k2 + k for some k ∈ N. In other words, sge(Pk2−1 � P4) =
sge(Pk2 � P4) = 2k + 1 and sge(Pk2+k � P4) = 2k + 2. Also, because k2 − 1 =
(k − 1)2 + 2(k − 1), we have sge(Pk2+2k � P4) = 2k + 3. 
�

6 Upper Bounds

In this section, we give two upper bounds on sge(Pn � Pm).

Proposition 6.1 If n ≥ 2 and m ≥ 2, then

sge(Pn � Pm) ≤ ⌈
2
√
n

⌉ +
⌈
2
√
m − 2

⌉
.

Proof First, we cover all the vertical edges in Pn � Pm by using Algorithm 1. This
algorithm uses

⌈
2
√
n

⌉
vertices from the first and the last row. We also, similarly as

in Pn � P2, use these vertices to cover the horizontal edges from the first and the last
row (Fig. 11a).

In second step, we look at the subgraph H of Pn � Pm without the first and the
last row (Fig. 11b). H is isomorphic to Pn � Pm−2. To cover all the horizontal edges
from H , we use Algorithm 1 on H rotated by 90 degrees, which is the same as
using Algorithm 1 on Pm−2 � Pn (Fig. 11c). This algorithm uses exactly

⌈
2
√
m − 2

⌉

vertices and covers all the horizontal edges from H , which are exactly the edges that
have not been covered in the first part of the proof. 
�

With a similar, but a bit more involved, idea as in the proof of Proposition 6.1, we
are going to prove the following proposition.

Proposition 6.2 If n ≥ 3 and m ≥ 3, then

sge(Pn � Pm) ≤
⌈
2
√
n + 2

⌉
+ ⌈

2
√
m

⌉ − 4.

Proof First, we will adjust Algorithm 1 such that it will use all the corner vertices,
that is (1, 1), (1,m), (n, 1), (n,m). We call the new algorithm, Algorithm 1*. For
n = k2 + h, where h = 0 or k + 1 ≤ h ≤ 2k, Algorithm 1 already uses all the corner
vertices. When n = k2 + h, 1 ≤ h ≤ k, redefine the vertex ak as ak = (n, 1). The
shortest paths between vertices ak and bi in Algorithm 1* are the ones that cover the
same vertical edges as shortest paths between vertices ak and bi in Algorithm 1. An
example output of this algorithm is shown in Fig. 12.

When n = k2, n = k2 + k−1, n = k2 + k, or n = k2 +2k for some k ∈ N, we will
cover the vertical edges in Pn � Pm in the following way. First, we use Algorithm 1*

123



3722 E. Zmazek

a b

c d

Fig. 11 Strong edge geodetic set for Pn � Pm with cardinality
⌈
2
√
n

⌉ + ⌈
2
√
m − 2

⌉
for n = 14 and

m = 8

with
⌈
2
√
n

⌉
vertices V1. To V1 we add c = ((k − 1)2 + k,m). We can then cover the

vertical edges covered by the (1, 1), (n,m)-geodesic and the (n, 1), (1,m)-geodesic
with (1, 1), c-geodesic and (n, 1), c-geodesic. In this way, we can remove shortest
paths between corner vertices (Fig. 13).

When n = k2 + h; k, h ∈ N; 1 ≤ h ≤ k − 2, we will adjust Algorithm 1* to cover
all the vertical edges with the same vertex set and without using the shortest paths
between vertices a1 and bk+1 and between vertices ak and b1. First, we notice that
Algorithm 1* does not use the unique ak ,bk+1-geodesic. If we add it, we can replace
the ah ,bk+1-geodesic with the one that covers all the vertical edges in the (k2 + 1)-th
column.We can then remove the a1,bk+1-geodesic. (It also covers the vertical edges in
the (k2+1)-th column.) Algorithm 1* also does not use the ak−1,bk+1-geodesic. If we
add the ak−1,bk+1-geodesic that covers all the vertical edges in the ((k − 1)2 + k)-th
column, we can remove the ak ,bk+1-geodesic.

When n = k2 + h, k, h ∈ N, k + 1 ≤ h ≤ 2k − 1, we can use a similar adjustment
as in the proof of Theorem 1.3 for n = k2 + h, k + 1 ≤ h ≤ 2k − 1, and remove
the shortest paths between vertices a1 and bk+1 and between vertices ak+1 and b1 that
cover the horizontal edges in the second and the third row.
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Fig. 12 Strong edge geodetic set of P42+2 � P5 from Algorithm 1*

→

→

Fig. 13 Covering vertical edges in Pn � Pm without using shortest paths between vertices (1, 1) and (n,m)

and between vertices (n, 1) and (1,m)

In the first part of the proof, we defined the algorithm that uses
⌈
2
√
n + 2

⌉
vertices

and covers all the vertical rows in Pn � Pm , while it uses neither the (1, 1),(n,m)-
geodesic, nor the (1,m),(n, 1)-geodesic.

To cover the horizontal edges, we use Algorithm 1* on rotated Pn � Pm by 90
degrees. This part will use

⌈
2
√
m

⌉
vertices, where four ((1, 1), (1,m), (n, 1), (n,m))

of them are already used in the first part. Because the first part does not use shortest
paths between these four vertices, the condition that between any two vertices we use
at most one shortest path still holds.

In the first and in the second part, we have covered all the edges in Pn � Pm , using
exactly

⌈
2
√
n + 2

⌉ + ⌈
2
√
m

⌉ − 4 vertices. 
�
If we combine all the results from this paper, we can see that the bound from

Proposition 6.1 is sharp when m = 2 and is not sharp for m = 3 and m = 4. The
bounds from Proposition 6.2 are sharp when m = 3 and n = k2 or k2 + k for some
integer k, as well as when m = 4 and n = k2, k2 + k or k2 + 2k for some integer k.

7 Conclusion

We determined the strong edge geodetic number for Cartesian products Pn � P2,
Pn � P3, and Pn � P4. To prove the corresponding upper bounds, we found strong
edge geodetic sets by adjusting the algorithm that covers all the vertical edges in
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graph Pn � Pm by using at most one shortest path between every pair from the set
of exactly

⌈
2
√
n

⌉
vertices. Using this algorithm, we also proved some general upper

bounds for sge(Pn � Pm) where n,m ≥ 3.
The ultimate goal would of course be to determine the strong edge geodetic number

for all graphs Pn � Pm . If this task will be too demanding, one could at least try to find
better general upper and lower bounds, in particular improving Lemma 2.1. It would
also be of interest to investigate the strong edge geodetic problem on other products
of graphs.
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