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Abstract
In this paper, we give some vanishing theorems for harmonic p-forms on complete
noncompact Riemannian manifolds satisfying a weighted p-Poincaré inequality with
nonnegative scalar curvature and under pointwise curvature pinching conditionswhich
are bounded from above by the weight function.
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1 Introduction

Let M be an n-dimensional complete noncompact orientable Riemannian manifold.
Let d be the exterior differential operator, so its dual operator δ is defined by

δ = (−1)n(p+1)+1 ∗ d∗,

where ∗ is the Hodge star operator acting on the space of smooth p-forms �p(M).
Then, the Hogde–Laplace–Beltrami operator � acting on the space of smooth p-
�p(M) is given by
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� = −(δd + dδ).

Recall that a p-form ω on a Riemannian manifold M is said to be harmonic if it sat-
isfies dω = 0 and δω = 0. It is an interesting and important problem in geometry and
topology to find sufficient conditions on a complete manifold M for the vanishing of
harmonic forms by its applications in the study of the structure of complete manifolds.
For instance, it is well known that the set of harmonic 1-forms has close relationship
with the connectedness at infinity of the manifold, in particular, with nonparabolic
end such as the topology at infinity of a complete Riemannian manifold or complete
orientable δ-stable minimal hypersurface in R

n+1 (see [3,13] and others).
We would like to emphasize that when M is compact, the space of harmonic p-

forms is isomorphic to its p-th de Rham cohomology group. This is true when M
is noncompact, but the theory of L2 harmonic forms still has some interesting appli-
cations. (We refer the reader to [5,6] for details.) For this reason, it is naturally to
study the L2 Hodge theory. Li and Wang [14,15] proved vanishing-type theorems of
L2 harmonic 1-forms when Ricci curvature of the manifold is bounded from below
in terms of the dimension and the first eigenvalue. After that, Lam [10] generalized
results of Li and Wang to manifolds satisfying a weighted Poincaré inequality by
assuming that the weight function is of sub-quadratic growth of the distance func-
tion. By using a weighted Poincaré inequality, Lin [17] established some vanishing
theorems under various pointwise or integral curvature conditions. Besides, Chen and
Sung [7], Dung and Sung [8] considered manifolds satisfying the following weighted
p-Poincaré inequality

∫

M

ρ(x)|ω|2 ≤
∫

M

|dω|2 + |δω|2 for ω ∈ �
p
0 (M),

in which the weight function is of exponential growth of the distance function and they
obtained splitting and vanishing theorems for L2 harmonic forms. Recently, Zhou [20]
obtained some vanishing and splitting theorems which are established with a much
weaker curvature condition and a lower bound of the first eigenvalue of the Laplacian.

It is worth to notice that the main tools to study the spaces of harmonic p-forms
are the Bochner–Weitzenböck-type formulas and refined Kato-type inequalities under
some conditions on the curvature operators of the manifolds such as conditions on
nonnegative scalar curvature, Weyl curvature tensor, Ricci curvature and curvature
tensor. We know that the major difficulty to compute the Bochner–Weitzenböck for-
mula of harmonic p-forms of higher degrees is the nontriviality of the Weyl tensor. If
the Weyl tensor vanishes, that is, M is locally conformally flat, there are many results
for the vanishing of harmonic forms (see [9,16,18] and others).

When the norm of the Weyl conformal tensor is too large compared to the positive
scalar curvature at each point, Lin [17] obtained a vanishing theorem which general-
izes Bourguignon’s result [1]. In addition, by assuming the norm of the Weyl tensor
satisfies certain integral pinching conditions, he obtained several vanishing theorems
for harmonic p-forms. His proof is based on a precise estimate of the curvature opera-
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tor which appears in the Bochner–Weitzenböck formula on p-forms and together with
Kato’s inequality and the condition on weighted Poincaré inequality.

Motivated by Lin’s work as well as by Zhou’s result, we will establish some results
on vanishing of L2 harmonic p-forms on complete Riemannian manifolds with non-
negative scalar curvature and satisfying a weighted p-Poincaré inequality.

Theorem 1.1 Let M be an n-dimensional complete noncompact Riemannian manifold
satisfying a weighted p-Poincaré inequality with weight function ρ(x) and the scalar
curvature R ≥ 0. Assume that the Weyl conformal curvature tensor W and the traceless
Ricci tensor E satisfy

|W |(x) + ap|E |(x) ≤ aρ(x)

for some constant a > 0. Then, Hp(L2(M)) = {0} for all 2 ≤ p ≤ n − 2 but p �= n
2 .

Here, we denote by Hp(L2(M)) the space of L2 harmonic p-forms on M and
ap := 2(n−1)|n−2p|

(p−1)
√

(n+1)(n−2)3
.

In the case of p = n
2 = m, we require the weight function ρ �≡ 0 or the scalar

curvature R �≡ 0.

Theorem 1.2 Let M be a 2m-dimensional complete noncompact Riemannian manifold
satisfying a weighted m-Poincaré inequality with weight function ρ(x) and the scalar
curvature R ≥ 0. Assume that the Weyl conformal curvature tensor W satisfies

|W |(x) ≤ aρ(x)

for some constant a > 0. Then, every L2 harmonic m-form is parallel. In particular,
if ρ > 0 or R > 0 at some point, then Hm(L2(M)) = {0}.

Similar to results of Vieira [19] and Zhou [20], in order to obtain the vanishing
theorem with the weaker curvature assumption, we need the certain lower bound of
the first eigenvalue of the Laplacian.

Theorem 1.3 Let M be an n-dimensional complete noncompact Riemannian manifold
satisfying a weighted p-Poincaré inequality with weight function ρ(x) and the scalar
curvature R ≥ 0. Assume that the Weyl conformal curvature tensor W and the traceless
Ricci tensor E satisfy

|W |(x) + ap|E |(x) ≤ aρ(x) + b

for two constants a, b > 0. Then, Hp(L2(M)) = {0} for all 2 ≤ p ≤ n − 2 provided

the first eigenvalue of the Laplacian satisfies λ1(M) >
bp(p−1)
2(1+kp)

√
(n+1)(n−2)

n(n−1) , where

kp := 1
max{p,n−p} .
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2 Preliminaries

Let M be a complete Riemannian manifold of dimension n and let Ri jkl and Wi jkl

denote, respectively, the components of the Riemannian curvature tensor and theWeyl
curvature tensor of M in local orthonormal frame fields. Then, we have the decompo-
sition as follows

Ri jkl = Wi jkl + 1

n − 2
(Rikδ jl − Rilδ jk + R jlδik − R jkδil)

− R

(n − 1)(n − 2)
(δikδ jl − δilδ jk),

where Rik and R denote the component of the Ricci tensor and the scalar curvature,
respectively. Let ω and θ be two p-forms on M ; a pointwise inner product is defined
by

〈ω, θ〉 =
n∑

i1,...,i p=1

ω(ei1 , . . . , ei p )θ(ei1 , . . . , ei p ),

where we omit the normalizing factor 1
p! and {e1, . . . , en} is an orthonormal basis of

T M with dual coframe {θ1, . . . , θn}. Take a representation of p-form ω in a local
coordinate system as

ω = 1

p!ωi1...i p dxi1 ∧ · · · ∧ dxi p

where repeated indices are contracted and summed and the indices 1 ≤ ii , i2, . . . , in ≤
n are distinct with each other. Then, the Bochner–Weitzenböck formula gives

1

2
�|ω|2 = |∇ω|2 + 〈

n∑
j,k=1

θk ie j R(e j , ek)ω, ω〉

= |∇ω|2 − 〈(dδ + δd)ω, ω〉 + pFp(ω), (2.1)

where

Fp(ω) = Ri jω
i i2...i pω

j
i2...i p

− p − 1

2
Ri jklω

i j i3...i pωkl
i3...i p

.

Recall that W : �2T M → �2T M can be interpreted as a trace-free symmetric
endomorphism defined by

W(ei ∧ e j ) = 1

2
Wi jklek ∧ el ,

and the norm of W is given by |W|2 = ∑
i< j,k<l W2

i jkl = 1
4 |W |2.
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Then, Lin [17] had an estimate for Fp as follows

Fp(ω) ≥ − p(p − 1)

2

√
(n + 1)(n − 2)

n(n − 1)
|W ||ω|2 − p|n − 2p|

n − 2

√
n − 1

n
|E ||ω|2

+ p(n − p)

n(n − 1)
R|ω|2,

where E is the traceless Ricci tensor, that is, Ei j = Ri j − R
n δi j . For ap =

2(n−1)|n−2p|
(p−1)

√
(n+1)(n−2)3

, the above inequality is rewritten as follows

Fp(ω) ≥ − p(p − 1)

2

√
(n + 1)(n − 2)

n(n − 1)
(|W | + ap|E |)|ω|2 + p(n − p)

n(n − 1)
R|ω|2.

(2.2)

For each harmonic p-form ω, from [2] we have the refined Kato’s inequality

|∇ω|2 − |∇|ω||2 ≥ kp|∇|ω||2 (2.3)

for all ω ∈ Hp(L2(M)), where kp = 1
max{p,n−p} .

Let now ρ(x) be a nontrivial nonnegative function on M . We say that M satisfies
a weighted Poincaré inequality if

∫
M

ρ(x)ψ2(x) ≤
∫

M
|∇ψ |2(x)

is valid for all ψ ∈ C∞
0 (M). This notion is a natural generalization of the positivity

of the bottom spectrum of the Laplacian. By variational principle, the first spectrum
λ1(M) > 0 implies the following Poincaré inequality, i.e.,

λ1(M)

∫
M

ψ2 ≤
∫

M
|∇ψ |2 for ψ ∈ C∞

0 (M).

Here, the first eigenvalue of the Laplacian λ1(M) is given by

λ1(M) = inf
ϕ∈C∞

0

∫
M |∇ϕ|2∫

M ϕ2
.

3 Proof of Theorem 1.1

Let ω be any harmonic p-form on M with finite L2 norm. Then, we have dω = 0 and
δω = 0. It follows from (2.1) that

1

2
�|ω|2 = |∇ω|2 + pFp(ω) − 〈(δd + dδ)ω, ω〉
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= |∇ω|2 + pFp(ω). (3.1)

By the assumption R ≥ 0, from (2.2) we have

Fp(ω) ≥ − p(p − 1)

2

√
(n + 1)(n − 2)

n(n − 1)
(|W | + ap|E |)|ω|2. (3.2)

Combining (3.1–3.2) with equality

1

2
�|ω|2 = |ω|�|ω| + |∇|ω||2,

and applying Kato’s inequality (2.3), we get

|ω|�|ω| ≥ |∇ω|2 − |∇|ω||2 + pFp(ω)

≥ kp|∇|ω||2 − p(p − 1)

2

√
(n + 1)(n − 2)

n(n − 1)
(|W | + ap|E |)|ω|2. (3.3)

Let ϕ be a smooth function with compact support on M . Multiplying both sides of
inequality (3.3) by ϕ2 and integrating over M gives

∫
M

ϕ2|ω|�|ω| ≥ kp

∫
M

ϕ2|∇|ω||2

− p(p − 1)

2

√
(n + 1)(n − 2)

n(n − 1)

∫

M

(|W | + ap|E |)ϕ2|ω|2. (3.4)

We now give the estimates for each term in (3.4).
Integrating by parts and using the Cauchy–Schwarz inequality, we get

∫
M

ϕ2|ω|�|ω| = −
∫

M

〈
∇(ϕ2|ω|),∇(|ω|)

〉

= −
∫

M

〈
ϕ2∇|ω| + 2ϕ|ω|∇ϕ,∇|ω|

〉

= −
∫

M

ϕ2|∇|ω||2 − 2
∫

M

ϕ|ω| 〈∇ϕ,∇|ω|〉

≤ −
∫

M

ϕ2|∇|ω||2 + 2
∫

M

ϕ|ω||∇ϕ| · |∇|ω||

≤ −
∫

M

ϕ2|∇|ω||2 +
⎛
⎝ε

∫

M

ϕ2|∇|ω||2 + 1

ε

∫

M

|ω|2|∇ϕ|2
⎞
⎠
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= (ε − 1)
∫

M

ϕ2|∇|ω||2 + 1

ε

∫

M

|ω|2|∇ϕ|2 (3.5)

for all ε > 0. Note that

|d(ϕω)|2 = |dϕ ∧ ω|2 = |dϕ|2|ω|2 − 〈dϕ, ω〉2 ,

|δ(ϕω)|2 = | − ie j ∇e j (ϕω)|2 = | − 〈dϕ, ω〉 + ϕδω|2 = | 〈dϕ, ω〉 |2. (3.6)

Then, by the assumption, we have

∫

M

(|W | + ap|E |)ϕ2|ω|2 ≤ a
∫

M

ρϕ2|ω|2

≤ a
∫

M

(|d(ϕω)|2 + |δ(ϕω)|2)

= a
∫

M

|∇ϕ|2|ω|2. (3.7)

Combining (3.4) with (3.5) and (3.7), we have

(
1 − ε + kp

) ∫

M

ϕ2|∇|ω||2 ≤
(
1

ε
+ a · p(p − 1)

2

√
(n + 1)(n − 2)

n(n − 1)

) ∫

M

|ω|2|∇ϕ|2.

Put Bε = 1 − ε + kp, Dε = 1
ε

+ a · p(p−1)
2

√
(n+1)(n−2)

n(n−1) . The above inequality is
rewritten in the following form

Bε

∫

M

ϕ2|∇|ω||2 ≤ Dε

∫

M

|ω|2|∇ϕ|2. (3.8)

Fix a point x0 ∈ M and let ζ(x) be the geodesic distance on M from x0 to x . Let
us choose a nonnegative smooth function ψ such that

ψ =
{
1 if ζ(x) ≤ r

0 if 2r ≤ ζ(x)

and |∇ψ | ≤ 2
r . Then, inequality (3.8) implies

Bε

∫
Bx0 (r)

|∇|ω||2 ≤ 4Dε

r2

∫
M

|ω|2.
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Letting r → ∞ and then letting ε → 0, we deduce that

∫
M

|∇|ω||2 ≤ 0, i.e., ∇|ω| = 0. (3.9)

It follows that |ω| is constant on M .
By substituting the above cutoff function ψ into (3.7), we also have

∫

Bx0 (r)

(|W | + ap|E |)|ω|2 ≤ 4a

r2

∫

M

|ω|2.

By letting r → ∞, we get

(|W | + ap|E |)|ω|2 ≡ 0. (3.10)

Assume that |ω| is not identically zero on M . This implies that vol(M) < +∞ since
ω ∈ Hp(L2(M)). By the assumption p �= n

2 , we get ap > 0. It follows from (3.10)
that |W | + ap|E | ≡ 0, and hence |W | = |E | ≡ 0 on M . Therefore, M is Einstein and
locally conformally flat. According to the decomposition of the Riemannian curvature
tensor, a locally conformally flat manifold has constant sectional curvature if and only
if it is Einstein. Therefore, M is a space form. Note that M is complete noncompact
with R ≥ 0. So, by the Hopf classification theorem (see [11, Theorem 12.4]), M
is a flat space form. Then, by [4] or [12], vol(Bx0(r)) ≥ Crn with some constant
C > 0, which implies vol(M) = +∞. This is a contradiction. Therefore, we conclude
Hp(L2(M)) = {0}. The proof of Theorem 1.1 is completed. ��

4 Proof of Theorem 1.2

Let ω be any harmonic m-form on M with finite L2 norm. By the same argument as
in the proof of Theorem 1.1, we also have inequality (3.9), that is ∇|ω| ≡ 0, i.e., |ω|
is constant on M . Since p = n

2 = m, we have ap = 0. Then, equality (3.10) implies
|W | ≡ 0 on M .

By substituting |W | ≡ 0 into (2.2), we get pFp(ω) ≥ p(n−p)
n(n−1) R|ω|2. Then, by (3.1),

we obtain

1

2
�|ω|2 ≥ |∇ω|2 + p(n − p)

n(n − 1)
R|ω|2.

This implies that ∇ω ≡ 0 and R|ω| ≡ 0. Hence, we can conclude that ω is parallel.
If R > 0 at some point, immediately ω ≡ 0.
We assume that ρ > 0 at some point. Since M satisfies the weighted p-Poincaré

inequality and using (3.6), we get

∫

M

ρϕ2|ω|2 ≤
∫

M

(|d(ϕω)|2 + |δ(ϕω)|2)
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=
∫

M

|∇ϕ|2|ω|2

≤ 2

r2

∫

M

|ω|2,

where the cutoff function ϕ is given as in the proof of Theorem 1.1. By letting r → ∞,
we obtain

∫

M

ρ|ω|2 ≤ 0.

If |ω| is not identically zero, then

∫

M

ρ ≤ 0.

On the other hand, by the condition of the theorem, we have ρ ≥ 0. It implies that
ρ ≡ 0, which contradicts the assumption. Therefore, ω must be a zero constant on M .
So we can conclude Hm(L2(M)) = {0}. The proof of Theorem 1.2 is completed. ��

5 Proof of Theorem 1.3

By the assumption and similar to inequality (3.7), we get

∫

M

(|W | + ap|E |)ϕ2|ω|2 ≤
∫

M

(
aρϕ2|ω|2 + bϕ2|ω|2

)

≤ a
∫

M

|∇ϕ|2|ω|2 + b
∫

M

ϕ2|ω|2.

Combining this with (3.4) and (3.5), we have

(
1 − ε + kp

) ∫

M

ϕ2|∇|ω||2 ≤
(
1

ε
+ a · p(p − 1)

2

√
(n + 1)(n − 2)

n(n − 1)

) ∫

M

|ω|2|∇ϕ|2

+ b · p(p − 1)

2

√
(n + 1)(n − 2)

n(n − 1)

∫

M

ϕ2|ω|2.
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Put Bε = 1−ε+kp, Dε = 1
ε
+a · p(p−1)

2

√
(n+1)(n−2)

n(n−1) and E = b · p(p−1)
2

√
(n+1)(n−2)

n(n−1) .
Then, we have

Bε

∫

M

ϕ2|∇|ω||2 ≤ Dε

∫

M

|ω|2|∇ϕ|2 + E
∫

M

ϕ2|ω|2. (5.1)

By taking the cutoff function ϕ as in the proof of Theorem 1.1 and substituting it into
inequality (5.1), we obtain

Bε

∫
Bx0 (r)

|∇|ω||2 ≤ 4Dε

r2

∫
M

|ω|2 + E
∫

M

|ω|2.

By letting r → ∞ and then letting ε → 0, we get

∫
M

|∇|ω||2 ≤ E

B

∫

M

|ω|2, (5.2)

where B := limε→0Bε = 1 + kp.

By the assumption, we have λ1(M) >
bp(p−1)
2(1+kp)

√
(n+1)(n−2)

n(n−1) = E
B > 0. By varia-

tional principle, we get

λ1(M)

∫

M

ϕ2 ≤
∫

M

|∇ϕ|2 for any ϕ ∈ C∞
0 (M).

Assume |ω| �≡ 0 on M . Then, by taking the cutoff function ψ as in the proof of
Theorem 1.1 again and using the Cauchy–Schwarz inequality, we have

λ1(M)

∫

M

ψ2|ω|2 ≤
∫

M

|∇(ψ |ω|)|2

=
∫

M

ψ2|∇|ω||2 +
∫

M

|ω|2|∇ψ |2 + 2
∫

M

〈ψ∇|ω|, |ω|∇ψ〉

≤ (1 + ε)

∫

M

ψ2|∇|ω||2 + (
1 + 1

ε

) ∫

M

|ω|2|∇ψ |2

≤ (1 + ε)

∫

M

ψ2|∇|ω||2 + (
1 + 1

ε

) 2

r2

∫

M

|ω|2

for any ε > 0. By letting r → ∞ and then ε → 0, we obtain

λ1(M)

∫

M

|ω|2 ≤
∫

M

|∇|ω||2. (5.3)
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Combining (5.2) with (5.3), we have λ1(M) ≤ E
B . This is a contradiction to the

assumption. Hence ω ≡ 0 on M, i.e., Hp(L2(M)) = {0}. The proof of Theorem 1.3
is completed. ��
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