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Abstract
We consider a nonlinear Dirichlet problem driven by a nonhomogeneous differential
operator. The reaction has a parametric concave term and negative sublinear pertur-
bation. In contrast to the case of a positive perturbation, we show that now for all big
values of the parameter λ > 0, we have at least two positive solutions which do not
vanish in the domain. In the process we prove a nonlinear maximum principle which
is of independent interest.
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1 Introduction

Let � ⊆ R
N be a bounded domain with a C2-boundary ∂�. In this paper we study

the following nonhomogeneous parametric Dirichlet problem:

{−diva(Du(z)) = λu(z)q−1 − f (z, u(z)) in�,

u|∂� = 0, λ > 0, u > 0.
(pλ)

In this paper the map a : R
N → R

N involved in the differential operator, is
continuous and strictly monotone, thus maximal monotone too. It exhibits balanced
(p-1)-growth and 1 < q < p. In the reaction (right-hand side) we have a parametric
“concave” term x → λxq−1 (since q < p) and there is a negative perturbation
− f (z, x) which is a Carathéodory function (that is, for all x ∈ R, z → f (z, x) is
measurable and for a.a.z ∈ �, x → f (z, x) is continuous). We assume that f (z, ·) is
(q − 1) sublinear as x → 0+ and as x → +∞. A typical case is when f (x) = xτ−1

for all x ≥ 0 with 1 < τ < q. It is well known that if this perturbation enters in
the reaction with a positive sign, then the problem has a unique positive solution.
This was proved first by Brezis–Oswald [3] for problems driven by the Laplacian and
was extended by Diaz–Saa [5] to equations driven by the Dirichlet p-Laplacian and
by Fragnelli–Mugnal–Papageorgiou [7] for equations driven by a nonhomogeneous
differential operator with Robin boundary condition. The case where the perturbation
enters with a negative sign has not been studied. We show that in this case, uniqueness
of the solution fails and for big values of the parameter λ > 0, we have at least two
positive smooth solutions. However, these solutions do not belong in the interior of
the positive cone of C1

0(�) = {u ∈ C1(�) : u|∂� = 0}, since the nonlinear Hopf’s
lemma cannot be used (see Pucci–Serrin [15], pp. 111, 120). Nevertheless, in Sect. 3,
we prove a maximum principle which shows that our solutions are strictly positive in
�. That result is of independent interest and can be useful in different contexts.

2 Mathematical Background Hypotheses

The analysis of problem (pλ) will use the Sobolev space W 1,p
0 (�) and the Banach

space C1
0(�). By ‖ · ‖ we denote the norm of the Sobolev space. On account of

the Poincaré inequality, we have ‖u‖ = ‖Du‖p for all u ∈ W 1,p
0 (�). The Banach

space C1
0(�) = {u ∈ C1(�) : u|∂� = 0} is ordered with positive (order) cone

C+ = {u ∈ C1
0(�) : u(z) ≥ 0 for all z ∈ �}. This cone has a nonempty interior given

by intC+ = {u ∈ C+ : u(z) > 0 for all z ∈ �,
∂u

∂n
|∂� < 0} with n(·) being the

outward unit norm on ∂�.
If v, u : � → R are measurable functions such that v(z) ≤ u(z) for a.a z ∈ �,

then by [v, u] we denote the order interval in W 1,p
0 (�) defined by

[v, u] = {h ∈ W 1,p
0 (�) : v(z) ≤ h(z) ≤ u(z) for a.a z ∈ �}.
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For x ∈ R, let x± = max{±x, 0}. Then, given u ∈ W 1,p
0 (�), we set u±(z) = u(z)±

for all z ∈ �. We know that u± ∈ W 1,p
0 (�), u = u+ − u− and |u| = u+ + u−. By

| · |N we will denote the Lebesgue measure on R
N . Also if X is a Banach space and

ϕ ∈ C1(X), then Kϕ = {u ∈ X : ϕ′(u) = 0}.
Next, we will introduce the hypotheses on the map a(·). So, let θ ∈ C1(0,∞) be

such that

0 < ĉ ≤ θ ′(t)t
θ(t)

≤ c0 and c1t
p−1 ≤ θ(t) ≤ c2[t s−1 + t p−1]

for all t > 0 and some c1, c2 > 0, 1 < s < p. (1)

Then, the hypotheses on the map a(·) are the following:
H0: a(y) = a0(|y|)y for all y ∈ R

N , with a0(t) > 0 for all t > 0 and

(i) a0 ∈ C1(0,∞), t → a0(t)t is strictly increasing, a0(t)t → 0+ as t → 0+ and if
l(t) = a0(t)t , then l ′(t)t ≥ c∗l(t) for some c∗ > 0 all t > 0;

(ii) |∇a(y)| ≤ c3
θ(|y|)
|y| for all y ∈ R

N\{0}, some c3 > 0;

(iii) θ(|y|)
|y| |ξ |2 ≤ (∇α(y)ξ, ξ)RN for all y ∈ R

N\{0} and all ξ ∈ R
N .

Remark 1 These hypotheses on a(·) are dictated by the nonlinear regularity theory of
Lieberman [11]. Also, they lead to the nonlinear maximum principle which we prove
in the next section. The hypotheses are not restrictive and include many differential
operators of interest (see the Examples below).

From these hypotheses, we see that the primitive function t → G0(t) is strictly
increasing and strictly convex. We set G(y) = G0(|y|) for all y ∈ R

N . Then, the
function G(·) is convex, differentiable and G(0) = 0. Moreover, using the chain rule,
we have

∇G(y) = G ′
0(|y|)

y

|y| = a0(|y|)y = a(y) for all y ∈ R
N\{0},∇G(0) = 0.

Therefore, G(·) is the primitive of a(·). Since G(·) is convex and G(0) = 0, from
the properties of convex functions we have

G(y) ≤ (a(y), y)RN for all y ∈ R
N . (2)

From (1) and hypotheses H0, we infer the following properties for the map a(·)
(see Papageorgiou–Rădulescu [12]).

Lemma 1 If hypotheses H0 hold, then

(a) y → a(y) is continuous and strictly monotone (thus maximal monotone too);
(b) |a(y)| ≤ c4[|y|s−1 + |y|p−1] for some c4 > 0, all y ∈ R

N ;
(c) c1

p−1 |y|p ≤ (a(y), y)RN for all y ∈ R
N .

This lemma and (2) lead to the following growth restrictions for the primitive G(·).
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3972 Z. Liu, N. S. Papageorgiou

Corollary 2 If hypotheses H0(i), (i i), (i i i) hold,
then c1

p(p−1) |y|p ≤ G(y) ≤ c5[|y|s−1 + |y|p−1] for some c5 > 0, all

y ∈ R
N .

Hypotheses H0 provide a broad framework in which we can fit many differential
operators of interest.

Examples:

(a) a(y) = |y|p−2y with 1 < p < ∞.

This map corresponds to the p-Laplace differential operator defined by


pu = div(|Du|p−2Du) for all u ∈ W 1,p
0 (�).

(b) a(y) = |y|p−2y + |y|q−2y with 1 < q < p < ∞.

This map corresponds to the (p, q)-Laplacian defined by


pu + 
qu for all u ∈ W 1,p
0 (�).

Such operators arise in many mathematical models of physical processes. We
mention the works of Benci–D’Avenia–Fortunato–Pisani [2] (quantum physics),
Cherfils–Ilyasov [4] (reaction–diffusion systems) and Bahrauni–Rădulescu–Repovš
[1] (transonic flow problems). Some recent results in this direction can be found in
the works of Goodrich–Ragusa [8],Goodrich–Ragusa–Scapellato [9], Papageorgiou–
Scapellato [13] and Papageorgiou–Zhang [14].

(c) a(y) = [1 + |y|2] p−2
2 y with 1 < p < ∞.

This map corresponds to the generalized p-mean curvature differential operator
defined by

div(1 + |Du|2) p−2
2 Du for all u ∈ W 1,p

0 (�).

(d) a(y) = [1 + |y|2
(1+|y|2p)1/2 ]|y|p−2y with 1 < p < ∞.

Thismapcorresponds to the followingdifferential operatorwhich arises in problems
of plasticity theory

div

((
1 + |Du|2

(1 + |Du|2p)1/2
)

|Du|p−2Du

)
for all u ∈ W 1,p

0 (�).

Let A : W 1,p
0 (�) → W 1,p

0 (�)∗ = W−1,p′
(�) ( 1p + 1

p′ = 1) be the nonlinear
operator defined by

〈A(u), h〉 =
∫

�

(a(Du), Dh)RN dz for all u, h ∈ W 1,p
0 (�).
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This operator is continuous and strictly monotone, thus maximal monotone too.
Moreover, if we consider the integral functional j : W 1,p

0 (�) → R defined by

j(u) =
∫

�

G(Du)dz for all u ∈ W 1,p
0 (�),

then j ∈ C1(W 1,p
0 (�)) and j ′(u) = A(u) for all u ∈ W 1,p

0 (�).
Now we introduce our hypotheses on the perturbation f (z, x):

H1: f : � × R → R is a Carathéodory function such that f (z, 0) = 0 for a.a.z ∈ �

and

(i) 0 ≤ f (z, x) ≤ a(z)[1 + x p−1] for a.a.z ∈ �, all x ≥ 0, with a ∈ L∞(�);

(ii) lim
x→+∞

f (z, x)

xq−1 = 0 uniformly for a.a. z ∈ � ;

(iii) lim
x→0+

f (z, x)

xq−1 = +∞ uniformly for a.a. z ∈ � ;

(iv) there exists μ ∈ (1, q) such that for all ρ > 0, we can find ξ̂ λ
ρ > 0 for which we

have λxq−1 − f (z, x) + ξ̂ λ
ρ x

μ−1 ≥ 0 for a.a.z ∈ �, all x ∈ [0, ρ].
Remark 2 In hypothesis H1(iv) we need μ ∈ (1, q). This is a consequence of hypoth-
esis H1(i i i) and of the fact that the perturbation f (z, x) enters in the reaction with a
negative sign. However, this prohibits us from having a nonlinear Hopf’s lemma (see
Pucci–Serrin [15], p. 120), since hypothesis (1.1.5) in [15] is no longer true. Therefore,
we see that the negative sign in the perturbation changes the geometry and is a source
of difficulties. Nevertheless, in the next section we prove a maximum principle which
shows that the positive solutions of problem (pλ) do not vanish in �. This maximum
principle extends Theorem 1.1 of Zhang [16].

3 AMaximum Principle

In this section we prove a nonlinear maximum principle. Our result was inspired by the
work of Zhang [16] (Theorem 1.1) and we extend the result of [16]. The hypotheses
of Zhang [16] on a(·) are more restrictive and do not cover the important case of the
(p, q)-Laplacian (see (12) in [16]). The result is of independent interest.

Proposition 3 If u ∈ C+\{0}, ξ̂ > 0 and μ ∈ (1, q) satisfy

−diva(Du) + ξ̂uμ−1 ≥ 0 in �,

then u(z) > 0 for all z ∈ �.

Proof We argue by contradiction. So, suppose we can find z1, z2 ∈ � and ρ > 0 such
that B2ρ(z2) ⊆ � (B2ρ(z2) = {z ∈ � : |z − z2| < 2ρ}), z1 ∈ ∂B2ρ(z1), u(z1) =
0, u|B2ρ(z2) > 0. By varying z2 with z1 fixed, we see that we can choose ρ > 0 small.

Since u(z1) = 0 = min
�

u and z1 ∈ �, we have

Du(z1) = 0. (3)
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Let mρ = min[u(z) : z ∈ ∂Bρ(z2)] > 0. As ρ → 0+, z2 converges to z1 (which
we fixed) and so mρ → 0+ and mρ

ρ
→ 0+ (by L’Hopital’s rule).

We introduce the annulus (ring) R ⊆ � defined by

R = {z ∈ � : ρ < |z − z2| < 2ρ}.

We set

η = − ln
mρ

ρ
+ N − 1

ρ
> 0 (for ρ > 0 small). (4)

We consider the function

vρ(t) = mρ[ρ ηt
c∗ − 1]

ρ
ηρ

c∗ − 1
for all 0 ≤ t ≤ ρ.

Since mρη → 0+ as ρ → 0+, for ρ ∈ (0, 1) small we have

0 ≤ vρ(t) < 1 and 0 < v′
ρ(t) < 1 for all t ∈ [0, ρ], (5)

v′′
ρ(t) = η

c∗ v′
ρ(t) for all t ∈ [0, ρ]. (6)

To simplify things, we may assume that z2 = 0. Let r = |z|, s = 2ρ − r . For
s ∈ [0, ρ] and r ∈ [ρ, 2ρ], we define

y(r) = vρ(2ρ − r) = vρ(s),

⇒ y′(r) = −v′
ρ(s) and y′′(r) = v′′

ρ(s).

We set y(z) = y(r) for all z ∈ � with |z| = r . Then, y ∈ C2(R) and using the
function l(·) from hypothesis H0(i), we have

diva(Dy) = l ′(v′
ρ(s))v′′

ρ(s) − N − 1

r
l(v′

ρ(s))

= η

c∗ l
′(v′

ρ(s))v′
ρ(s) − N − 1

r
l(v′

ρ(s)) (see (6))

≥ [η − N − 1

r
]l(v′

ρ(s)) (see hypothesis H0(i))

≥ (− ln
mρ

ρ
)l(v′

ρ(s)) (see (4) and recall r ≥ ρ)

≥ (− ln
mρ

ρ
)

c1
p − 1

v′
ρ(s)p−1 (see Lemma 1)

≥ ξ̂ v′(s)μ−1 for ρ ∈ (0, 1) small

(note that v′
ρ(0) > 0 and v′

ρ(·) is increasing, see (6), (5)),

⇒ diva(Dy) + ξ̂ yμ−1 ≤ 0 in R. (7)
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Note that y ≤ u on ∂R and by hypothesis

− diva(Du) + ξ̂uμ−1 ≥ 0 in R. (8)

Then, from (7), (8) and Theorem 3.4.1, p. 61, of Pucci–Serrin [15] (the weak
comparison principle), we have

y(z) ≤ u(z) for all z ∈ R.

Then, we have

lim
τ→0

y(z1 + τ(z2 − z1)) − y(z1)

τ
≤ lim

τ→0

u(z1 + τ(z2 − z1)) − u(z1)

τ

(recall u(z1) = 0 and y ≥ 0)

⇒ 0 < v′(0) ≤ Du(z1) = 0, a contradiction.

So, we conclude that u(z) > 0 for all z ∈ �. ��

4 Positive Solutions

In this section we show that for λ > 0 big, problem (pλ) admits a pair of positive
solutions. We start by producing one positive solution.

Proposition 4 If hypotheses H0, H1 hold, then for all λ > 0 big problem (pλ) has a
positive solution uλ ∈ C+\{0}, 0 < uλ(z) for all z ∈ �.

Proof Let ϕλ : W 1,p
0 (�) → R be the C1-functional defined by

ϕλ(u) =
∫

�

G(Du)dz +
∫

�

F(z, u+)dz − λ

q
‖u+‖qq for all u ∈ W 1,p

0 (�).

Sinceq < p, usingCorollary 2,we see thatϕλ(·) is coercive.Also, from theSobolev
embedding theorem, we see that ϕλ(·) is sequentially weakly lower semicontinuous.
So, by the Weierstrass–Tonelli theorem, we can find uλ ∈ W 1,p

0 (�) such that

ϕλ(uλ) = inf[ϕλ(u) : u ∈ W 1,p
0 (�)]. (9)

Let �0 ⊆ � be open subset such that �0 ⊆ �. Consider a function y ∈ C1
c (�)

such that

0 ≤ y ≤ 1 and y|�0
≡ 1

(such a function is called “cut-off function” and is obtained by mollification, see, for
example, Evans [6], p. 310). Hypotheses H1(i)(i i) imply that given ε > 0, we can
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3976 Z. Liu, N. S. Papageorgiou

find c6 = c6(ε) > 0 such that

0 ≤ F(z, x) ≤ ε

q
xq + c6 for a.a. z ∈ �, all x ≥ 0. (10)

Then, we have

ϕλ(y) ≤
∫

�

G(Dy)dz − λ − ε

q
‖y‖qq + c6|�|N (see (10))

≤ c7 − λ − ε

q

∫
�0

yqdz for some c7 > 0 (see Corollary 2).

Therefore, we can find λ∗ > ε such that

c7 <
λ − ε

q

∫
�0

yqdz for all λ > λ∗,

⇒ ϕλ(y) < 0,

⇒ ϕλ(uλ) < 0 = ϕλ(0) (see (9)),

⇒ uλ �= 0.

From (9) we have

ϕ′
λ(uλ) = 0

⇒ 〈A(uλ), h〉 =
∫

�

[λu+
λ − f (z, u+

λ )]hdz for all h ∈ W 1,P
0 (�). (11)

In (11) we choose h = −u−
λ ∈ W 1,P

0 (�), and using Lemma 1 we obtain

c1
p − 1

‖Du−
λ ‖p

p ≤ 0, ⇒ uλ ≥ 0, uλ �= 0.

So,uλ is a positive solutionof (pλ). InvokingTheorem7.1, p. 286ofLadyzhenskaya–
Uraltseva [10], we have that uλ ∈ L∞(�). Then, the nonlinear regularity theory of
Lieberman [11] implies that uλ ∈ C+\{0}. Let ρ = ‖uλ‖∞ and let ξ̂ λ

ρ > 0 be as
postulated by hypothesis H1(iv). We have

− diva(Duλ) + ξ̂ λ
ρ u

μ−1
λ ≥ 0 in �, ⇒ 0 < uλ(z) for all z ∈ �(see Proposition 3).

��
Using this first solution, we can produce a second one.

Proposition 5 If hypotheses H0, H1 hold and λ > λ∗, then problem (pλ) has a second
positive solution ûλ ∈ C+\{0}, ûλ �= uλ and 0 < ûλ(z) for all z ∈ �.
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Proof Let kλ : � × R → R be the Carathéodory function defined by

kλ(z, x) =
{

λ(x+)q−1 − f (z, x+) if x ≤ uλ(z)
λuλ(z)q−1 − f (z, uλ(z)) if uλ(z) < x .

(12)

We set Kλ(z, x) = ∫ x
0 kλ(z, s)ds and consider the C1-functional ϕ̂λ : W 1,p

0 (�) →
R defined by

ϕ̂λ(u) =
∫

�

G(Du)dz −
∫

�

Kλ(z, u)dz for all u ∈ W 1,p
0 (�).

Claim 1: Kϕ̂λ ⊆ [0, u] ∩ C+.
Let u ∈ Kϕ̂λ . We have

ϕ̂′
λ(u) = 0,

⇒ 〈A(u), h〉 =
∫

�

Kλ(z, u)hdz for all h ∈ W 1,p
0 (�). (13)

In (13) we use the test function h = −u− ∈ W 1,p
0 (�). Then, from (12) and Lemma

1, we have

c1
p − 1

‖Du−‖p
p ≤ 0, ⇒ u ≥ 0.

Next, we test (13) with h = [u − uλ]+ ∈ W 1,p
0 (�). We obtain

〈A(u), (u − uλ)
+〉 =

∫
�

[λuq−1
λ − f (z, uλ)](u − uλ)

+dz (see (12))

= 〈A(uλ), (u − uλ)
+〉 (since uλ is a solution of (pλ)),

⇒ u ≤ ûλ (from the monotonicity of A).

We have proved that u ∈ [0, uλ]. Moreover, the nonlinear regularity theory of
Lieberman [11] implies that u ∈ C+. Therefore, we conclude that Kϕ̂λ ⊆ [0, u]∩C+.
This proves Claim 1.
Claim 2: We can find ρ0 > 0 such that

0 < m0 ≤ ϕ̂+
λ (u) for all u ∈ W 1,p

0 (�), ‖u‖ = ρ0.

Hypotheses H1(i), (i i i) imply that given η > λ, we can find c8 = c8(η) > 0 such
that

f (z, x) ≥ ηxq−1 − c8x
p−1 for a.a.z ∈ �, all x ≥ 0. (14)

It follows that

λxq−1 − f (z, x) ≤ c8x
p−1 − (η − λ)xq−1 for a.a.z ∈ �, all x ≥ 0.
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Since q < p and η > λ, we see that we can find δ ∈ (0, 1) small such that

λxq−1 − f (z, x) ≤ 0 for a.a.z ∈ �, all 0 ≤ x ≤ δ, (15)

⇒ λ

q
xq − F(z, x) ≤ 0 for a.a.z ∈ �, all 0 ≤ x ≤ δ. (16)

Let u ∈ W 1,p
0 (�) and introduce the set �u

δ = {z ∈ � : u(z) > δ}. Using Corollary
2, we have

ϕ̂λ(u) ≥ c1
p(p − 1)

‖Du‖p
p −

∫
�

Kλ(z, u)dz. (17)

We estimate the integral in the right-hand side of (17). We have

∫
�

Kλ(z, u)dz =
∫

�\�u
δ

Kλ(z, u)dz +
∫

�u
δ

Kλ(z, u)dz. (18)

We examine the first integral in the right-hand side of (18). Then,

∫
�\�u

δ

Kλ(z, u)dz =
∫

(�\�u
δ )∩{u≤uλ}

Kλ(z, u)dz +
∫

(�\�u
δ )∩{uλ<u}

Kλ(z, u)dz (19)

Using (12), we see that

∫
(�\�u

δ )∩{u≤uλ}
Kλ(z, u)dz =

∫
(�\�u

δ )∩{u≤uλ}

[
λ

q
(u+)q − F(z, u+)

]
dz ≤ 0 (see (16)).

(20)
Similarly, using once again (12), we obtain

∫
(�\�u

δ )∩{uλ<u}
Kλ(z, u)dz =

∫
(�\�u

δ )∩{uλ<u}

[
λuq−1

λ − f (z, uλ)
]
(u − uλ)dz

≤
∫

(�\�u
δ )∩{uλ<u}

[
(λ − η)uq−1

λ + c8u
p−1
λ

]
(u − uλ)dz (see (14))

≤ c8

∫
(�\�u

δ )∩{uλ<u}
u pdz (since η > λ). (21)

Returning to (19) and using (20) and (21), we obtain

∫
�\�u

δ

Kλ(z, u)dz ≤ c8

∫
(�\�u

δ )∩{uλ<u}
u pdz.

Since uλ ∈ C+\{0}, from the absolute continuity of the Lebesgue integral, we see
that given ε > 0, we can choose δ ∈ (0, 1) even smaller if necessary so that

∫
�\�u

δ

Kλ(z, u)dz ≤ ε. (22)
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Next, we estimate the second integral in the right-hand side of (18). Using (12), we
have

∫
�u

δ

Kλ(z, u)dz =
∫

�u
δ ∩{u≤uλ}

[
λ

q
(u+)q − F(z, u+)

]
dz

+
∫

�u
δ ∩{uλ<u}

[
λuq−1

λ − f (z, uλ)
]
(u − uλ)dz. (23)

Since F ≥ 0 (see hypothesis H1(i)), we have

∫
�u

δ ∩{u≤uλ}

[
λ

q
(u+)q − F(z, u+)

]
dz ≤ λ

q

∫
�u

δ ∩{u≤uλ}
(u+)qdz. (24)

Similarly, since f ≥ 0, we have

∫
�u

δ ∩{uλ<u}

[
λuq−1

λ − f (z, u)
]
(u − uλ)dz ≤ λ

∫
�u

δ ∩{uλ<u}
uqdz. (25)

We return to (23) and use (24) and (25). We obtain

∫
�u

δ

Kλ(z, u)dz ≤ λ

∫
�u

δ

|u|qdz

≤ λc9

∫
�u

δ

|u|pdz

for some c9 > 0 (since δ > 0 and q < p)

≤ λc9|�u
δ |1−

p
r

N

[∫
�u

δ

|u|rdz
]p/r

with p < r < p∗ (by Hölder’s inequality )

= λc9|�u
δ |1−

p
r

N ‖u‖p
r

≤ λc10|�u
δ |1−

p
r

N ‖u‖p (26)

for some c10 > 0 (since W 1,p
0 (�) ↪→ Lr (�)).

We return to (18) and use (22) and (26). Then,

∫
�

Kλ(z, u)dz ≤ ε + λc10|�u
δ |1−

p
r

N ‖u‖p. (27)

From (17) and (27), we have

ϕ̂λ(u) ≥
[

c1
p(p − 1)

− λc10|�u
δ |1−

p
r

N

]
‖u‖p − ε.
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If ‖u‖ → 0, then |u(z)| → 0 for a.a.z ∈ � and |�u
δ |N → 0 uniformly for δ ∈ (0, 1)

small. So, we can find ρ0 ∈ (0, ‖uλ‖) small such that if ‖u‖ = ρ0, then

λc10|�u
δ |1−

p
r

N ≤ c1
2p(p − 1)

.

Hence, for ‖u‖ = ρ0, we have

ϕ̂λ(u) ≥ c1
2p(p − 1)

ρ
p
0 − ε.

Recall that ε > 0 is arbitrary. So, we choose ε ∈ (0, 1) small so that

ϕ̂λ(u) ≥ m0 > 0 for all ‖u‖ = ρ0. (28)

This proves Claim 2.
Consider the set Bρ0 = {u ∈ W 1,p

0 (�) : ‖u‖ ≤ ρ0}. From the reflexivity

of W 1,p
0 (�) and the Eberlein–Smulian theorem, we have that Bρ0 is sequentially

weakly compact. Also ϕ̂λ(·) is sequentially weakly lower semicontinuous. So, by the
Weierstrass–Tonelli theorem, we can find ûλ ∈ Bρ0 such that

ϕ̂λ(̂uλ) = inf[ϕ̂λ(u) : u ∈ Bρ0 ].

From (12), for λ > 0 big, we have

ϕ̂λ(̂uλ) < 0 = ϕ̂λ(0),

⇒ 0 < ‖ûλ‖ < ρ0 (see (28))

⇒ ûλ �= uλ (recall ρ0 < ‖uλ‖) and ûλ �= 0.

Moreover, from Claim 1 and (12), we have that

ûλ ∈ C+\{0} is a positive solution of (pλ)

Finally, as for uλ, using Proposition 3, we have 0 < ûλ(z) for all z ∈ �. ��
So, summarizing the situation for problem (pλ), we can state the following multi-

plicity theorem for problem (pλ).

Theorem 6 If hypotheses H0, H1 hold, then for all λ > 0 big problem (pλ) has at
least two positive solutions uλ, ûλ ∈ C+\{0}, uλ �= ûλ and 0 < uλ(z), ûλ(z) for all
z ∈ �.

Remark 3 If for a.a.z ∈ �, the quotient x → f (z,x)
x p−1 is strictly decreasing on

◦
R+ =

(0,∞), then if the reaction is λxq−1 + f (z, x), the problem has a unique positive
solution. However, if the reaction is λxq−1 − f (z, x) as in (pλ), then we no longer
have uniqueness of the positive solution and in fact for λ > 0 big enough we can
guarantee the existence of at least two positive smooth solutions which do not vanish
in �.
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