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Abstract
This paper investigates a single server queueing system with an infinite waiting space
in which customers are arrived according to renewal process and are served in batches
of random size under continuous-time batchMarkovian service process.We first deter-
mine the vector probability generating function of the system-length distribution at
pre-arrival epoch. The system-length distribution at pre-arrival epoch is extracted in
terms of zeros of the related characteristic polynomial of the vector probability generat-
ing function. By theMarkov renewal theory argument, we determine the system-length
distribution at random epoch. We also derive the system-length distribution at post-
departure epoch using the ‘rate in = rate out’ argument. Finally, some numerical results
are exhibited for different inter-arrival time distribution to demonstrate the system per-
formance measures and correctness of analytical results.

Keywords Batch Markovian service process · Renewal process · Vector probability
generating function · Markov renewal theory · Queueing

Mathematics Subject Classification 60K25 · 68M20 · 90B22

1 Introduction

Mathematical study of various queueing models has been carried out in the last few
decades due to its application in numerous queueing scenarios on the fastest-changing
civilization. In particular, wide applications of queueingmodels are found in the area of
electrical engineering, cellular networks, web browsing, traffic modelling of internet
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protocol (IP) networks, hybrid high-speed radio technologies and laser-based commu-
nication systems, wireless networks with linear topology, and other related systems.
Most communication networks have non-stationary (bursty) and self-similar output
flows wherein the inter-service times are highly correlated. The service process with
correlated service times of customers who are served in batches of random size can be
accurately modelled by batchMarkovian service process (BMSP). The BMSPmay be
a natural choice to capture the correlated bursty and self-similar traffics in communica-
tion networks. The BMSP is a versatile service process and generalizes theMarkovian
service process (MSP) by allowing batch services. The BMSP is the generalization
of batch Poisson process, Markov-modulated Poisson process and batch PH-renewal
process. The BMSP has the same features as that of the batch Markovian arrival pro-
cess (BMAP) wherein arrivals are replaced with service completions. Hence, BMSP
has similar impact like BMAP on analytical results and application areas for service
process in queueing system. For more detailed information about the BMAP, its spe-
cial cases, properties, and related research work, see Lucantoni [1] and survey paper
by Chakravarthy [2].

Many authors investigated non-renewal correlated service queueingmodels over the
last three decades and such results are available in the extant queueing literature. Abate
et al. [3] and Alfa et al. [4] obtained the stationary distributions of MAP/MSP/1
queue based on the perturbation theory approach. Horváth et al. [5] discussed the out-
put process of MAP/MSP/1 queue by proposing an approximate analysis method.
Zhang et al. [6] carried out the departure process of BMAP/MSP/1 queue using
an exact aggregate solution technique (called ETAQA). Samanta et al. [7] analysed
the BMAP/MSP/1 queueing model based on zeros of the related characteristics
function of the vector probability generating function (p.g.f.) of system-length dis-
tribution at random epoch. Bocharov et al. [8] investigated the GI/MSP/1 queue
using the embedded Markov chain technique and semi-Markov process to carry out
the stationary characteristics of system performance. Gupta and Banik [9] analysed
the GI/MSP/1 queueing system based on the matrix-geometric method and the
supplementary variable technique. Chaudhry et al. [10] investigated the GI/MSP/1
queue using the zeros of the related characteristic function of the vector p.g.f. of
system-length distribution at pre-arrival epoch. Samanta and Zhang [11] discussed
the GI/D-MSP/1 queue with multiple vacations in discrete-time based on matrix-
geometric method. In this relation, see also Samanta et al. [12,13], Samanta and Nandi
[14,15], Chaudhry et al. [16], Samanta [17], and Wang et al. [18].

However, very few works have been done on the corresponding batch Markovian
service process. Krishnamoorthy and Joshua [19] analysed the BMAP/BMSP/1
queueing model withMarkov dependent arrival as well as service batch sizes in which
the state probability vectors of the system and some relevant performancemeasures are
obtained. Sandhya et al. [20] investigated an infinite-buffer BMAP/BMSP/1 queue
by partitioning the infinitesimal generator with blocks having groups of customers
of maximum size of arrival and service batch sizes. Based on the use of matrix-
geometric method pioneered by Neuts [21], they determined the stationary probability
of the number of customers waiting for service and other performance measures. Bank
and Samanta [22] discussed the BMAP/BMSP/1 queueing system comparatively
by roots method and matrix-geometric method. Using a matrix-analytical approach,
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Wang et al. [18] analysed the finite-buffer DBMAP/DBMSP/1/K queue in dis-
crete time to evaluate the long-term packet loss probabilities over wireless networks.
Banik et al. [23,24] studied finite-buffer GI/BMSP/1/N queueing model using the
embedded Markov chain technique. Banik [25] analysed state-dependent arrival in
the GI/BMSP/1 queueing system based on combination of the matrix-geometric
method and the Markov renewal theory argument. For further details on BMSP, the
readers are referred to Chaplygin [26].

The above literature survey motivates us to investigate an infinite waiting space
GI/BMSP/1 queueing system in which customers arrive one by one followed by a
renewal process. The single server provides service to the customers in batches under
batchMarkovian service process with minimum threshold value ‘a’. Moreover, after a
batch service completion, if the number of waiting customers in the system is less than
‘a’, the server does not provide service to the customers until the number of customers
in the system becomes at least ‘a’ and then starts to serve a batch of customers. We
analyse the model for random as well as fixed batch size service. In random size batch
service, if the number of customers in the queue after a batch service completion is at
least ‘a’, then the server serves a batch of k customers with the service rate as per rate
matrix of the BMSP for batch size k. But, if the number of customers in the queue
after a batch service completion is lesser than ‘a’, then the server remains idle until
the number of customers in the queue becomes at least ‘a’. Moreover, it is assumed
that arriving customer is not allowed to join in ongoing service of a batch even if there
is an unused service capacity. In fixed size batch service, if the number of customers
in the queue after a batch service completion is at least ‘a’, then the server serves a
batch of fixed size ‘a’ customers with the service rate as per rate matrix of the BMSP
for batch size a. But, if the number of customers in the queue after a batch service
completion is lesser than ‘a’, then the server remains idle until the number of customers
in the queue becomes at least ‘a’. We first determine the vector p.g.f. of the system-
length distribution at pre-arrival epoch. The system-length distribution at pre-arrival
epoch is extracted in terms of zeros of the related characteristic polynomial of the
vector probability generating function.We use theMarkov renewal theory argument to
determine the system-length distribution at random epoch. We also derive the system-
length distribution at post-departure epoch using the ‘rate in = rate out’ argument.
Some numerical results are illustrated through analytical results obtained in this paper
to manifest the key performance measures of the system and correctness of analytical
results.

The model discussed in this paper has scope of application in packaging and ship-
ping of vaccines. The vaccine container comes one by one according to the renewal
process for the packaging and shipping. The server provides service (i.e. packaging
and shipping of vaccine containers) in batches with minimum ‘a’ number of vaccine
containers according to the BMSP. The phases of BMSP are labelled as insulated
packaging, temperature monitoring, storage volume standardization, labelling, and
standard shipping. If the number of vaccine containers in the queue after a batch ser-
vice completion is lesser than ‘a’, then the server remains idle until the number of
vaccine containers in the queue becomes at least ‘a’. Moreover, it is assumed that the
arriving vaccine container is not allowed to join in ongoing service of a batch even if
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there is an unused service capacity. In case of packaging and shipping for the fixed
number of vaccine containers, the fixed batch size model is also applicable.

The remainder of this paper is organized as follows. The model is described in
Sect. 2. Section 3 carried out the system-length distributions at various time epochs.
Numerical results are exhibited in Sect. 4. The paper is concluded in Sect. 5.

2 Model Description

We consider an infinite waiting space GI/BMSP/1 queueing system, where cus-
tomers arrive one by one followed by a renewal process. The inter-arrival times of
successive arrivals are assumed to be independent and identically distributed (i.i.d.)
random variables with cumulative distribution function (C.D.F.) A(x), x ≥ 0 with
A(0) = 0. Define the Laplace–Stieltjes transform (L.–S.T.) of A(x) by ˜A(s) =
∫ ∞
0 e−sxdA(x), Re(s) ≥ 0. The mean inter-arrival time is 1

λ
= − d

ds
˜A(s)|s=0. The

inter-arrival time is independent of the service process. The customers are served by
single server in batches with minimum of ‘a’, (1 ≤ a < ∞), customers under an
m-state batch Markovian service process (BMSP). The m-state is mentioned as the
phase (state) of the underlyingMarkov chain (UMC) corresponding to the BMSP. The
service process BMSP is specified by the sequence ofm×m ratematrices {Lk, k ≥ 0},
where Lk governs the transition of the phase process with the rate of service of batch
size k (k ≥ 1) and the matrix L0 governs the transition of the phase process which
does not generate real services. The matrix L0 is a non-singular stable matrix, and
the diagonal element [L0]i i of L0 characterizes the mean rate of exponential sojourn
time in state i . Let us define L(z) = ∑∞

n=0 Lnzn , |z| ≤ 1, with L = ∑∞
k=0 Lk being

an infinitesimal generator of the UMC related to the BMSP. The fundamental service
rate of the BMSP is defined as μ∗ = π

∑∞
k=1 kLke, where π is the unique solution of

the system of linear equations πL = 0 and πe = 1, where 0 denotes a row vector of
order m whose all elements are 0 and e denotes a column vector of order m whose all
elements are 1. In case of fixed size service with a = 1, we have Lk = 0, for k ≥ 2
and therefore, the model GI/BMSP/1 reduces to GI/MSP/1 queueing model. To
ensure the stability of the system, the traffic intensity ρ is given by ρ = λ/μ∗ < 1.

In this paper, we assume that the server commences a busy period under two differ-
ent service phase initiations. These two possible service phase commencements are
referred to as Model I and Model II. They are defined as follows:

– Model I The service phase does not change during idle periods of the system, i.e.
the service phase is frozen during idle period. Therefore, the service phase at the
starting point of a busy period is the same as the service phase at the end point of
the preceding busy period.

– Model II The service phase changes during idle periods of the system, i.e. the
service phase is not frozen during idle period. Therefore, the service phase at the
starting point of a busy period is the corresponding service phase at the end point
of the last idle period.
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3 Analysis of theModel

In this section, we analyse the GI/BMSP/1 queueing system and determine various
system characteristics. For this purpose, we define the state of the system at time t by
(N (t),J (t)), whereN (t) denotes the number of customers served in (0, t] andJ (t) is
the phase of the UMC corresponding to the BMSP at time t . Let P(n, t), n ≥ 0, t ≥ 0,
be an m × m matrix whose (i, j)th element

Pi j (n, t) = Pr{N (t) = n,J (t) = j |N (0) = 0,J (0) = i}, 1 ≤ i, j ≤ m,

is the conditional probability that n customers are served in (0, t] with the service
process being in phase j at time t , given that the service process was in the phase i at
time t = 0.

Using the property of BMSP, we have

d

dt
P(n, t) =

n
∑

i=0

P(i, t)Ln−i , n ≥ 0, (1)

with P(0, 0) = Im and P(n, 0) = 0, n ≥ 1, where Im is the identity matrix of orderm.
Multiplying (1) by zn and adding them over n from 0 to ∞, using P∗(z, t) =

∑∞
n=0 P(n, t)zn , |z| ≤ 1, we obtain

d

dt
P∗(z, t) = P∗(z, t)L(z), (2)

with P∗(z, 0) = Im .

Now, solving (2) with P∗(z, 0) = Im , we obtain

P∗(z, t) = eL(z)t , |z| ≤ 1, t ≥ 0. (3)

Let Sn , n ≥ 0, denote the square matrix of order m whose (i, j)th element specifies
the conditional probability that n customers are served during an inter-arrival period
of the arrival process and the service process being in phase j at the end of the inter-
arrival period, given that the service process was in phase i at the starting point of the
inter-arrival period. Then, we have

Sn =
∫ ∞

0
P(n, x)dA(x), n ≥ 0. (4)

To evaluate the matrix Sn for arbitrary inter-arrival time distribution, we apply the
uniformization argument given in Lucantoni [27] as

P(n, x) =
∞
∑

k=0

e−θx (θx)k

k! U(k)
n , n ≥ 0, (5)
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where θ = maxi [−L0]i i , 1 ≤ i ≤ m, and U(k)
n is given by

U(0)
0 = Im, U(0)

n = 0, U(k+1)
0 = U(k)

0 (Im + θ−1L0),

U(k+1)
n = U(k)

n (Im + θ−1L0) + θ−1
n−1
∑

i=0

U(k)
i Ln−i , n ≥ 1, k ≥ 0.

Now, using (5) in (4), we obtain

Sn =
∞
∑

k=0

σkU(k)
n , n ≥ 0, (6)

where

σk =
∫ ∞

0
e−θx (θx)k

k! dA(x), k ≥ 0. (7)

Multiplying zk on both the sides of (7) and summing over k from 0 to ∞, we get

∞
∑

k=0

σk z
k = ˜A(θ − θ z). (8)

Since the L.–S.T. of inter-arrival time distribution is rational or approximated rational
function, i.e. the degree of the numerator should be less than or equal to the degree
of the denominator of the L.–S.T. of the inter-arrival time distribution, therefore we
consider that ˜A(θ − θ z) will be in the following form:

˜A(θ − θ z) =
∑p

k=0 φk zk
∑n

k=0 ψk zk
, p = 0, 1, 2, . . . , n with ψ0 = 1. (9)

From (8) and (9), we obtain

∞
∑

k=0

σk z
k

n
∑

k=0

ψk z
k =

p
∑

k=0

φk z
k, p = 0, 1, 2, . . . , n. (10)

Equating the coefficients of zr , r = 0, 1, 2, 3, . . . from (10), we have

σ0 = φ0,

σr = φr −
r−1
∑

i=0

σiψr−i , r = 1, 2, . . . , p,

σr = −
min(r−1,n)

∑

i=1

σr−iψi , r ≥ p + 1.

123



Modelling and Analysis of GI/BMSP/1 Queueing System 3783

Now, we can determine Sn , n ≥ 0, from (6) with the results of σr , r ≥ 0, given above.
Moreover, let �n denote the square matrix of order m whose (i, j)th element

specifies the limiting probability that n customers are served during an elapsed inter-
arrival time of the arrival process with the service process being in phase j , given that
the service process was in phase i at the starting point of the inter-arrival period. Using
the Markov renewal theory argument, we have

�n = λ

∫ ∞

0
P(n, t)[1 − A(t)]dt, n ≥ 0. (11)

In order to get �n , for n ≥ 0, we can write (4) as

Sn = −
∫ ∞

0
P(n, t)d[1 − A(t)],

= −
[

P(n, t)[1 − A(t)]
]∞

0
+

∫ ∞

0

d

dt
P(n, t)[1 − A(t)]dt,

= P(n, 0) +
∫ ∞

0

d

dt
P(n, t)[1 − A(t)]dt . (12)

Using (1) in (12), for n = 0, we have

S0 = Im +
∫ ∞

0
P(0, t)L0[1 − A(t)]dt,

= Im + 1

λ
�0L0 [using(11)]. (13)

Hence, we have

�0 = λ(Im − S0)(−L0)
−1. (14)

Using (1) in (12), for n ≥ 1, we have

Sn =
∫ ∞

0

n
∑

i=0

P(i, t)Ln−i [1 − A(t)]dt,

= 1

λ

n
∑

i=0

�iLn−i [using(11)],

which yields

�n =
( n−1

∑

i=0

�iLn−i − λSn

)

(−L0)
−1, n ≥ 1. (15)

According to Chaudhry et al. [10], ˜Pi j (n, t) represents the conditional probability that
n customers are served in (0, t] and the service process being frozen in phase j at time
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t , given that the service process was in phase i at t = 0. Then, ˜Pi j (n, t), n ≥ 1, t ≥ 0,
can be expressed as

˜Pi j (n, t + Δt) = ˜Pi j (n, t) +
n−1
∑

r=0

m
∑

k=1

Pik(r , t)[̂Ln−r ]k jΔt + O(Δt), 1 ≤ i, j ≤ m,

with ˜Pi j (n, 0) = 0, n ≥ 1, and [̂Lr ]i j =
∞
∑

k=r
[Lk]i j , r ≥ 1.

Rearranging the terms and taking the limit as Δt → 0, it reduces to

d

dt
˜Pi j (n, t) =

n−1
∑

r=0

m
∑

k=1

Pik(r , t)[̂Ln−r ]k j , n ≥ 1,

which yields in matrix notation as

d

dt
˜P(n, t) =

n−1
∑

r=0

P(r , t)̂Ln−r , n ≥ 1. (16)

with˜P(n, 0) = 0, n ≥ 1, and ̂Lr =
∞
∑

k=r
Lk, r ≥ 1.

Further, let̂Sn denote the square matrix of orderm whose (i, j)th element specifies
the probability that n customers are served during an inter-arrival period of the arrival
process and the service process being frozen in phase j at the end point of the nth
service completion, given that the service process was in phase i at the starting point
of the inter-arrival period. Then, we have

̂Sn =
⎧

⎨

⎩

∫ ∞
0

˜P(n, t)dA(t), for Model I,
∞
∑

k=n
Sk, for Model II.

For Model I,̂Sn can be expressed as

̂Sn =
∫ ∞

0

˜P(n, t)dA(t),

= −
∫ ∞

0

˜P(n, t)d[1 − A(t)],

= −
[

˜P(n, t)[1 − A(t)]
]∞

0
+

∫ ∞

0

d

dt
˜P(n, t)[1 − A(t)]dt,

=
n−1
∑

r=0

∫ ∞

0
P(r , t)̂Ln−r [1 − A(t)]dt [using (16)],
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= 1

λ

n−1
∑

r=0

�r̂Ln−r , n ≥ 1 [using (11)].

3.1 Random Size Batch Service

In this section, we consider that the server serves the customers according to the
BMSP with minimum of ‘a’, 1 ≤ a < ∞, customers in a batch, i.e. Lk = 0,
k = 1, 2, . . . , a− 1, La �= 0 and at least one of Lk , k = a+ 1, a+ 2, . . ., is a nonzero
matrix.

3.1.1 System-Length Distribution at Pre-arrival Epoch

We now focus on the system-length distribution just before an arrival epoch. Let the
kth customer arrives at time instant tk, k = 0, 1, 2, . . . , with t0 = 0, and let t−k denote
the pre-arrival epoch, that is, the time epoch just before the arrival instant tk . Then, the
state of the system at t−k defined as {Yt−k , Jt−k

} is a Markov chain, where Yt−k
denotes

the number of customers in the system and Jt−k
the phase of the service process at the

embedded point t−k . In the limiting case, let us define π−
j (n) = limk→∞Pr{Yt−k =

n, Jt−k
= j}, n ≥ 0, 1 ≤ j ≤ m, where π−

j (n) denotes the pre-arrival epoch
probability that there are n customers in the system and the service being in phase
j . Let π−(n) denote the row vector of order m whose j th component is π−

j (n). For
two consecutive embedded points, we now have a Markov chain having state space
{(n, j), n ≥ 0, j = 1, 2, . . . ,m}. Therefore, the transition probability matrix P for
this Markov chain is given by

where

Θ =
⎧

⎨

⎩

Im, for Model I,
∞
∑

n=0
Sn, for Model II.

123



3786 S. K. Samanta, B. Bank

Let π− = [π−(0),π−(1), π−(2),π−(3), . . .] be the stationary probability vector of
P . Then, π− = π−P can be written explicitly as

π−(0) = π−(a − 1)̂Sa +
∞
∑

r=2a−1

π−(r)̂Sr+1, (17)

π−(1) = π−(0)Θ +
2a−2
∑

r=a

π−(r)̂Sr +
∞
∑

r=2a−1

π−(r)Sr , (18)

π−(n) = π−(n − 1)Θ +
∞
∑

r=a+n−1

π−(r)Sr−n+1, 2 ≤ n ≤ a − 1, (19)

π−(n) = π−(n − 1)S0 +
∞
∑

r=a+n−1

π−(r)Sr−n+1, n ≥ a. (20)

Multiplying (17)–(20) by appropriate powers of z, using π−∗(z) = ∑∞
n=0 π−(n)zn

and S(z) = ∑∞
n=0 Snz

n = ∫ ∞
0 P∗(z, t)d A(t) = ∫ ∞

0 eL(z)t d A(t) = ˜A(−L(z)) [using
(3)], we obtain

π−∗(z) =

[

π−(a − 1)̂Sa + z
2a−2
∑

r=a
π−(r)̂Sr +

∞
∑

r=2a−1
π−(r)̂Sr+1 +

a−2
∑

r=0
π−(r)zr+1 [Θ − S0 ]

−z
2a−2
∑

r=a
π−(r)Sr −

a−1
∑

n=0
π−(n)

∞
∑

r=a
Sr zn−r+1 −

∞
∑

n=a
π−(n)

∞
∑

r=n+1
Sr zn−r+1

]

adj
[

Im − zS(z−1)
]

det
[

Im − zS(z−1)
] ,(21)

where adj[·] and det[·] represent the adjoint matrix and the determinant of a square
matrix, respectively.

To determine the vector π−(n), n ≥ 0, from (21), we first obtain closed-form
analytic expression for each component π−∗

j (z) defined as π−∗
j (z) = ∑∞

n=0 π−
j (n)zn ,

|z| ≤ 1, of the vector p.g.f. π−∗(z) given in (21). Since each component of π−∗(z) is
convergent in |z| ≤ 1, therefore the zeros of det[Im − zS(z−1)] whose modulus value
is less than or equal to 1 must be the zeros of the numerator of each component of (21).
Therefore, these zeros do not have any responsibility to make partial fractions of (21).
So, we want to have the expertise of the zeros of det[Im − zS(z−1)] whose modulus
value is greater than 1. According to Chaudhry et al. [10], det[Imz−S(z)] has exactly
m zeros inside of |z| = 1 and one zero on the circle |z| = 1. Let these inside zeros be
denoted by γi , 1 ≤ i ≤ m. Since det[Imz − S(z)] has m zeros γi inside of |z| = 1,
the function det[Im − zS(z−1)] has m zeros 1/γi outside of |z| = 1. We assume that
all γi (1 ≤ i ≤ m) are simple zeros. Hence, using the analyticity of π−∗

j (z) and the
partial fraction method, we have

π−∗
j (z) =

a−2
∑

n=0

π−
j (n)zn +

m
∑

i=1

ki j (γi z)a−1

1 − γi z
, 1 ≤ j ≤ m, (22)

where ki j are constants to be determined.
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Substitute z = 1 in (22) and using
m
∑

j=1
π−∗
j (1) = 1, we have

a−2
∑

n=0

m
∑

j=1

π−
j (n) +

m
∑

j=1

m
∑

i=1

ki jγ
a−1
i

1 − γi
= 1. (23)

Now, comparing the coefficient of zn , n ≥ a − 1, from (22), we have

π−
j (n) =

m
∑

i=1

ki jγ
n
i , 1 ≤ j ≤ m,

and hence

π−(n) =
[

m
∑

i=1

ki1γ
n
i , . . . ,

m
∑

i=1

ki jγ
n
i , . . . ,

m
∑

i=1

kimγ n
i

]

, n ≥ a − 1. (24)

Using (24) in (17), we have

[

π−
1 (0), . . . , π−

j (0), . . . , π−
m (0)

]

=
[ m

∑

i=1

ki1γ
a−1
i , . . . ,

m
∑

i=1

ki jγ
a−1
i , . . . ,

m
∑

i=1

kimγ a−1
i

]

̂Sa

+
∞
∑

r=2a−1

[ m
∑

i=1

ki1γ
r
i , . . . ,

m
∑

i=1

ki jγ
r
i , . . . ,

m
∑

i=1

kimγ r
i

]

̂Sr+1. (25)

Using (24) in (18), we have

[

π−
1 (1), . . . , π−

j (1), . . . , π−
m (1)

]

=
[

π−
1 (0), . . . , π−

j (0), . . . , π−
m (0)

]

Θ

+
2a−2
∑

r=a

[ m
∑

i=1

ki1γ
r
i , . . . ,

m
∑

i=1

ki jγ
r
i , . . . ,

m
∑

i=1

kimγ r
i

]

̂Sr

+
∞
∑

r=2a−1

[ m
∑

i=1

ki1γ
r
i , . . . ,

m
∑

i=1

ki jγ
r
i , . . . ,

m
∑

i=1

kimγ r
i

]

Sr . (26)

Using (24) in (19), for n = 2, 3, . . . , a − 2, we have

[

π−
1 (n), . . . , π−

j (n), . . . , π−
m (n)

]

=
[

π−
1 (n − 1), . . . , π−

j (n − 1), . . . , π−
m (n − 1)

]

Θ

+
∞
∑

r=a+n−1

[ m
∑

i=1

ki1γ
r
i , . . . ,

m
∑

i=1

ki jγ
r
i , . . . ,

m
∑

i=1

kimγ r
i

]

Sr−n+1. (27)
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Using (24) in (19), for n = a − 1, we have

[ m
∑

i=1

ki1γ
a−1
i , . . . ,

m
∑

i=1

ki jγ
a−1
i , . . . ,

m
∑

i=1

kimγ a−1
i

]

=
[

π−
1 (a − 2), . . . , π−

j (a − 2), . . . , π−
m (a − 2)

]

Θ

+
∞
∑

r=2a−2

[ m
∑

i=1

ki1γ
r
i , . . . ,

m
∑

i=1

ki jγ
r
i , . . . ,

m
∑

i=1

kimγ r
i

]

Sr−a+2. (28)

Using (24) in (20), for n = a, a + 1, . . . , a + m − 2, we have

[ m
∑

i=1

ki1γ
n
i , . . . ,

m
∑

i=1

ki jγ
n
i . . . ,

m
∑

i=1

kimγ n
i

]

=
[ m

∑

i=1

ki1γ
n−1
i , . . . ,

m
∑

i=1

ki jγ
n−1
i . . . ,

m
∑

i=1

kimγ n−1
i

]

S0

+
∞
∑

r=a+n−1

[ m
∑

i=1

ki1γ
r
i , . . . ,

m
∑

i=1

ki jγ
r
i , . . . ,

m
∑

i=1

kimγ r
i

]

Sr−n+1.

(29)

Equations (25)–(29) give m(a − 1) + m2 simultaneous linear dependent equations
which do not provide unique solution. Therefore, replacing any one equation among
m(a−1)+m2 equations by (23),we getm(a−1)+m2 simultaneous linear independent
equations inm(a− 1)+m2 unknown variables, ki j ’s (1 ≤ i, j ≤ m) and π−

j (n) (0 ≤
n ≤ a−2, 1 ≤ j ≤ m). Solving thesem(a−1)+m2 simultaneous linear independent
equations, we get the m(a − 1) + m2 unknown variables ki j ’s (1 ≤ i, j ≤ m) and
π−
j (n) (0 ≤ n ≤ a − 2, 1 ≤ j ≤ m) uniquely.

3.1.2 System-Length Distribution at Random Epoch

Here, we procure the steady-state system-length distribution at random epoch using
the Markov renewal theory which constructs the connection between the system-
length distributions at random and pre-arrival epochs. For this, let us denote π(n) =
[π1(n), . . . , πi (n), . . . , πm(n)], n ≥ 0, be the row vectors of order m, where the i th
component πi (n) represents the probability of n customers in the system and the
service process being in phase i at random epoch.

In order to obtain the steady-state probability vectors π(n), n ≥ 0, let us define the
square matrix �n , n ≥ 1, of order m whose (i, j)th element describes the limiting
probability that n customers are served during an elapsed inter-arrival time of the
arrival process with the service process being frozen in phase j at the end point of the
nth customer service completion, provided the service process was in phase i at the
starting point of the inter-arrival period. Using the Markov renewal theory argument,
we have

�n =
⎧

⎨

⎩

λ
∫ ∞
0

˜P(n, t)[1 − A(t)]dt, for Model I,
∞
∑

k=n
�k, for Model II.

(30)
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Using (16) in (30), for Model I, we have

�n = λ

n−1
∑

r=0

∫ ∞

0

∫ t

0
P(r , x)dx̂Ln−r [1 − A(t)]dt

=
n−1
∑

r=0

J(r)̂Ln−r , n ≥ 1,

where

J(n) = λ

∫ ∞

0

∫ t

0
P(n, x)dx[1 − A(t)]dt, n ≥ 0. (31)

Using (1) in (31), for n = 0, we have

J(0) = λ

∫ ∞

0

∫ t

0
eL0xdx[1 − A(t)]dt,

= (Im − �0)(−L0)
−1,

taking into consideration (11) and incidentally eL0t = P(0, t), t ≥ 0.
Using (1) in (31), for n ≥ 1, we have

J(n) = λ

∫ ∞

0

∫ t

0

[ n−1
∑

k=0

P(k, x)Ln−k − d

dx
P(n, x)

]

dx[1 − A(t)]dt(−L0)
−1,

which, considering (11) and (31), leads to

J(n) =
[ n−1

∑

k=0

J(k)Ln−k − �n

]

(−L0)
−1, n ≥ 1.

Now, using the Markov renewal theory argument, see, for example, Çinlar [28] or
Lucantoni and Neuts [29], we obtain

π(0) = π−(a − 1)�a +
∞
∑

r=2a−1

π−(r)�r+1,

π(1) = π−(0)ϒ +
2a−2
∑

r=a

π−(r)�r +
∞
∑

r=2a−1

π−(r)�r ,

π(n) = π−(n − 1)ϒ +
∞
∑

r=a+n−1

π−(r)�r−n+1, 2 ≤ n ≤ a − 1,

π−(n) = π−(n − 1)�0 +
∞
∑

r=a+n−1

π−(r)�r−n+1, n ≥ a,

123



3790 S. K. Samanta, B. Bank

where

ϒ =
⎧

⎨

⎩

Im, for Model I
∞
∑

n=0
�n, for Model II.

The mean system length (Ls) can be obtained as Ls = ∑∞
n=1 nπ(n)e. From the

Little’s law, we have the mean sojourn time Ws = Ls

λ
.

3.1.3 System-Length Distribution at Post-departure Epoch

Here, we work out the post-departure epoch probability which arises immediately
after service completion of a batch. Let π+(n) = [π+

1 (n), . . . , π+
i (n), . . . , π+

m (n)],
n ≥ 0, be the row vectors of order m, where the i th component π+

i (n) denotes the
post-departure epoch probability that n customers are in the system immediately after
service completion of a batch and the service process being in phase i . Thus, using
the ‘rate in = rate out’ arguments, for more details see Kim et al. [30], we have

π+(n) =

∞
∑

k=a
π(n + k)Lk

∞
∑

n=a
π(n)

n
∑

k=a
Lke

, n ≥ 0.

3.2 Fixed Size Batch Service

In this section, we consider that the server serves the customers according to the BMSP
with fixed batch size ‘a’, i.e. Lk = 0, for all k ∈ N−{a}, where N is the set of natural
numbers.

3.2.1 System-Length Distribution at Pre-arrival Epoch

For two consecutive embedded points of the system defined in Sect. 3.1.1, the one-step
transition probability matrix P for fixed size batch service is given by
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Hence, π− = π−P yields

π−(0) =
∞
∑

r=1

π−(ra − 1)̂Sra, (32)

π−(n) = π−(n − 1)Θ +
∞
∑

r=1

π−(ra + n − 1)̂Sra, 1 ≤ n ≤ a − 1, (33)

π−(n) =
∞
∑

r=0

π−(ra + n − 1)Sra, n ≥ a. (34)

Multiplying (32)–(34) by relevant powers of z and adding them, we obtain

π−∗(z) =

[ ∞
∑

r=1
π−(ra − 1)̂Sra +

a−2
∑

n=0
zn+1

[

π−(n)Θ +
∞
∑

r=1
π−(ra + n)̂Sra

]

−
∞
∑

n=0

(r+1)a−2
∑

k=0
π−(k)zk+1−raSra

]

adj[Im − zS(z−1)]

det[Im − zS(z−1)] .

(35)

By investigating along the same lines discussed in Sect. 3.1.1, we have

π−∗
j (z) =

a−2
∑

n=0

π−
j (n)zn +

m
∑

i=1

ki j (zγi )a−1

1 − γi z
, 1 ≤ j ≤ m, (36)

subject to

a−2
∑

n=0

m
∑

j=1

π−
j (n) +

m
∑

j=1

m
∑

i=1

ki jγ
a−1
i

1 − γi
= 1. (37)
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Now, accumulate the coefficients of zn , n ≥ a − 1, from both the sides of (36), we
have

π−
j (n) =

m
∑

i=1

ki jγ
n
i , 1 ≤ j ≤ m,

and hence

π−(n) =
[ m

∑

i=1

ki1γ
n
i , . . . ,

m
∑

i=1

ki jγ
n
i , . . . ,

m
∑

i=1

kimγ n
i

]

, n ≥ a − 1. (38)

Using (38) in (32), we have

[

π−
1 (0), . . . , π−

j (0), . . . , π−
m (0)

]

=
∞
∑

r=1

[ m
∑

i=1

ki1γ
ra−1
i , . . . ,

m
∑

i=1

ki jγ
ra−1
i , . . . ,

m
∑

i=1

kimγ ra−1
i

]

̂Sra . (39)

Using (38) in (33), we have

[

π−
1 (n), . . . , π−

j (n), . . . , π−
m (n)

]

=
[

π−
1 (n − 1), . . . , π−

j (n − 1), . . . , π−
m (n − 1)

]

Θ

+
∞
∑

r=1

[ m
∑

i=1

ki1γ
ra+n−1
i , . . . ,

m
∑

i=1

ki jγ
ra+n−1
i . . . ,

m
∑

i=1

kimγ ra+n−1
i

]

̂Sra,

n = 1, 2, . . . , a − 2, (40)

Using (38) in (33), for n = a − 1, we have
[ m

∑

i=1

ki1γ
a−1
i , . . . ,

m
∑

i=1

ki jγ
a−1
i , . . . ,

m
∑

i=1

kimγ a−1
i

]

=
[

π−
1 (a − 2), . . . , π−

j (a − 2), . . . , π−
m (a − 2)

]

Θ

+
∞
∑

r=1

[ m
∑

i=1

ki1γ
ra+n−1
i , . . . ,

m
∑

i=1

ki jγ
ra+n−1
i , . . . ,

m
∑

i=1

kimγ ra+n−1
i

]

̂Sra . (41)

Using (38) in (34), for n = a, a + 1, . . . , a + m − 2, we have

[ m
∑

i=1

ki1γ
n
i , . . . ,

m
∑

i=1

ki jγ
n
i , . . . ,

m
∑

i=1

kimγ n
i

]

=
∞
∑

r=0

[ m
∑

i=1

ki1γ
ra+n−1
i , . . . ,

m
∑

i=1

ki jγ
ra+n−1
i , . . . ,

m
∑

i=1

kimγ ra+n−1
i

]

Sra .(42)
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Equations (39)–(42) give m(a − 1) +m2 simultaneous linear dependent equations
which do not provide unique solution. Therefore, replacing any one equation among
m(a−1)+m2 equations by (37),we getm(a−1)+m2 simultaneous linear independent
equations inm(a− 1)+m2 unknown variables, ki j ’s (1 ≤ i, j ≤ m) and π−

j (n) (0 ≤
n ≤ a−2, 1 ≤ j ≤ m). Solving thesem(a−1)+m2 simultaneous linear independent
equations, we get the m(a − 1) + m2 unknown variables ki j ’s (1 ≤ i, j ≤ m) and
π−
j (n) (0 ≤ n ≤ a − 2, 1 ≤ j ≤ m) uniquely.

3.2.2 System-Length Distribution at Random Epoch

Based on the same Markov renewal theory argument used in Sect. 3.1.2 for random
size batch service, the system-length distribution at random epoch for fixed size batch
service can be expressed as

π(0) =
∞
∑

r=1

π−(ra − 1)�ra,

π(n) = π−(n − 1)ϒ +
∞
∑

r=1

π−(ra + n − 1)�ra, 1 ≤ n ≤ a − 1,

π(n) =
∞
∑

r=0

π−(ra + n − 1)�ra, n ≥ a.

The mean system length (Ls) can be obtained as Ls = ∑∞
n=1 nπ(n)e. From the

Little’s law, we have the mean sojourn time Ws = Ls

λ
.

3.2.3 System-Length Distribution at Post-departure Epoch

Based on the same argument used in Sect. 3.1.3 for random size batch service, the
system-length distribution at post-departure epoch for fixed size batch service can be
expressed as

π+(n) = π(n + a)La
∞
∑

n=a
π(n)Lae

, n ≥ 0.

Remark 1 For fixed size service with a = 1, both the set of Eqs. (17)–(20) and (32)–
(34) converted to

π−(0) =
∞
∑

r=0

π−(r)̂Sr+1, (43)

π−(n) =
∞
∑

r=n−1

π−(r)Sr−n+1, n ≥ 1. (44)
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Using
∑k2

k1
= 0, for k1 > k2, both Eqs. (21) and (35) are reduced to

π−∗(z) =

∞
∑

n=0
π−(n)

[

̂Sn+1 −
∞
∑

r=n+1
Sr zn−r+1

]

adj[Im − zS(z−1)]

det[Im − zS(z−1)] . (45)

The above results matched with Chaudhry et al. [10] for GI/MSP/1 queue.

4 Numerical Results

This section provides numerical outcomes to validate the correctness of our analytical
results by considering different inter-arrival time distributions (heavy-tailed) and ser-
vice matrices of BMSP (L0,La,La+1, ...) in different self-explanatory Tables 1, 2, 3,
4, 5, 6, 7 and 8 and graphs. Bottom of the tables contain some relevant performance
measures. Table 2 exhibits that the relationπ = ∑a−1

n=0 π(n)+∑∞
n=a π(n) holds as the

service phases change during idle periods of the system. Further, Table 5 exhibits that
the relation

∑a−1
n=0 π(n) = 1−ρ holds as the service phases do not change during idle

periods of the system and this relation holds only for fixed batch size service. These
truth confirm the correctness of our analytical and numerical results. From practical
point of view, let N0 < ∞ denote the maximum service batch size of the service
process, i.e. Lk = 0, for all k ≥ N0 + 1.

Example 1 The goal of the this example is to validate the correctness of our analytical
results for the WB/BMSP/1 queue, where WB stands for Weibull distribution. The
system-length distributions at various time epochs are presented in Tables 1, 2 and
3. Bottom of Table 2 contains the mean system length and mean sojourn time of an
arrived customer. The probability density function (p.d.f.) and C.D.F. of the Weibull

distribution are taken as a(x) = c
β
( x
β
)c−1e−( x

β
)c , x ≥ 0 and A(x) = 1 − e−( x

β
)c ,

x ≥ 0, respectively, with shape parameter β = 0.025 and scale parameter c = 1.85.
This leads to λ = 1

β�(1+ 1
c )

= 45.03424618. Now, our main focus is to derive the

explicit expression of S(z) and Sn , n ≥ 0, numerically. For this, we have needed
L.–S.T. of the Weibull distribution. Since the L.–S.T. of Weibull distribution does not
exist, we obtain an approximate L.–S.T. ˜A(s) using the GTAM described by Shortle et
al. [31]. According to Shortle et al. [31], we assumeM = 100 probabilities yi = 1−r̂ i ,
where yi = A(xi ), 1 ≤ i ≤ M , and for some r̂ in (0, 1). Hence, 1 − (

xi
β

)c = 1 − r̂ i

shows that xi = β[i log( 1r̂ )]
1
c . Allot the probability yi to each point xi as

p1 = y1 + y2
2

, pi = yi+1 − yi−1

2
, i = 2, 3, . . . , M − 1, pM = 1 − yM−1 + yM

2
.

The above all pi ’s can be written as a function of r̂ as

p1 = 2 − r̂ − r̂2

2
, pi = r̂ i−1 − r̂ i+1

2
, i = 2, 3, . . . , M − 1, pM = r̂ M−1 + r̂ M

2
.
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Table 1 System-length distribution at pre-arrival epoch for Model II

n π−
1 (n) π−

2 (n) π−
3 (n) π−

4 (n) π−(n)e

0 0.00927966 0.00841835 0.00603943 0.00617759 0.02991504

1 0.01813923 0.01648252 0.01144179 0.01148005 0.05754360

2 0.02025392 0.01871026 0.01261098 0.01222101 0.06379617

3 0.02217509 0.02074651 0.01366990 0.01294188 0.06953338

4 0.02041191 0.01949779 0.01236545 0.01138914 0.06366430

5 0.01877762 0.01824560 0.01120896 0.01010146 0.05833365

6 0.01726661 0.01701593 0.01018007 0.00901886 0.05348148

7 0.01587224 0.01582628 0.00926150 0.00809691 0.04905693

8 0.01458733 0.01468795 0.00843865 0.00730247 0.04501640

9 0.01340453 0.01360775 0.00769918 0.00661065 0.04132211

10 0.01231658 0.01258923 0.00703266 0.00600259 0.03794107

15 0.00806481 0.00841811 0.00452781 0.00381255 0.02482328

20 0.00528463 0.00556571 0.00294933 0.00247639 0.01627606

30 0.00227420 0.00240832 0.00126591 0.00106248 0.00701091

40 0.00097994 0.00103877 0.00054534 0.00045774 0.00302180

50 0.00042238 0.00044782 0.00023506 0.00019730 0.00130256

70 0.00007848 0.00008321 0.00004368 0.00003666 0.00024204

100 0.00000629 0.00000667 0.00000350 0.00000294 0.00001939

120 0.00000117 0.00000124 0.00000065 0.00000054 0.00000360

140 0.00000021 0.00000023 0.00000012 0.00000010 0.00000066

150 0.00000009 0.00000009 0.00000005 0.00000004 0.00000027

180 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Sum 0.32221459 0.32234715 0.18821449 0.16722377 1.00000000

To determine r̂ , a binary search has been done on
∑M

i=1 pi xi = 1
λ
which gives

r̂ = 0.95605390. Thus, we have an approximate L.–S.T. of Weibull inter-arrival time
distribution as

˜A(s) =
M

∑

i=1

pie
−sxi . (46)

Now, we convert the transcendental function ˜A(s) given in (46) to a rational function
using the Padé approximation method, see Akar and Arikan [32]. Using Padé(3, 4)
in (46), we have

˜A(s) ≈ 1.00000000 + 0.00483753s + 0.00002094s2 − 3.38987909 × 10−8s3

1.00000000 + 0.02704285s + 0.0030138s2 + 0.00000165s3 + 3.81608327 × 10−9s4
.

(47)
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Table 2 System-length distribution at random epoch for Model II

n π1(n) π2(n) π3(n) π4(n) π(n)e

0 0.00597483 0.00540589 0.00390667 0.00402063 0.01930802

1 0.01514462 0.01373417 0.00962237 0.00971480 0.04821596

2 0.01956176 0.01797347 0.01223166 0.01198315 0.06175005

3 0.02154611 0.02007301 0.01332622 0.01271034 0.06765568

4 0.02101908 0.01993764 0.01280922 0.01190765 0.06567359

5 0.01933999 0.01868395 0.01160274 0.01053302 0.06015971

6 0.01778628 0.01744453 0.01053072 0.00938295 0.05514447

7 0.01635159 0.01623961 0.00957483 0.00840796 0.05057399

8 0.01502891 0.01508250 0.00871957 0.00757128 0.04640225

9 0.01381093 0.01398147 0.00795183 0.00684533 0.04258955

10 0.01269033 0.01294111 0.00726055 0.00620931 0.03910131

15 0.00830949 0.00866497 0.00466856 0.00393283 0.02557585

20 0.00544460 0.00573176 0.00303936 0.00255219 0.01676791

30 0.00234285 0.00248083 0.00130416 0.00109457 0.00722241

40 0.00100950 0.00107009 0.00056179 0.00047155 0.00311293

50 0.00043512 0.00046133 0.00024214 0.00020325 0.00134185

70 0.00008085 0.00008572 0.00004499 0.00003777 0.00024934

100 0.00000648 0.00000687 0.00000360 0.00000303 0.00001997

120 0.00000120 0.00000128 0.00000066 0.00000056 0.00000371

140 0.00000023 0.00000023 0.00000012 0.00000010 0.00000068

150 0.00000009 0.00000010 0.00000005 0.00000004 0.00000028

180 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Sum 0.32221459 0.32234715 0.18821449 0.16722377 1.00000000

Ls = 12.69096044,Ws = 0.28180688

Substitute sIm = −L(z) in (47) and using S(z) ≈ ˜A(−L(z)), we obtain

S(z) ≈
[

Im + 0.00483753(−L(z)) + 0.00002094(−L(z))2 − 3.38987909 × 10−8(−L(z))3
]

×
[

Im + 0.02704285(−L(z)) + 0.0030138(−L(z))2 + 0.00000165(−L(z))3

+3.81608327 × 10−9(−L(z))4
]−1

.

Substitute s = θ − θ z in (47), we obtain

˜A(θ − θ z) ≈ 0.72819146 − 0.05519272z + 0.00295301z2 + 0.00007734z3

1.00000000 − 0.37774905z + 0.05794233z2 − 0.00429479z3 + 0.00013060z4
.

(48)
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Table 3 System-length distribution at post-departure epoch for Model II

n π+
1 (n) π+

2 (n) π+
3 (n) π+

4 (n) π+(n)e

0 0.02550205 0.02206710 0.01706040 0.01693898 0.08156853

1 0.02332619 0.02029372 0.01565408 0.01549844 0.07477243

2 0.02135491 0.01866213 0.01436896 0.01419206 0.06857806

3 0.01956454 0.01716104 0.01319317 0.01300463 0.06292339

4 0.01793508 0.01578010 0.01211641 0.01192325 0.05775483

5 0.01644949 0.01450977 0.01112957 0.01093687 0.05302570

6 0.01509313 0.01334128 0.01022462 0.01003593 0.04869495

7 0.01385326 0.01226654 0.00939436 0.00921212 0.04472628

8 0.01271876 0.01127809 0.00863235 0.00845815 0.04108735

9 0.01167983 0.01036908 0.00793276 0.00776756 0.03774923

10 0.01072777 0.00953315 0.00729033 0.00713462 0.03468587

15 0.00702539 0.00626084 0.00478218 0.00467266 0.02274106

20 0.00460801 0.00411103 0.00313859 0.00306489 0.01492253

30 0.00198529 0.00177221 0.00135263 0.00132046 0.00643059

40 0.00085571 0.00076394 0.00058304 0.00056916 0.00277186

50 0.00036886 0.00032931 0.00025133 0.00024534 0.00119484

70 0.00006854 0.00006119 0.00004670 0.00004559 0.00022202

100 0.00000549 0.00000490 0.00000374 0.00000365 0.00001778

120 0.00000102 0.00000091 0.00000069 0.00000067 0.00000330

140 0.00000018 0.00000016 0.00000012 0.00000012 0.00000061

150 0.00000008 0.00000007 0.00000005 0.00000005 0.00000025

180 0.00000000 0.00000000 0.00000000 0.00000000 0.00000000

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

Sum 0.31003355 0.27388646 0.20994765 0.20613234 1.00000000

In order to determine Sn , n ≥ 0, from (6), we evaluate σk , k ≥ 0, from (10) by using
(48) in (8).

Now, we consider the BMSP for Tables (1, 2, 3) as follows:

L0 =

⎡

⎢

⎢

⎣

−12.0 1.0 1.0 1.0
2.0 −10.0 1.0 1.0
3.0 2.0 −14.0 1.0
1.0 2.0 2.0 −15.0

⎤

⎥

⎥

⎦

, L4 =

⎡

⎢

⎢

⎣

0.5 0.5 0.7 0.3
0.5 0.8 0.5 0.2
0.9 0.2 0.1 0.8
0.6 0.4 0.5 0.5

⎤

⎥

⎥

⎦

, L6 =

⎡

⎢

⎢

⎣

0.3 0.2 0.1 0.4
0.1 0.6 0.2 0.1
0.7 0.1 0.1 0.1
0.5 0.2 0.2 0.1

⎤

⎥

⎥

⎦

,

L9 =

⎡

⎢

⎢

⎣

0.9 0.3 0.2 0.1
0.2 0.3 0.1 0.4
0.6 0.3 0.4 0.2
0.8 0.7 0.3 0.2

⎤

⎥

⎥

⎦

, L10 =

⎡

⎢

⎢

⎣

0.7 0.6 0.8 0.9
0.1 0.2 0.3 0.1
0.2 0.4 0.1 0.3
0.8 0.9 0.7 0.6

⎤

⎥

⎥

⎦

,L12 =

⎡

⎢

⎢

⎣

0.3 0.7 0.4 0.1
0.5 0.3 0.1 0.4
0.7 0.8 0.5 0.5
0.8 0.2 0.3 0.7

⎤

⎥

⎥

⎦

,

withLk = 0, k ∈ N−{4, 6, 9, 10, 12}. Note that the input matrices for this BMSP are
taken in which the minimum batch size a = 4 and the maximum batch size N0 = 12.
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Table 4 System-length distribution at pre-arrival epoch for Model I

n π−
1 (n) π−

2 (n) π−
3 (n) π−(n)e

0 0.02216152 0.00927090 0.02389504 0.05532747

1 0.03702314 0.01548508 0.03946591 0.09197413

2 0.04699553 0.01965406 0.04990688 0.11655647

3 0.05368592 0.02245097 0.05691159 0.13304847

4 0.05817440 0.02432737 0.06161095 0.14411271

5 0.06118565 0.02558622 0.06476368 0.15153555

6 0.03946818 0.03583719 0.02588259 0.10118796

7 0.02660842 0.02415164 0.01712215 0.06788221

8 0.01785502 0.01619972 0.01148651 0.04554125

9 0.01197872 0.01086804 0.00770620 0.03055296

10 0.00803635 0.00729120 0.00516998 0.02049753

15 0.00109220 0.00099092 0.00070264 0.00278576

20 0.00014844 0.00013467 0.00009549 0.00037860

30 0.00000274 0.00000249 0.00000176 0.00000699

40 0.00000005 0.00000004 0.00000003 0.00000012

50 0.00000000 0.00000000 0.00000000 0.00000000

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Sum 0.39955459 0.22598519 0.37446022 1.00000000

This yields

π = [

0.32221459 0.32234715 0.18821449 0.16722377
]

,

with μ∗ = 66.11195378, and hence the traffic intensity ρ = 0.68118160.

Example 2 The goal of the this example is to validate the correctness of our analytical
results for the LN/BMSP/1 queue, where LN stands for lognormal distribution. The
system-length distributions at various time epochs are presented in Tables 4, 5 and 6.
Bottomof Table 5 contains themean system length andmean sojourn time of an arrived
customer.Thep.d.f. andC.D.F. of the lognormal inter-arrival timedistribution are taken

as a(x) = 1
xα

√
2π

e− (ln(x)−β)2

2α2 and A(x) = 1
2 + 1

2 erf
[

ln(x)−β√
2α

]

, x > 0, respectively, with

α = 0.55 and β = 1.92. The mean arrival rate λ ≡ 1

e(β+ α2
2 )

= 0.12602815. Similar

to Example 1, our main focus is to derive the explicit expression of S(z) and Sn , n ≥ 0,
numerically. Since the L.–S.T. of Lognormal distribution does not exist, we obtain an
approximate L.–S.T. ˜A(s) using the GTAMdescribed by Shortle et al. [31]. According
to Shortle et al. [31], we assumeM = 100 probabilities yi = 1−r̂ i , where yi = A(xi ),

1 ≤ i ≤ M , and for some r̂ in (0, 1). Hence, 1
2 + 1

2 erf
[

ln(xi )−β√
2α

]

= 1 − r̂ i implies

that xi = eβ+√
2αerf−1(1−2̂r i ), where erf−1[x] is the inverse error function of erf[x]. In
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Table 5 System-length distribution at random epoch for Model I

n π1(n) π2(n) π3(n) π(n)e

0 0.01522277 0.00636772 0.01652523 0.03811572

1 0.03236643 0.01353814 0.03458889 0.08049346

2 0.04387109 0.01834789 0.04663564 0.10885462

3 0.05158977 0.02157467 0.05471696 0.12788140

4 0.05676812 0.02373948 0.06013860 0.14064620

5 0.06024220 0.02519182 0.06377590 0.14920992

Sum 0.26006038 0.10875972 0.27638121 0.64520132

6 0.04561864 0.03748791 0.03373292 0.11683947

7 0.03066595 0.02784799 0.01980221 0.07831615

8 0.02059846 0.01869044 0.01325196 0.05254086

9 0.01381983 0.01253847 0.00889061 0.03524891

10 0.00927153 0.00841185 0.00596460 0.02364798

15 0.00126006 0.00114323 0.00081063 0.00321392

20 0.00017125 0.00015537 0.00011017 0.00043679

30 0.00000316 0.00000287 0.00000203 0.00000807

40 0.00000005 0.00000005 0.00000003 0.00000013

50 0.00000000 0.00000000 0.00000000 0.00000000

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Sum 0.39893438 0.23088356 0.37018207 1.00000000

Ls = 4.84230084,Ws = 38.42237560

order to determine r̂ in (0, 1), we use the command RootOf (erf(−Z) − 1 + 2̂ri) for
erf−1(1 − 2̂r i ) in Maple software. Allot the probability pi to each point xi as

p1 = y1 + y2
2

, pi = yi+1 − yi−1

2
, i = 2, 3, . . . , M − 1, pM = 1 − yM−1 + yM

2
.

The above all pi ’s can be written as a function of r̂ as

p1 = 2 − r̂ − r̂2

2
, pi = r̂ i−1 − r̂ i+1

2
, i = 2, 3, . . . , M − 1, pM = r̂ M−1 + r̂ M

2
.

To determine r̂ , a binary search has been done on
∑M

i=1 pi xi = 1
λ
which gives

r̂ = 0.94774845. Thus, we have an approximate L.–S.T. of lognormal inter-arrival
time distribution as

˜A(s) =
M

∑

i=1

pie
−sxi . (49)
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Table 6 System-length distribution at post-departure epoch for Model I

n π+
1 (n) π+

2 (n) π+
3 (n) π+(n)e

0 0.13296914 0.05562542 0.14337025 0.33196480

1 0.08916973 0.03728508 0.09342519 0.21987999

2 0.05983434 0.02501387 0.06264583 0.14749405

3 0.04014229 0.01678145 0.04202825 0.09895199

4 0.02693088 0.01125843 0.02819615 0.06638545

5 0.01806753 0.00755311 0.01891638 0.04453702

6 0.01212124 20.00506727 0.01269072 0.02987923

7 0.00813196 0.00339956 0.00851402 0.02004554

8 0.00545561 0.00228071 0.00571193 0.01344826

9 0.00366009 0.00153010 0.00383205 0.00902224

10 0.00245550 0.00102652 0.00257087 0.00605289

15 0.00033372 0.00013951 0.00034940 0.00082263

20 0.00004535 0.00001896 0.00004749 0.00011180

30 0.00000083 0.00000035 0.00000087 0.00000207

40 0.00000001 0.00000000 0.00000001 0.00000002

50 0.00000000 0.00000000 0.00000000 0.00000000

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

Sum 0.40394374 0.16891402 0.42714224 1.00000000

Now, we convert the transcendental function ˜A(s) given in (49) to a rational function
using the Padé approximation method, see Akar and Arikan [32]. Using Padé(3, 4)
in (49), we have

˜A(s) ≈ 1.00000000 + 0.80371222s + 5.29653694s2 − 7.04794571s3

1.00000000 + 8.73844756s + 32.91188263s2 + 78.68204564s3 + 110.95800202s4
. (50)

Substitute sIm = −L(z) in (50) and using S(z) ≈ ˜A(−L(z)), we obtain

S(z) ≈
[

Im + 0.80371222(−L(z)) + 5.29653694(−L(z))2 − 7.04794571(−L(z))3
]

×
[

Im + 8.73844756(−L(z)) + 32.91188263(−L(z))2 + 78.68204564(−L(z))3

+110.95800202(−L(z))4
]−1

.

Substitute s = θ − θ z in (50), we obtain

˜A(θ − θ z) ≈ 0.02655234 + 0.01575050z − 0.05885442z2 + 0.03133293z3

1.00000000 − 2.89469203z + 3.25076963z2 − 1.67179655z3 + 0.33050029z4
. (51)

In order to determine Sn , n ≥ 0, from (6), we evaluate σk , k ≥ 0, from (10) by using
(51) in (8).
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Now, we consider the BMSP for Tables 4, 5, 6 as follows:

L0 =
⎡

⎣

−0.46 0.10 0.30
0.30 −0.45 0.10
0.20 0.40 −0.67

⎤

⎦ , L6 =
⎡

⎣

0.03 0.01 0.02
0.02 0.01 0.02
0.02 0.01 0.04

⎤

⎦ , with Lk = 0, k ∈ N − {6}.

Note that the BMSP is considered with fixed batch size a = N0 = 6. This yields

π = [

0.39141631 0.34420601 0.26437768
]

,

with μ∗ = 0.35521030 and hence the traffic intensity ρ = 0.35479869.

Example 3 Thegoal of the this example is to obtain the numerical result ofGI/MSP/1
queue fromGI/BMSP/1queuewhena = 1 andgenerate somegraphs to showdiffer-
ent aspects of the model. In this regard, we choose Pareto distribution as inter-arrival
time distribution. The p.d.f. and C.D.F. of the Pareto inter-arrival time distribution
are taken as a(x) = θcθ

(c+x)θ+1 , x ≥ 0 and A(x) = 1 − cθ

(c+x)θ
, x ≥ 0, respec-

tively, with shape parameter θ = 2.75 and scale parameter c = 1.25. This leads to
λ = (θ − 1)/c = 1.40. Since the L.–S.T. of Pareto distribution does not exist, we
obtain an approximate L.–S.T. ˜A(s) using the GTAM described by Shortle et al. [31].
Using the similar process given in Examples 1 and 2, we have an approximate L.–S.T.
as

˜A(s) ≈ 1.00000000 + 9.18673177s + 30.15079569s2 + 32.86111075s3

1.00000000 + 9.90101748s + 36.20987447s2 + 51.77863653s3 + 17.05266162s4
.

(52)

Togenerate numerical result for themodelGI/MSP/1queue from theGI/BMSP/1
queueing model when a = 1, we consider the MSP as

L0 =
⎡

⎣

−2.5 0.43 0.27
0.55 −2.75 0.25
0.50 0.14 −2.68

⎤

⎦ , L1 =
⎡

⎣

0.40 0.80 0.60
0.70 0.75 0.50
0.90 0.44 0.70

⎤

⎦ .

This yields

π = [

0.38619556 0.32210353 0.29170091
]

,

withμ∗ = 1.91832375 and hence the traffic intensity ρ = 0.72980382. The numerical
results for theGI/MSP/1 queue are generated by the rootsmethod given in this paper,
and the matrix-geometric method given in Samanta [17] is presented in Tables 7 and
8, respectively.

Now, in order to show the effect of traffic intensity (ρ) on the average system
length (Ls), we choose the rate matrices Ln , n ≥ 0, of order m = 3 of the service
process BMSP with maximum and minimum service batch size N0 = 6 and a = 3,
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Fig. 1 Average system length (Ls ) versus traffic intensity (ρ)

respectively, such that each entry of Ln , n ≥ 0, is a function of δ (δ > 0) and they are
given by
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with Lk = 0, k ∈ N − {3, 5, 6} and δ takes the values 0.40, 0.20, 0.15, 0.11, 0.09,
0.078, 0.068, 0.060, 0.053 to generate different values of ρ presented in the graph. It is
observed from Fig. 1 that the average system length increases as the traffic intensity ρ

increases. Further, the average system length increases faster when the traffic intensity
is closer to 1.
Moreover, to show the effect of fixed batch size (a) on the average system length (Ls),
we choose the following BMSPs as

L0 = 1

a

⎡

⎣

−2.46 0.22 0.12
0.11 −2.61 0.32
0.13 0.47 −2.73

⎤

⎦ , La = 1

a

⎡

⎣

0.06 1.01 1.05
1.03 1.08 0.07
1.01 0.08 1.04

⎤

⎦ ,

123



Modelling and Analysis of GI/BMSP/1 Queueing System 3805

3 4 5 6 7 8 9 10 11

Fixed batch size a (Model I)

2

4

6

8

10

12

14

16

18

20
A

va
ra

ge
 s

ys
te

m
 le

ng
th

a Vs Ls for ρ=0.65260008

a Vs Ls for ρ=0.29201793

Fig. 2 Average system length (Ls ) versus fixed batch size (a)

with ρ = 0.65260008, and

L0 = 1

a

⎡

⎣

−5.48 0.2 0.1
0.2 −5.73 0.1
0.3 0.1 −4.57

⎤

⎦ , La = 1

a

⎡

⎣

1.08 1.05 3.05
1.07 3.06 1.30
1.05 1.08 2.04

⎤

⎦ ,

with ρ = 0.29201793 and for both the casesLk = 0, k ∈ N−{a}. It is observed from
Fig. 2 that for both the cases of low and high traffic intensities the average system
length strictly monotonically increases as the fixed batch size a increases. We also
see that the average system length for high traffic intensity is always higher than the
average system length for low traffic intensity.

5 Conclusion

This paper analysed the GI/BMSP/1 queueing system to obtain analytical expres-
sions for the system-length distributions at three time epochs ( pre-arrival, random,
and post-departure) and other important performance measures of the system.We first
determined the system-length distribution at pre-arrival epoch based on the zeros of the
related characteristic polynomial of the vector p.g.f. of the system-length distribution.
Next, we have established the relation between pre-arrival and random epochs using
Markov renewal theory argument to obtain the system-length distribution at random
epoch. In addition, the analytical results obtained in this paper have been numerically
verified by variety of numerical examples to display the consequence of the system
framework and correctness of the analysis. Furthermore, it would be interesting to
analyse sojourn time distribution of an arriving customer based on analytical results
of this paper and is left for future investigation.
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