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Abstract
Linear complementary dual (LCD) codes are linear codes whose intersections with
their duals are trivial. In this paper, characterizations of LCD codes with respect to
the symplectic inner product, i.e. symplectic LCD codes, over finite fields are given.
Some methods for constructing symplectic LCD codes and symplectic LCD MDS
codes are presented. As an application, a class of symplectic LCDMDS codes is con-
structed by employing Vandermonde matrices, and the corresponding MDS maximal
entanglement entanglement-assisted quantum error-correcting codes (EAQECCs) are
constructed.

Keywords Linear codes · Complementary dual · Entanglement-assisted quantum
codes · MDS codes · Vandermonde matrix

Mathematics Subject Classification 11T71 · 94B05

1 Introduction

In [21], Massey first introduced the concept of LCD codes, which have been widely
applied in data storage, communications systems, and cryptography. Carlet and Guil-
ley [4] investigated an interesting application of binary LCD codes against so-called
side channel attacks (SCA) and fault injection attacks (FIA). A necessary and sufficient
condition for a cyclic code to be an LCD code has been provided by Yang and Massey
in [30]. In [13], quasi-cyclic codes that are LCD have been characterized and studied
using their concatenated structures.With the development of classical error-correcting
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codes and their applications to LCD codes, more and more works have been done(
[4–7,9,14,18,25–28]). In [3], Brun et al. introduced EAQECCs, which allow the use of
classical error-correcting codes without orthogonality conditions. Additionally, there
is a close link between EAQECCs and LCD codes. Recently, the application of LCD
codes in constructing good EAQECCs has aroused the interest of researchers. With
the development of classical error-correcting codes and the applications to EAQECCs,
people have extensively studied the Euclidean, Hermitian and symplectic inner prod-
uct and investigated the corresponding LCD codes, and many classes of maximal
entanglement EAQECCs have been constructed (see [10,12,15–17,19,22,23,29]).

In this work, the paper will mainly focus on LCD MDS codes over finite fields
with respect to the symplectic inner product. As an application of symplectic LCD
MDS codes, we present a construction of a class of MDS maximal entanglement
EAQECCs.

The work is organized as follows. Section 2 gives preliminaries and background.
In Sect. 3, we give the characterizations of symplectic LCD codes. Based on afore-
mentioned results, we present some constructions of symplectic LCD MDS codes in
Sects. 4 and 5, and a construction of a class ofMDSmaximal entanglement EAQECCs
is obtained in Sect. 6.

2 Preliminaries

Let Fq denotes the finite field of order q, where q is a prime power. An [n, k, d]-linear
code C over Fq is a k-dimensional subspace of F

n
q with minimum Hamming distance

d, and the minimum distance is bounded by the Singleton bound d ≤ n − k + 1.
A code meeting the bound is called maximum distance separable (MDS). For u =
(u1, u2, · · · , un), v = (v1, v2, · · · , vn) ∈ F

n
q , the Euclidean inner product 〈, 〉E is

defined by 〈u, v〉E = ∑n
i=1 uivi . For an Fq -linear code C in F

n
q , define the Euclidean

dual C⊥E = {x ∈ F
n
q : 〈x, c〉E = 0 for all c ∈ C}. For any x ∈ Fq2 , the conjugate of

x is defined as x̄ = xq . For a matrix A = (
ai j

)
over Fq2 , A

T denotes the transposed

matrix of A, and Ā =
(
aqi j

)
denotes the conjugate matrix of A. When we use the

vertical bar | in a matrix, such as [A|B], it means that [A|B] is a block matrix, which
is the juxtaposition of matrices A and B. For u, v ∈ F

n
q2
, the Hermitian inner product

〈, 〉H is defined by 〈u, v〉H = ∑n
i=1 ūivi . For an Fq2 -linear code C in F

n
q2
, define the

Hermitian dual C⊥H = {x ∈ F
n
q2

: 〈x, c〉H = 0 for all c ∈ C}.
A linear code C over Fq is called an Euclidean LCD code if C ∩ C⊥E = {0}. A

linear code C over Fq2 is called a Hermitian LCD code if C ∩ C⊥H = {0}.
The following proposition gives a complete characterization of Euclidean and Her-

mitian LCD codes.

Proposition 1 [2,4] If G is a generator matrix for the [n, k]-linear code C, then C is
an Euclidean (resp. a Hermitian) LCD code if and only if (iff) the k × k matrix GGT

(resp. GḠT ) is nonsingular.
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3 Characterizations of Symplectic LCD Codes

For x, y ∈ F
2n
q , the symplectic inner product is defined as 〈x, y〉S = xΩyT , where

Ω =
[

0 In
−In 0

]

, In is the identity matrix of order n. For an Fq -linear code in F
2n
q ,

define the symplectic dual code as C⊥S = {x ∈ F
2n
q : 〈x, c〉S = 0 for all c ∈ C}. It

is easy to show that C⊥S is an Fq -linear code in F
2n
q , and dim(C⊥S ) + dim(C) = 2n.

For a vector (u|v) ∈ F
2n
q , where u = (u1, u2, · · · , un), v = (v1, v2, · · · , vn) ∈ F

n
q ,

the symplectic weight is defined by wtS(u|v) = |{i : (ui , vi ) �= (0, 0)}|. For two
vectors (u|v), (u′|v′) ∈ F

2n
q , the symplectic distance is defined by dS((u|v), (u′|v′)) =

wtS(u − u′|v − v′). The minimum symplectic distance of a linear code C is defined
by dS(C) = min{wtS(u|v) : for all nonzero (u|v) ∈ C}. Then it is straightforward
to verify that a [2n, k]-linear code C also satisfies the symplectic Singleton bound:
k + 2dS ≤ 2n + 2. A code achieving the above bound is called a simplectic MDS
code.

Definition 1 A linear code C is called a symplectic LCD code if C ∩ C⊥S = {0}. A
symplectic LCD and also symplectic MDS code will be abbreviated to a symplectic
LCD MDS code.

The following characterization of symplectic LCD codes is similar to Proposition 1.

Theorem 1 If G is a generator matrix for the Fq-linear code C in F
2n
q with parameters

[2n, k], then C is a symplectic LCD code iff the k × k matrix GΩGT is nonsingular,

where Ω =
[

0 In
−In 0

]

.

Proof Suppose thatGΩGT is singular, then there is a nonzero vector a ∈ F
k
q , such that

a(GΩGT ) = 0. Let c ∈ C\{0}, such that c = aG, then cΩGT = a(GΩGT ) = 0,
so that c ∈ C⊥S , which is a contradiction.

For the converse, suppose that GΩGT is nonsingular. For every a ∈ C ∩ C⊥S ,
if a ∈ C , then ∃v ∈ F

k
q , such that a = vG, then aΩ[GT (GΩGT )−1G] =

v[(GΩGT )(GΩGT )−1]G = vG = a. If a ∈ C⊥S , which implies that aΩGT = 0,
then aΩ[GT (GΩGT )−1G] = aΩGT (GΩGT )−1G = 0. Therefore,C∩C⊥S = {0}.

��
A generic construction of linear codes over Fp from subsets of F

m
p was considered

in [8] and restated in [31].
Let G = [g1, g2, · · · , g2n] be an m × (2n) matrix formed by the column vectors

g1, g2, · · · , g2n ∈ F
m
p , and

C = {(〈a, g1〉E , 〈a, g2〉E , · · · , 〈a, g2n〉E ) : a ∈ F
m
p }.

Clearly,C is a [2n, k]-linear code generated by the row vectors of the matrix G, where
k = rank(G). In particular, if k = m, G is exactly a generator matrix of C .

The following result can be used to determine when C is symplectic LCD.
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Theorem 2 For the linear code C = {(〈a, g1〉E , 〈a, g2〉E , · · · , 〈a, g2n〉E ) : a ∈ F
m
p }

and G = [g1, g2, · · · , g2n], we have:
(1) dim(C) = rank(G);

(2) dim(C ∩ C⊥S ) = rank(G) − rank(GΩGT ).

Proof (i) It is clear that dim(C) = rank(G);
(ii) Let c = ∑m

i=1 xi ci be any codeword in C , where xi ∈ Fp and ci is the i-th row of
the matrix G for i ∈ {1, 2, · · · ,m}. Then, c ∈ C ∩C⊥S if and only if 〈c, ci 〉S = 0
for any i ∈ {1, 2, · · · ,m}, that is GΩGT x = 0, where x = (x1, x2, · · · , xm)T .
Let σ be the linear transformation from K = {x : GΩGT x = 0} to L = C ∩C⊥S

defined by σ(x) = xT G,∀x ∈ K .Then, dim(ker(σ )) = m−rank(G), dim(K ) =
m − rank(GΩGT ), where ker(σ ) = {x : xT G = 0}. Note that σ is surjective,
applying the rank-nullity theorem, we have

dim(K ) = dim(L) + dim(ker(σ )),

that is dim(L) = rank(G) − rank(GΩGT ). This completes the proof. ��
From Theorem 2, we immediately get the condition for C to be symplectic LCD.

Corollary 1 For the linear code C = {(〈a, g1〉E , 〈a, g2〉E , · · · , 〈a, g2n〉E ) : a ∈ F
m
p },

where g1, g2, · · · , g2n ∈ F
m
p and G = [g1, g2, · · · , g2n], C is symplectic LCD iff

rank(G) = rank(GΩGT ).

Remark 1 (1) In Corollary 1, if G is exactly a generator matrix of C , then rank(G) =
m = rank(GΩGT ), soGΩGT is nonsingular.Weget a result similar to Theorem1
again.

(2) In [6], the concept of σ -LCD codes was introduced first, which includes known
Euclidean LCD codes, Hermitian LCD codes, and Galois LCD codes. In addition,
we found that a symplectic LCDcode is just aσ -LCDcodewithσ(x |y) = (y|−x),
where x, y ∈ F

n
q and σ is a special mapping from F

2n
q to itself. Hence, the result

of the Theorem 1 can also be obtained from Proposition 2.1 in [6].

Example 1 LetC be a linear code generated by the row vectors of the following matrix
G.

(1) Let G = I , where I denotes the m × m identity matrix over F2, and m is even. It
is obvious that rank(I ) = rank(IΩ I T ) = rank(Ω) = m. Then C is symplectic
LCD from Corollary 1.

(2) Let G =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

0 1 1 · · · 1 1
1 0 1 · · · 1 1
1 1 0 · · · 1 1
...

...
... · · · ...

...

1 1 1 · · · 1 0

⎤

⎥
⎥
⎥
⎥
⎥
⎦

be anm ×m matrix over F2, andm is even. It is easy to

check that rank(G) = m and rank(GΩGT ) = rank(G). ThenC is also symplectic
LCD from Corollary 1.
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Example 2 LetG = [I2|A] be a generator matrix for the F2-linear codeC with param-

eters [4, 2], where A =
[
1 1
0 1

]

. Then we have GΩGT = AT − A =
[
0 1
1 0

]

is

nonsingular, by Theorem 1, C is symplectic LCD.

4 Existence and Constructions of Symplectic LCD Codes

4.1 Symplectic LCD Codes from Smaller Dimensions and Lengths

Symplectic LCD codes can easily be derived from symplectic LCD codes of smaller
dimensions and lengths.

Theorem 3 Let Ci be a q-ary [2ni , 2ki , di ] symplectic LCD code with a generator

matrix G(i) = [G(i)
1 |G(i)

2 ], where i = 1, 2. Then, G =
[
G(1)

1 0 G(1)
2 0

0 G(2)
1 0 G(2)

2

]

generates a q-ary [2n1 + 2n2, 2k1 + 2k2,min{d1, d2}] symplectic LCD code C.

Proof Since

GΩGT =
⎡

⎢
⎣

−G(1)
2

[
G(1)

1

]T + G(1)
1

[
G(1)

2

]T
0

0 −G(2)
2

[
G(2)

1

]T + G(2)
1

[
G(2)

2

]T

⎤

⎥
⎦ ,

we only need to prove that −G(i)
2 [G(i)

1 ]T + G(i)
1 [G(i)

2 ]T is nonsingular for i = 1, 2,
and the nonsingularity is guaranteed by the fact that Ci is symplectic LCD. According
to Theorem 1, we get the result immediately. ��

The theorem above can be generalized to the following result easily.

Theorem 4 Let Ci be a q-ary [2ni , 2ki , di ] symplectic LCD code for i = 1, 2, · · · , n

and G(i) =
[
G(i)

1 |G(i)
2

]
be a generator matrix of Ci . Then,

G =

⎡

⎢
⎢
⎢
⎢
⎣

G(1)
1 0 · · · 0 G(2)

1 0 · · · 0
0 G(2)

1 · · · 0 0 G(2)
2 · · · 0

...
...

. . .
...

...
...

. . .
...

0 0 . . . G(n)
n 0 0 . . . G(2)

n

⎤

⎥
⎥
⎥
⎥
⎦

generates a q-ary
[∑n

i=1 ni ,
∑n

i=1 ki ,min{di }
]
symplectic LCD code C.

Remark 2 Unfortunately, although the constructions in this section have certain gen-
erality, but the parameters of symplectic LCD codes constructed are usually not good.
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4.2 Symplectic LCDMDS Codes from Euclidean LCDMDS Codes

Theorem 5 Let C be a q-ary linear code with a generator matrix G =
[
G1 0
0 G2

]

,

where Gi is a generator matrix of a q-ary [n, k, di ] linear code Ci , i = 1, 2. If C1,C2
are Euclidean LCD and GT

1 G2 is symmetric, then C is a [2n, 2k, dS] symplectic LCD
code, where dS = min{d1, d2}; Further, if C1,C2 are both [n, k, n − k + 1] MDS
codes, then C is a [2n, 2k, n − k + 1] symplectic MDS code.

Proof Since GΩGT =
[

0 G1GT
2−G2GT

1 0

]

, we only need to prove G1GT
2 is nonsin-

gular. If C1,C2 are Euclidean LCD and GT
1 G2 is symmetric, then G1GT

1 ,G2GT
2 are

nonsingular andGT
1 G2 = GT

2 G1. For (G1GT
2 )2 = G1GT

2 G1GT
2 = G1GT

1 G2GT
2 , we

have G1GT
2 is nonsingular. If C1,C2 are both MDS, it is easy to get that the minimum

symplectic distance of C is dS = n − k + 1. Obviously, C achieves the symplectic
Singleton bound, and becomes symplectic MDS. ��

According to the theorem above, we can get the following corollary immediately.

Corollary 2 Let C̃ = {(u|v) : u, v ∈ C}, where C is a q-ary linear code C. If C is
Euclidean LCD MDS, then C̃ is symplectic LCD MDS.

If the following MDS conjecture holds, all Euclidean LCD MDS codes have be
classified in [5].

MDS conjecture: Let C be an [n, k] MDS code. Then n ≤ q + 1, except when q is
even and k ∈ {3, q − 1}, in which case n ≤ q + 2.

Proposition 2 [5] Let q be a prime power with q > 3 and k, n be integers with
0 ≤ k ≤ n. Then there exists a q-ary Euclidean LCD MDS code with parameters
[n, k] if one of the following conditions holds.

(1) n ≤ q + 1;
(2) q = 2m with positive integer m , n = q + 2, and k = 3 or q − 1.

When q = 2, all 2-ary LCD MDS codes are [n, k] codes with 0 ≤ k ≤ n ≤ 3
and [n, k] �= [2, 1]. When q = 3, all 3-ary LCD MDS codes are [n, k] codes with
0 ≤ k ≤ n ≤ 4 and [n, k] �= [4, 2].

According to Corollary 2 and Proposition 2, we can easily get that, there exists a
q-ary [2n, 2k] symplectic LCD MDS code if one of the conditions in Proposition 2
holds.

Example 3 (1) As usual take F4 = {0, 1, ω, ω̄ = ω2} with 1 + ω + ω2 = 0. Let C
be an F4-linear code with parameters [6, 3, 4], whose generator matrix is given

by G =
⎡

⎣
1 1 1 ω 0 0
1 ω ω̄ 0 1 0
1 ω̄ ω 0 0 ω

⎤

⎦. It’s easy to verify that C is Euclidean LCD MDS.

Applying Corollary 2, C̃ = {(u|v) : u, v ∈ C} is a [12, 6, 4] symplectic LCD

MDS with a generator matrix G̃ =
[
G 0
0 G

]

.
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(2) Let C be an F5-linear code with parameters [5, 2, 4], whose generator matrix is

given by G =
[
1 0 1 1 1
0 1 1 −1 2

]

, then C is Euclidean LCD MDS. Applying Corol-

lary 2, C̃ = {(u|v) : u, v ∈ C} is a [10, 4, 4] symplectic LCD MDS code with a

generator matrix G̃ =

⎡

⎢
⎢
⎣

1 0 1 1 1 0 0 0 0 0
0 1 1 −1 2 0 0 0 0 0
0 0 0 0 0 1 0 1 1 1
0 0 0 0 0 0 1 1 −1 2

⎤

⎥
⎥
⎦.

4.3 Symplectic LCDMDS Codes fromHermitian LCDMDS Codes

The following lemmas are important in the subsequent construction.

Lemma 1 [20] There must be an element γ ∈ Fq2\Fq , such that γ q = −γ +α, where
α ∈ Fq\{0}.
Lemma 2 [20] Let C be a q2-ary linear code in F

n
q2
, then, any codeword of C can be

written as u + γ v with u, v ∈ F
n
q .

The mapΦ is defined byΦ(a+γ b) = (a|b) for a, b ∈ Fq from Fq2 to F
2
q . Clearly,

Φ is a bijection, which extends naturally to a map from F
n
q2

to F
2n
q .

The following theorem is easy to be obtained and we omit the proof.

Theorem 6 Let C be a q2-ary linear code with parameters [n, k, d] and Φ(C) =
{(u|v) : u + γ v ∈ C}, where γ ∈ Fq2\Fq , then Φ(C) is a q-ary [2n, 2k, dS]-linear
code, where dS = d. Further, if C is MDS, then Φ(C) is symplectic MDS.

Theorem 7 Let C be a q2-ary [n, k]-linear code, and Φ(C) = {(u|v) : u + γ v ∈ C}.
If C is Hermitian LCD, then Φ(C) is symplectic LCD.

Proof For any c ∈ C, c′ ∈ C⊥H , where c = u + γ v, c′ = u′ + γ v′, we have
〈c, c′〉H = ∑n

i=1(ui + γ vi )
q(u′

i + γ v′
i ) = ∑n

i=1(uiu
′
i + γ q+1viv

′
i + γ qvi u′

i +
γ uiv′

i ) = ∑n
i=1(uiu

′
i + γ q+1viv

′
i + αvi u′

i ) + γ
∑n

i=1(uiv
′
i − vi u′

i ) = 0, which
implies that

∑n
i=1(uiu

′
i + γ q+1viv

′
i + αvi u′

i ) = 0 and
∑n

i=1(uiv
′
i − vi u′

i ) = 0,
then 〈Φ(c),Φ(c′)〉S = 〈(u|v), (u′|v′)〉S = ∑n

i=1(uiv
′
i − vi u′

i ) = 0. So we have
φ(C⊥H ) ⊆ φ(C)⊥S . Since the map φ is bijection, φ(C⊥H ) = φ(C)⊥S .

If C is Hermitian LCD, then C ∩ C⊥H = {0}. We can easily obtain that φ(C ∩
C⊥H ) ⊆ φ(C) ∩ φ(C⊥H ). Again because φ is bijection, we have φ(C) ∩ φ(C)⊥S =
φ(C) ∩ φ(C⊥H ) = φ(C ∩ C⊥H ) = {0}. Thus φ(C) is symplectic LCD. ��
Example 4 Let C be the F4-linear code with parameters [4, 2, 2], whose generator

matrix is given by G =
[
1 1 1 1
0 1 ω ω

]

. We can easily verify that GḠT is nonsingular,

then C is Hermitian LCD from Proposition 1. According to Theorem 7, Φ(C) =
{(u|v) : u + ωv ∈ C} is [8, 4, 2] binary symplectic LCD with a generator matrix

Φ(G) =

⎡

⎢
⎢
⎣

1 1 1 1 0 0 0 0
0 1 0 0 0 0 1 1
1 1 1 1 1 1 1 1
0 1 1 1 0 1 0 0

⎤

⎥
⎥
⎦.
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Corollary 3 Let C be a q2-linear code in F
n
q , and Φ(C) = {(u|v) : u + γ v ∈ C},

where γ ∈ Fq2\Fq . If C is a q2-ary [n, k, n − k + 1] Hermitian LCD MDS code, then
Φ(C) is a q-ary [2n, 2k, n − k + 1] symplectic LCD MDS.

Proposition 3 [5] Let q be a prime power and k, n be integers with 0 ≤ k ≤ n. Then
there exists a q2-ary Hermitian LCD MDS code with parameters [n, k] if one of the
following conditions holds.

(1) n ≤ q + 1, k ≤ q − 2 or n − k ≤ q − 2;
(2) q odd, [n, k] ∈ {[2k, k], [2k + 1, k], [2k + 2, k]} where k is a positive integer with

k|(q2 − 1), k � (q + 1), and k < q2 − 1;
(3) q = 2m ≥ 8, n = q + 2, k = 3 or k = q − 1.

According to Corollary 3 and Proposition 3, we can easily get that, there exists a
q-ary [2n, 2k] symplectic LCD MDS code if one of the conditions in Proposition 3
holds.

5 Special Symplectic LCDMDS Codes from VandermondeMatrices

Next, some symplectic LCDMDS codes are constructed fromVandermondematrices,
and the elements of Vandermonde matrices are always restricted in finite field F2s . We
give the following definitions first. For more results, please refer to the literature [24].

An n × n matrix M is an MDS matrix iff every submatrix of M is nonsingular.
An m × m matrix A = van(a0, a1, · · · , am−1) =

⎛

⎜
⎜
⎜
⎝

1 a0 a20 · · · am−1
0

1 a1 a21 · · · am−1
1

...
...

... · · · ...

1 am−1 a2m−1 · · · am−1
m−1

⎞

⎟
⎟
⎟
⎠

is called a Vandermonde matrix, where the elements are all different, that is i �= j
implies ai �= a j ).

A 2n × 2n matrix H is a Finite Field Hadamard (FFHadamard) matrix in F2s if it

can be represented as H =
(
U V
V U

)

, whereU and V are also FFHadamard (see [1]).

Let H = had(a0, a1, a2, a3) =

⎛

⎜
⎜
⎝

a0 a1 a2 a3
a1 a0 a3 a2
a2 a3 a0 a1
a3 a2 a1 a0

⎞

⎟
⎟
⎠ , which implies hi, j =

ai⊕ j (⊕in ai⊕ j : bit-wise XOR). Obviously, the matrix is symmetrical and any two
rows of H are orthogonal in F2s .

5.1 [2m, 2k] Symplectic LCDMDS Codes

Let’s consider the required conditions for the construction of [2m, 2k] symplectic LCD
MDS codes, where 2 ≤ m ≤ s and 1 ≤ k ≤ 2m−1. We look at the case of m = 2 first.
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For matrix A = van(a0, a1, a2, a3) and B = van(b0, b1, b2, b3) = van(a0 +
Δ, a1 + Δ, a2 + Δ, a3 + Δ), where Δ is an arbitrary non-zero number in F2s .

Let Ã =
⎛

⎜
⎜
⎝

a30 + s0a0 + s1 a31 + s0a1 + s1 a32 + s0a2 + s1 a33 + s0a3 + s1
a20 + s0 a21 + s0 a22 + s0 a23 + s0

a0 a1 a2 a3
1 1 1 1

⎞

⎟
⎟
⎠ ,

where s0 = ∑3
i=0 a

5
i /

∑3
i=0 a

3
i and s1 = ∑3

i=0 a
3
i .

The following lemma is a slight modification of Corollary 2 in [24].

Lemma 3 Let G = B Ã, the elements ai and b j must all be different and chosen such
that: a0 + a1 + a2 + a3 = 0 and ai + b j = al + bl

⊕
i
⊕

j , i, j, l ∈ {0, 1, 2, 3}. Then
G is a FFHadamard MDS matrix and G2 = s21 I4.

With the notations and properties above, we will get the following construction.

Construction 1 Let GΓ = (gi )i∈Γ , which is composed of some row vectors of G =
B Ã, where gi is the i-th row of G and i ∈ Γ = {t, 2+ t : t ∈ T ⊂ {1, 2}}. Let CΓ be
an F2s -linear code with the generator matrix GΓ and |Γ | = 2k. If s21 �= 1, then CΓ

is a symplectic LCD MDS code with parameters [4, 2k], where k = 1, 2.

Proof Let G =
(
U V
V U

)

, where U and V are also FFHadamard. Let gi = (ui |vi ) and
g2+i = (vi |ui ) for 1 ≤ i ≤ 2, where ui and vi are row vectors ofU and V respectively.
The (i, j) element of GΩGT is giΩgTj , which is denoted as si, j ,

If 1 ≤ i, j ≤ 2, then si, j = giΩgTj = (ui |vi )Ω(u j |v j )
T = uivTj − vi uTj = 0.

Similarly, s2+i,2+ j = vi uTj − uivTj = 0.

If 1 ≤ i ≤ 2 and j = 2 + i , then si, j = giΩgT2+i = (ui |vi )Ω(vi |ui )T =
uiuTi − viv

T
i . From Lemma 3, si, j = s21 − 1 �= 0. Similarly, s j,i = 1 − s21 �= 0.

In summary,

GΓ ΩGT
Γ = (s21 − 1)

(
0 Ik

−Ik 0

)

is nonsingular, where |Γ | = 2k. Applying Theorem 1, CΓ is a symplectic LCD code
with parameters [4, 2k].

For GΓ is the parity check matrix of C⊥E
Γ and G is an MDS matrix, we have every

2k columns of GΓ are linearly independent. Obviously, some 2k + 1 columns of GΓ

are linearly dependent. Therefore, C⊥E
Γ has minimum distance 2k + 1, which means

that C⊥E
Γ is MDS, then CΓ is also an MDS code with parameters [4, 2k, dH ], where

k = 1, 2, dH = 5 − 2k. Obviously, we have dS ≥ �dH/2� = 3 − k. On the other
hand, CΓ also satisfies the symplectic Singleton bound, then dS ≤ 3 − k. Therefore,
dS = 3 − k, that is, CΓ is symplectic MDS. ��

Now, let’s extend the case to [2m, 2k], where m ≥ 3.
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Definition 2 [24] The matrix A = van(a0, a1, · · · , a2m−1) is called a Special Van-
dermonde (SV) matrix if

ai + ai⊕2k = Rk, for all k ∈ {0, 1, · · · ,m − 1},

where Rk’s are different non-zero constants such that for μi ∈ {0, 1},

m−1∑

i=0

μi Ri = 0 ⇒ μi = 0, for all i ∈ {0, 1, · · · ,m − 1}.

It’s easy to observe that all ai ’s are constructed from a0, R0, R1, · · · , Rm−1.
For anSVmatrix A = van(a0, a1, · · · , a2m−1) and B = van(b0, b1, · · · , b2m−1) =

van(a0 +Δ, a1 +Δ, · · · , a2m−1 +Δ), where ai + b j = al + bl
⊕

i
⊕

j and ai , b j are

all different. Let G = B Ã, where the j-th column of Ã is Ãcol( j) =
⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

a2
m−1+2m−2+···+1
j + s0a

2m−2+2m−3+···+1
j + · · · + sm−2a j + sm−1

.

.

.

a2
m−1+2m−2

j + s0a
2m−2

j + s1
.
.
.

a2
m−1

j + s0a j

a2
m−1

j + s0
.
.
.

a j
1

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

and s0 = ∑
a2

m+1−2m−1−1
i /

∑
a2

m−1
i , s1 = ∑

a2
m+1−2m−2−1

i /
∑

a2
m−1

i , · · · ,
sm−1 = ∑

a2
m+1−1−1

i /
∑

a2
m−1

i . Then G is a FFHadamard MDS matrix and

G2 = (
∑

a2
m−1

i )2 I2m (see [24]).
For the FFHadamardMDSmatrix defined above, we get the following construction.

The proofs are similar to construction 1 and we omit it here.

Construction 2 Let GΓ = (gi )i∈Γ , which is composed of some row vectors of G =
B Ã, where gi is the i-th row of G and Γ = {t, 2m−1 + t : t ∈ T ⊂ {1, 2, · · · , 2m−1}}.
Let CΓ be an F2s -linear code with the generator matrix GΓ and |Γ | = 2k. If
(
∑

a2
m−1

i )2 �= 1, then CΓ is a symplectic LCD MDS code with parameters [2m, 2k],
where k = 1, 2, · · · , 2m−1.

According to the construction of CΓ and the proof, it is not difficult to obtain the
following result, which will be useful in Sect. 6.

Proposition 4 If CΓ is a [2m, 2k, 2m−1−k+1] symplectic LCDMDS code, then C⊥S
Γ

is also a [2m, 2m −2k, k +1] symplectic LCDMDS code, where k = 1, 2, · · · , 2m−1.
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5.2 Numerical Example

Example 5 For SVmatrices A = van(a0, a1, a2, a3) = van(41x , 40x , f 7x , f 6x ), the
parameter Δ = 32x , and the primitive polynomial p(x) = x8 + x4 + x3 + x2 + 1.
Based on the method introduced in Sect. 5.1, we can get B = van(b0, b1, b2, b3) =
van(a0 + Δ, a1 + Δ, a2 + Δ, a3 + Δ) and

Ã =

⎛

⎜
⎜
⎝

e4x b1x 7cx f 1x
15x 14x 7bx 7ax
41x 40x f 7x f 6x
01x 01x 01x 01x

⎞

⎟
⎟
⎠ .

Let G = B Ã, then we have

G =

⎛

⎜
⎜
⎝

21x a6x 82x ddx
a6x 21x ddx 82x
82x ddx 21x a6x
ddx 82x a6x 21x

⎞

⎟
⎟
⎠ ,

where s21 = (
∑3

i=0 b
3
i )

2 = 83x �= 01x . According to Construction 1, G and

G1 =
(
21x a6x 82x ddx
82x ddx 21x a6x

)

or

(
a6x 21x ddx 82x
ddx 82x a6x 21x

)

generate symplectic LCD MDS codes with parameters [4, 4, 1] and [4, 2, 2] respec-
tively.

Example 6 Let a0 = 04x , R0 = 01x , R1 = 02x , R2 = 09x , then A = van(04x ,
05x , 06x , 07x , 0dx , 0cx , 0 fx , 0ex ) is an SV matrix, the parameter Δ = 73x and
the primitive polynomial p(x) = x8 + x4 + x3 + x2 + 1. we can get B =
van(77x , 76x , 75x , 74x , 7ex , 7 fx , 7cx , 7dx ) and

Ã =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

e5x 76x 4dx 3dx c2x a8x d9x 90x
4ex 77x b3x 9ex 49x f dx c7x 67x
a0x 8dx 90x a fx 20x c8x 05x f fx
28x 29x 38x 39x e4x e5x f 4x f 5x
40x 55x 78x 6bx bax e7x 24x 7 fx
10x 11x 14x 15x 51x 50x 55x 54x
04x 05x 06x 07x 0dx 0cx 0 fx 0ex
01x 01x 01x 01x 01x 01x 01x 01x

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.
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Let G = B Ã, then we have

G =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

ecx 66x dcx f 0x 14x bdx e0x 2 fx
66x ecx f 0x dcx bdx 14x 2 fx e0x
dcx f 0x ecx 66x e0x 2 fx 14x bdx
f 0x dcx 66x ecx 2 fx e0x bdx 14x
14x bdx e0x 2 fx ecx 66x dcx f 0x
bdx 14x 2 fx e0x 66x ecx f 0x dcx
e0x 2 fx 14x bdx dcx f 0x ecx 66x
2 fx e0x bdx 14x f 0x dcx 66x ecx

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

,

where (
∑7

i=0 b
7
i )

2 = dex �= 01x . According to Construction 2, GΓ generates sym-
plectic LCD MDS codes with parameters [8, 2k, 5 − k], where k = 1, 2, 3, 4.

6 MDSMaximal Entanglement EAQECCs

An [[n, k, d; c]] EAQECC encodes k logical qubits into n physical qubits using c
copies of maximally entangled states, and d is the minimum distance of the code. By
the Singleton bound for EAQECCs [3], we have 2(d−1) ≤ n−k+c, and an EAQECC
meeting this bound is called anMDS EAQECC. An EAQECCwith c = n−k is called
a maximal entanglement EAQECC [17]. It was shown that maximal entanglement
EAQECCs can achieve the entanglement-assisted quantum capacity of a depolarizing
channel.

The following is the explicit symplectic method of constructing EAQECCs from
classical linear codes [11].

Theorem 8 Let C ⊆ F
2n
q be an (n − k)-dimensional Fq -linear space and H =

[HX |HZ ] be a matrix whose row space is C. Let C ′ ⊆ F
2(n+c)
q be an Fq-linear space

such that its projection to the coordinates 1, 2, · · · , n, n+c+1, n+c+2, · · · , 2n+c
equals C and C ′ ⊆ (C ′)⊥S , where c is the minimum required number of maximally
entangled quantum states in C

q ⊗ C
q . Then,

2c = rank(HX H
T
Z − HZ H

T
X ) = dimFq (C) − dimFq (C ∩ C⊥S ).

The encoding quantum circuit is constructed from C ′, and it encodes k + c logical
qudits in C

q ⊗· · ·⊗C
q into n physical qudits using c maximally entangled pairs. The

minimum distance is d = dS(C⊥S\(C∩C⊥S )). In sum, C provides an [[n, k+c, d; c]]
EAQECC over the field Fq .

Combining Proposition 4 and Theorem 8, we can obtain the following MDS max-
imal entanglement EAQECCs with length 2 ≤ m ≤ s.

Theorem 9 There exists an MDS maximal entanglement EAQECC over F2s with
parameters [[2m−1, 2m−1 − k, k + 1; k]] or [[2m−1, k, 2m−1 − k + 1; 2m−1 − k]].

From the theorem above, we can see that a class of MDS maximal entanglement
EAQECCs can be obtained if we found a class of symplectic LCD MDS codes, and
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this is different from the previous case of Hermitian or Euclidean inner products (such
as [12,19,22,23]). We believe that more MDS maximal entanglement EAQECCs can
be obtained from this symplectic method.

7 Concluding Remarks

In this paper, we give characterizations of symplectic LCD codes. Further, we present
some methods for constructing symplectic LCD MDS codes from Euclidean LCD
codes and Hermitian LCD codes. Especially, some symplectic LCD MDS codes are
constructed from Special Vandermonde matrices over finite field F2s , and all the
[2m, 2k] and [2m, 2m − 2k] symplectic LCD MDS codes have been constructed,
where 2 ≤ m ≤ s, k = 1, 2, · · · , 2m−1. As an application, a class of MDS
maximal entanglement EAQECCs with parameters [[2m−1, 2m−1 − k, k + 1; k]] or
[[2m−1, k, 2m−1 − k + 1; 2m−1 − k]] is constructed.
Acknowledgements This work was supported by the National Natural Science Foundation of China under
Grant(61572168) and the Excellent Young Talents Fund Program of Higher Education Institutions of Anhui
Province (CN)(gxyqZD2016228).

References

1. Barreto P., Rijmen V.: The Anubis Block Cipher. Submission to the NESSIE Project (2000). Available
at http://cryptonessie.org

2. Boonniyoma, K., Jitman, S.: Complementary dual subfield linear codes over finite fields. Available at
arXiv:1605.06827, (2016)

3. Brun, T.A., Devetak, I., Hsieh, M.H.: Correcting quantum errors with entanglement. Science 314,
436–439 (2006)

4. Carlet, C., Guilley, S.: Complementary dual codes for counter-measures to side-channel attacks. Adv.
Math. Commun. 10(1), 131–150 (2017)

5. Carlet, C., Mesnager, S., Tang, C., Qi, Y.: Euclidean and Hermitian LCD MDS codes. Des. Codes
Cryptogr. 86(11), 2605–2618 (2017)

6. Carlet, C., Mesnager, S., Tang, C., Qi, Y.: On σ -LCD codes. IEEE Trans. Inf. Theory 65(3), 1694–1704
(2018)

7. Dougherty, S.T., Kim, J.L., Ozkaya, B., Sok, L., Sole, P.: The combinatorics of LCD codes: linear
programming bound and orthogonal matrices. Int. J. Inform. Cod. Theory 4, 116 (2015)

8. Ding, C.: Linear codes from some 2-designs. IEEE Trans. Inf. Theory 61(6), 3265–3275 (2015)
9. Esmaeili, M., Yari, S.: On complementary-dual quasi-cyclic codes. Finite Fields Appl. 15, 375–386

(2009)
10. Guo, L., Fu,Q., Li, R., Lu, L.:Maximal entanglement entanglement-assisted quantum codes of distance

three. Int. J. Quantum Inf. 13, 1550002 (2015)
11. Galindo, C., Hernando, F.,Matsumoto, R., Ruano, D.: Entanglement-assisted quantum error-correcting

codes over arbitrary finite fields. Quant. Inf. Process. 18(4), 116 (2019)
12. Guenda, K., Jitman, S., Gulliver, T.A.: Constructions of good entanglement-assisted quantum error

correcting codes. Des. Codes Cryptogr. 86, 121–136 (2018)
13. Guneri, C., Ozkaya, B., Sole, P.: Quasi-cyclic complementary dual codes. Finite Fields Appl. 42, 67–80

(2016)
14. Jin, L.: Construction of MDS codes with complementary duals. IEEE Trans. Inf. Theory 63(5), 2843–

2847 (2017)
15. Kai, X.S., Zhu, S.X.: New quantumMDS codes from negacyclic codes. IEEE Trans. Inf. Theory 59(2),

1193–1197 (2013)

123

http://cryptonessie.org
http://arxiv.org/abs/1605.06827


3390 H.Q. Xu, W. Du

16. Kai, X.S., Zhu, S.X., Li, P.: Constacyclic codes and some new quantum MDS codes. IEEE Trans. Inf.
Theory 60(4), 2080–2086 (2014)

17. Lai, C.-Y., Brun, T.A., Wilde, M.M.: Duality in entanglement-assisted quantum error correction. IEEE
Trans. Inf. Theory 59(6), 4020–4024 (2013)

18. Li, C., Ding, C., Li, S.: LCD cyclic codes over finite fields. IEEE Trans. Inf. Theory 63(7), 4344–4356
(2017)

19. Lu, L., Li, R., Guo, L., Fu, Q.: Maximal entanglement entanglement-assisted quantum codes con-
structed from linear codes. Quant. Inf. Process. 14, 165–182 (2015)

20. MacWilliams, F.J., Sloane, N.J.A.: The Theory of Error-Correcting Codes. North-Holland Pub. Co.,
Amsterdam (1977)

21. Massey, J.L.: Linear codes with complementary duals. Discrete Math. 106(107), 337–342 (1992)
22. Qian, J., Zhang, L.: Entanglement-assisted quantum codes from arbitrary binary linear codes. Des.

Codes Cryptogr. 77, 193–202 (2015)
23. Qian, J., Zhang, L.: On MDS linear complementary dual codes and entanglement-assisted quantum

codes. Des. Codes Cryptogr. 87, 1565–1572 (2018)
24. Sajadieh, M., Dakhilalian, M., Mala, H., et al.: On construction of involutory MDS matrices from

Vandermonde Matrices in GF(2q ). Des. Codes Cryptogr. 64(3), 287–308 (2012)
25. Sendrier, N.: Linear codes with complementary duals meet the Gilbert-Varshamov bound. Discret

Math. 285, 345–347 (2004)
26. Shi, M., Zhang, Y.: Quasi-twisted codes with constacyclic constituent codes. Finite Fields Appl. 39,

159–178 (2016)
27. Shi, M., Yang, S., Zhu, S.: Good p-ary quasicyclic codes from cyclic codes over Fp + vFp . J. Syst.

Sci. Compl. 25(2), 375–384 (2012)
28. Shi, M., Qian, L., Sok, L., Sol, P.: On constacyclic codes over Z4[u]/<u2−1> and their Gray images.

Finite Fields Appl. 45, 86–95 (2017)
29. Wilde, M.M., Brun, T.A.: Optimal entanglement formulas for entanglement-assisted quantum coding.

Phys. Rev. A 77, 064302 (2008)
30. Yang,X.,Massey, J.L.: The necessary and sufficient condition for a cyclic code to have a complementary

dual. Discret Math. 126, 391–393 (1994)
31. Zhou, Z., Tang, C., Li, X., Ding, C.: Binary LCD codes and self-orthogonal codes from a generic

construction. IEEE Trans. Inf. Theory 65(1), 16–27 (2019)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123


	Constructions of Symplectic LCD MDS Codes
	Abstract
	1 Introduction
	2 Preliminaries
	3 Characterizations of Symplectic LCD Codes
	4 Existence and Constructions of Symplectic LCD Codes
	4.1 Symplectic LCD Codes from Smaller Dimensions and Lengths
	4.2 Symplectic LCD MDS Codes from Euclidean LCD MDS Codes
	4.3 Symplectic LCD MDS Codes from Hermitian LCD MDS Codes

	5 Special Symplectic LCD MDS Codes from Vandermonde Matrices
	5.1 [2m,2k] Symplectic LCD MDS Codes
	5.2 Numerical Example

	6 MDS Maximal Entanglement EAQECCs
	7 Concluding Remarks
	Acknowledgements
	References




