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Abstract
This paper investigates the nonlinear backward fractional diffusion equations (BFDEs)
having a variable order and variable diffusion coefficient. It is well-known that the
BFDEs are ill-posed in the sense of Hadamard. Moreover, we investigate the problem
taking into account the disturbance both variable diffusion coefficient and variable
order. This may lead to some common regularization strategy to failure. Therefore,
we propose a regularization method for this kind of problem. Under some appropriate
regularity assumptions of the exact solution, a convergence estimate of Holder-type
is proved.
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1 Introduction

In recent years, the backward diffusion equations (BDEs) have attracted the attention
of many researchers due to its application arose in a variety of professional fields.
We can refer to two most important areas of application of the BDEs which are
image deblurring and hydrologic inversion. In image deblurring, the BDEs can be
applied for the deblurring process in image restoration (see e.g., [2,5,7]). In hydrologic
inversion, the BDEs are also applied to identify sources of groundwater pollution by
reconstructing the contaminant plume history (see e.g., [1]).

More recently, the orders of the fractional diffusion equations which may be a
function of time (t), space (x) or both of them were studied (see e.g., [11,12]). These
fractional orders help to describe the behavior of some heterogeneous diffusion pro-
cesses better than the constant fractional orders. To the best of our knowledge, the
fractional orders of the BDEs were only investigated as usual to be a constant. Hence,
in this paper, we consider the problem with the time-dependent order as a benchmark
case.

To state precisely the problem, we set up some notations. Let T > 0, and α, κ :
[0, T ] → (0,∞) be two continuous positive functions. Let H be a Hilbert space, and
let A : D(A) ⊂ H → H be a positive, self-adjoint operator with compact inverse on
H . Using the notations, we consider the problem of finding a function u : [0, T ] → H
satisfying {

ut + κ(t)Aα(t)u = f (t, u(t)), 0 < t < T ,

u(T ) = h.
(1)

The problem (1) is ill-posed; hence, a regularization method for this problem is
in order. In the case that α(t) ≡ α and κ(t) ≡ κ are exactly known constants and
A = (−�), the regularization was studied in some recent papers. In [9], the authors
introduced three methods, which are Tikhonov, Landweber iteration and iterative
Lavrentiev to regularize the homogeneous problem; after that, they applied the results
obtained in image deblurring. In the case of nonhomogeneous [13], the authors used
the truncated method to regularize the fractional backward problem in an unbounded
domain. In [8], the authors used the idea of the Tikhonov method to regularization the
nonlinear backward problem in Rd .

Although there are some works on this topic, the backward problem with perturbed
variable diffusion coefficients and variable orders is still under investigation. In the
real-world problems, the diffusion coefficients and fractional orders are established
from statistical models as the Levy flight or from experiments; hence, the diffusion
coefficients and orders are not exactly known. In fact, we can have a known approxi-
mations αε, κε ∈ C[0, T ] such that

‖αε − α‖C[0,T ], ‖κε − κ‖C[0,T ] ≤ ε,

where ε is a noise level. So, the stability of solution of these problems with respect
to diffusion coefficients and fractional orders is worth considering. Besides, if the
variable diffusion coefficients and variable orders are inexact, then some common
regularization schemes could be disabled (see in sect. 4). Even so, papers devoted to
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the stability are quite rare. To the best of our knowledge, we can only list some papers
dealt with this question in [4,10,14–17]. In this paper, we would like to fill a part of
this gap.

We also emphasize that solving the problem (1) is rather interesting and challenging
due to the disturbance both of the variable diffusion coefficient and variable order.
Motivated by the above reasons, in this paper, we study the BFDEs with perturbed
both variable diffusion coefficient and variable order, and a locally Lipschitz source.

This paper is structured as follows. In the second section, we introduce symbols
and definitions, and we state an essential lemma which will be used to prove the main
results of the present paper. The third section is devoted to investigating the formulation
and uniqueness of the solution of the problem. The fourth section proposes a truncated
method to regularize solution of the backward problem. The final section presents the
conclusions of the paper and some problems can be expanded in future studies.

2 Preliminaries

In this section, we introduce some symbols, definitions, and lemmas which are used
throughout the rest of the present paper.

We denote the inner product in the Hilbert space H by 〈., .〉 and the associated norm
by ‖.‖. From the assumptions, the operator A has the system (λk, φk) of eigenvalues
{λk} and eigenfunctions {φk}, respectively, with

0 < λ1 < λ2 < .. < λk < .., lim
k→∞ λk = ∞.

and the functions {φk} being an orthonormal basis of the space H . In present paper, we
follow [18,19] to define the variable fractional order of the operator. For α ∈ C[0, T ],
α(t) > 0 for all t ∈ [0, T ], we put

H
α :=

{
w ∈ C([0, T ]; H) : w =

+∞∑
k=1

wk(t)φk and sup
t∈[0,T ]

+∞∑
k=1

λ
α(t)
k |wk(t)|2 < +∞

}
,

where wk(t) = 〈w(t), φk〉. We define the norm in H
α by

‖w‖α = sup
t∈[0,T ]

(+∞∑
k=1

λ
α(t)
k |wk(t)|2

)1/2

.

Throughout this paper, for every function γ ∈ C[0, T ] arbitrary, we denote

|||γ ||| = max
t∈[0,T ] |γ (t)|, γ∗ = min

0≤t≤T
γ (t), γ ∗ = max

0≤t≤T
γ (t).

For any positive function α in C[0, T ], it is clear that Hα∗ ⊂ H
α ⊂ H

α∗ ⊂
C([0, T ]; H). We can easily verify that there exist three constants C1, C2, C3 > 0
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such that sup0≤t≤T ‖w(t)‖ ≤ C1‖w‖α∗ ≤ C2‖w‖α ≤ C3‖w‖α∗ for any w ∈ H
α∗
.

Using the above notations, we define Aα(t)w by

A
α(t)w =

+∞∑
k=1

λ
α(t)
k wk(t)φk .

Suggested by ideas in [6], we also introduce the Gevrey class of functions of order
p > 0 and index 	 > 0 as

G
p
	 =

{
v ∈ H :

∞∑
k=1

e2	λ
p
k |vk |2 < ∞

}
.

We will justify this class in the next section.
In this paper, we deal with the source f = f (t, z) in the class of functions which

are locally Lipschitz with respect to the second variable, i.e., for every z1, z2 ∈ H
such that ‖z1‖, ‖z2‖ ≤ M , there exists an L(M) > 0 such that

‖ f (t, z1) − f (t, z2)‖ ≤ L(M)‖z1 − z2‖ (2)

for any t ∈ [0, T ].
Next, we state an essential lemma which plays an important role in proving main

results of this paper.

Lemma 1 Let T , a1, a2, b1, b2 be positive numbers such that a2 ≤ a1, b2 ≤ b1. Let
κi , αi ∈ C[0, T ] such that a2 ≤ κi (t) ≤ a1 and b2 ≤ αi (t) ≤ b1 for any t ∈ [0, T ],
(i = 1, 2). Fix c > 1, then for any λ0 ≥ c and for every λ ∈ (0, λ0], we have

∣∣∣∣exp
(∫ T

t
κ1(τ )λα1(τ ) ds

)
− exp

(∫ T

t
κ2(τ )λα2(τ ) ds

)∣∣∣∣
≤ A |||α1 − α2||| + B |||κ1 − κ2||| ,

where A = A0 exp
(
a1(T − t)λb10

)
λ
b1
0 ln λ0 , B = B0 exp

(
a1(T − t)λb10

)
λ
b1
0 , and

A0, B0 independent of α1 − α2, κ1 − κ2, λ, λ0 and t.

Proof First, we have for 0 < a ≤ b and y, z ∈ [a, b], then

|ey − ez | ≤ eb|y − z|, (3)

|λy − λz | ≤ λb ln λ|y − z|, ∀λ ≥ 1, (4)

|λy − λz | ≤ λa | ln λ||y − z|, ∀ 0 < λ < 1. (5)

The proofs of the three latter inequalities are elementary and omitted. Now, using these
inequalities, we will prove the result of the lemma. Indeed, if λ ≥ 1, using (3)–(4), we
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obtain by direct computations

∣∣∣∣exp
(∫ T

t
κ1(τ )λα1(τ ) dτ

)
− exp

(∫ T

t
κ2(τ )λα2(τ ) dτ

)∣∣∣∣
≤ exp

(
a1λ

b1(T − t)
) ∣∣∣∣

∫ T

t

(
κ1(τ )λα1(τ ) − κ2(τ )λα2(τ )

)
dτ

∣∣∣∣
≤ A1 |||α1 − α2||| + B1 |||κ1 − κ2||| , (6)

where A1 = Ta1 exp
(
a1(T − t)λb10

)
λ
b1
0 ln λ0 , B1 = T exp

(
a1(T − t)λb10

)
λ
b1
0 .

If 0 < λ < 1, using (3) and (5), by the same method in estimating (6), we obtain
the desired result. ��

3 Formulation and Uniqueness of the Solution of the Problem

In this section, we give a uniqueness results for the problem (1). Firstly, we establish
the formula solution of our problem. In fact, for each final data h ∈ H , a function
u ∈ H

α is called a weak solution of the problem (1) if u satisfies the weak form

{
〈ut , w〉 + κ(t)〈Aα(t)/2u,Aα(t)/2w〉 = 〈 f (t, u), w〉, ∀w ∈ H

α,

〈u(T ), w〉 = 〈h, w〉, ∀w ∈ H
α.

(7)

It is easy to see that the system (7) can be transformed to the integral equation

u(t) =
∞∑
k=1

exp

(∫ T

t
κ(τ)λ

α(τ)
k dτ

)
hkφk .

−
∞∑
k=1

∫ T

t
exp

(∫ s

t
κ(τ)λ

α(τ)
k dτ

)
fk(u)(s) dsφk (8)

We note that if f ≡ 0 and α(t) ≡ α0 > 0, κ(t) = κ0 > 0 the latter formula can be
rewritten as

u(t) =
∞∑
k=1

exp
(
κ0λ

α0
k (T − t)

)
hkφk .

Hence, in this special case, the condition u(0) ∈ H is equivalent to h ∈ G
r
	 with

p = α0, 	 = κ0T /2. This is the justification of the Gevrey class defined in Sect. 2.

Theorem 1 Assume that the condition (2) holds. Put

K
α = {w ∈ C([0, T ], H) : ‖w‖Kα < ∞}
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where

‖w‖2
Kα = sup

0≤t≤T

∞∑
k=1

exp

(
2

∫ T

t
κ(τ)λ

α(τ)
k dτ

)
|〈w(t), φk〉|2 < ∞.

If u1, u2 ∈ K
α satisfy (7) the u1(t) = u2(t) for all t ∈ [0, T ].

Proof Denote w = u2 − u1 and M = max{‖u1‖α, ‖u2‖α}. We obtain in view of (8)

w(t) =
∞∑
k=1

(
−

∫ T

t
exp

(∫ s

t
κ(τ)λ

α(τ)
k dτ

)
( fk(w + u1)(s) − fk(u1)(s)) ds

)
φk .

Denoting wk(t) = 〈w(., t), φk〉, we have

w(t) =
N∑

k=1

(
−

∫ T

t
exp

(∫ s

t
κ(τ)λ

α(τ)
k dτ

)
( fk(w + u1)(s) − fk(u1)(s)) ds

)
φk

+
∞∑

k=N+1

wk(t)φk .

Hence

‖w(t)‖2 ≤
N∑

k=1

T
∫ T

t
exp

(
2

∫ s

t
κ(τ)λ

α(τ)
N dτ

)
‖ fk(w + u1)(s) − fk(u1)(s)‖2 ds

+
∞∑

k=N+1

|wk(t)|2.

We note that

N∑
k=1

‖ fk(w + u1)(s) − fk(u1)(s)‖2 ≤ ‖ f (w + u1)(s) − f (u1)(s)‖2 ≤ L2(M)‖w(s)‖2.

Hence if we put

ψ(t) = exp

(
2

∫ t

0
κ(τ)λ

α(τ)
N dτ

)
‖w(t)‖2,

RN (t) = exp

(
2

∫ t

0
κ(τ)λ

α(τ)
N dτ

) ∞∑
k=N+1

|wk(t)|2,

then

ψ(t) ≤ T L2(M)

∫ T

t
ψ(s) ds + RN (t).
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Using the Gronwall inequality, one gets

0 ≤ ψ(t) ≤ RN (t) + T L2(M)

∫ T

t
RN (s)eT L2(M)(s−t)ds.

We note that RN (s) ≤ ‖w‖2
Kα . Hence the latter inequality yields

‖w(t)‖ ≤ exp

(
−2

∫ t

0
κ(τ)λ

α(τ)
N dτ

)
‖w‖KαeT

2L2(M).

Letting N → ∞, we obtain w(t) = 0 for all 0 < t ≤ T . By the continuity of w, we
also have w(0) = 0. Therefore, we have u1(t) = u2(t) for all t ∈ [0, T ]. ��

4 Regularization of the Problem

In this section, we investigate a truncated method to regularization the problem (1) in
the case of inexact variable diffusion coefficient and variable order.

Firstly, we analyze the instability of the final value problem. For convenience, let
us consider the homogeneous problem

{
ut + κ(t)Aα(t)u = 0, 0 < t < T ,

u(T ) = h,
(9)

where A = � and u = u(x, t) with x ∈ R
d . By Weyl’s law, we known that λk =

O
(
k2/d

)
and

∑∞
k=1

1
λdk

< +∞. From (8), the problem (9) can be transformed to the

following integral equation

u(t) =
∞∑
k=1

exp

(∫ T

t
κ(τ)λ

α(τ)
k dτ

)
hk .

This gives

u(0) =
∞∑
k=1

exp

(∫ T

0
κ(τ)λ

α(τ)
k dτ

)
hk .

We choose

h =
∞∑
k=1

φk

λ
d/2
k exp

(∫ T
0 κ(τ)λ

α(τ)
k dτ

) .

We have

‖u(0)‖2 =
∞∑
k=1

1

λdk

< +∞.
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Now we consider the truncated method as follows

RN (h)(t) =
N∑

k=1

exp

(∫ T

t
κ(τ)λ

α(τ)
k dτ

)
hk .

Direct computations yield

‖u(0) − RN (h)(0)‖2 =
∞∑

k=N+1

1

λdk

→ 0 as N → ∞.

This shows that the truncated regularization is convergent. Now we perturbed the

order fractional α(t) by αN (t) = α(t) + rN with rN =
ln

(
1+ d ln λN

κ∗Tλ
α∗
N

)
ln λN

for some N
large enough such that λN > 1. It is easy to see that rN → 0 as N → ∞ and
exp

(
κ∗T (λ

rN
N − 1)λα∗

N

) = λdN . In this case, the truncated method become

RN ,inexact (h)(t) =
N∑

k=1

exp

(∫ T

t
κ(τ)λ

αN (τ )
k dτ

)
hkφk,

where hk = 1

λ
d/2
k exp

(∫ T
0 κ(τ)λ

α(τ)
k dτ

) . By direct computation, we have

‖RN ,inexact (h)(0) − u(0)‖2

≥
N∑

k=1

(
exp

(∫ T

0
κ(τ)λ

αN (τ )
k dτ

)
− exp

(∫ T

0
κ(τ)λ

α(τ)
k dτ

))2

h2k

≥
(
exp

(∫ T

0
κ(τ)λ

αN (τ )
N dτ

)
− exp

(∫ T

0
κ(τ)λ

α(τ)
N dτ

))2

h2N

= 1

λdN

(
exp

((
λ
rN
N − 1

) ∫ T

0
κ(τ)λ

α(τ)
N dτ

)
− 1

)2

≥ 1

λdN

(
exp

(
κ∗T

(
λ
rN
N − 1

)
λ

α∗
N

) − 1
)2

≥
(
λdN − 1

)2
λdN

→ +∞, (N → ∞).

The latter inequality shows that the solution of the final value problem is instability
with respect to the fractional-order and leads to the common regularization truncated
strategy to failure. In other words, we need a significant improvement for the current
regularization strategy when the diffusion coefficient and fractional are inexact.
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Now, we will construct a regularization for our problem. For N ∈ N, M > 0, we
approximate the problem (1) by the problem P(M, N , h, α, κ) as below

{
uN ,t + κ(t)Aα(t)uN = ∑N

k=1 fM,k(uN )(t)φk

uN (T ) = ∑N
k=1 hkφk,

(10)

where

fM (t, u) =
{

f (t, u), if ‖u‖ ≤ M,

f
(
t, M u

‖u‖
)

, otherwise

and fM,k(uN )(t) = 〈 fM (t, uN ), φk〉.We can transform the problem (10) to the integral
equation

uN (t) =
N∑

k=1

exp

(∫ T

t
κ(τ)λ

α(τ)
k dτ

)
hkφk .

−
N∑

k=1

(∫ T

t
exp

(∫ s

t
κ(τ)λ

α(τ)
k dτ

)
fM,k(uN )(s) ds

)
φk . (11)

From now on, we suppose further that N is larger enough such that λN > 1. Firstly,
we show that, the approximate problem is well-posed.

Theorem 2 Let f be a locally Lipschitz function as in (2), and such that f (t, 0) ∈
L2(0, T ; H). Then

(i) The problem P(M, N , h, α, κ) has a unique solution in H
α , and we have the

following estimate

∫ T

0
‖ fN (t, uN (t))‖2 dt ≤ P0 exp

(
2κTλα∗

N

)
, (12)

where P0 is a positive number which is independent of λN , t .
(ii) If vN is the solution of the problem P(M, N , h̃, α̃, κ̃) for every h̃ ∈ H and κ̃, α̃ ∈

C[0, T ], we have

‖uN (t) − vN (t)‖ ≤ Q1‖h − h̃‖ + Q2 |||α − α̃||| + Q3 |||κ − κ̃||| , (13)

where Q1, Q2, Q3 are positive numbers independent of h − h̃, α − α̃ and κ − κ̃ .

Proof (i) We can easily verify that the function fM satisfies the condition

‖ fM (t, z1) − fM (t, z2)‖ ≤ 2L(M)‖z1 − z2‖ (14)

for any t ∈ [0, T ] and z1, z2 ∈ H . On the other hand, the dimension of the
approximate problem is finite; hence, we can use the Cauchy–Lipschitz–Picard
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theorem (see [3], chapter 7, page 184) to deduce that the problemP(M, N , h, α, κ)

has a unique solution uN in Hα .
First, we verify that

‖uN (t)‖2 ≤ P1 exp
(
2κTλα∗

N

)
,

where P1 is a positive number which is independent of λN , t . Indeed, applying the
Cauchy–Schwarz inequality for Eq. (11) yields

‖uN (t)‖2 ≤ 2 exp

(
2

∫ T

t
κ(τ)λ

α(τ)
N dτ

)
‖h‖2

+2T
∫ T

t
exp

(
2

∫ s

t
κ(τ)λ

α(τ)
N dτ

)
‖ fM (s, uN )‖2 ds

≤ 2 exp

(
2

∫ T

t
κ(τ)λ

α(τ)
N dτ

) (
‖h‖2 + 2σT

)

+16T L2(M)

∫ T

t
exp

(
2

∫ s

t
κ(τ)λ

α(τ)
N dτ

)
‖uN (s)‖2 ds,

where σT = ∫ T
0 ‖ f (s, 0)‖2 ds. The latter inequality deduces

exp

(
2

∫ t

0
κ(τ)λ

α(τ)
N dτ

)
‖uN (t)‖2

≤ 2 exp

(
2

∫ T

0
κ(τ)λ

α(τ)
N dτ

) (
‖h‖2 + 2σT

)

+ 16T L2(M)

∫ T

t
exp

(
2

∫ s

0
κ(τ)λ

α(τ)
N dτ

)
‖uN (s)‖2 ds.

Applying the Gronwall inequality and direct computation, we obtain

‖uN (t)‖2 ≤ P1 exp
(
2κ∗Tλα∗

N

)
(15)

due to
∫ T
0 κ(τ)λ

α(τ)
N dτ ≤ κ∗Tλα∗

N ,where P1 = 2
(‖h‖2 + 2σT

)
exp

(
16T 2L2(M)

)
.

Now we prove (12). It is easy to see that (14) implies

‖ fN (t, uN (t))‖2 ≤ 8L2(M)‖uN (t)‖2 + 2‖ f (t, 0)‖2.

Combining the latter inequality with (15), we have

∫ T

0
‖ fN (t, uN (t))‖2 dt ≤ P1 exp

(
2κ∗Tλα∗

N

)
+ 2σT ≤ P2 exp

(
2κ∗Tλα∗

N

)
,

(16)
where P2 = P1 +2σT and P1 defined in (15). This completes the proof of Part (i).
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(ii) Firstly, we denote by vN and wN the solutions of the problem P(M, N , h, α̃, κ̃)

and P(M, N , h̃, α̃, κ̃) respectively. Put η = max{α∗, α̃∗}, μ = max{κ∗, κ̃∗} . By
the same way as in Part (i), we have

‖vN (t) − wN (t)‖ ≤ Q1‖h − h̃‖, (17)

where Q1 = Q̃1 exp
(
μTλ

η
N

)
and Q̃1 = √

2 exp(4T 2L2(M)).
Secondly, we will prove that

‖uN (t) − vN (t)‖ ≤ Q2 |||α − α̃||| + Q3 |||κ − κ̃||| , (18)

where Q2 = Q0 exp
(
2μTλ

η
N

)
λ

η
N ln λN , Q3 = Q0 exp

(
2μTλ

η
N

)
λ

η
N and Q0

independent of α − α̃, κ − κ̃ , λN and t .
Indeed, using Lemma 1 and by direct computation, we have

‖uN (t) − vN (t)‖2

≤ (C1 |||α − α̃||| + C2 |||κ − κ̃|||)2
(

‖h‖2 +
∫ T

t
‖ fN (s, uN (s))‖2 ds

)

+12T L2(M)

∫ T

t
exp

(
2μ(s − t)λη

N

) ‖uN (s) − vN (s)‖2 ds, (19)

where C1 = C01 exp
(
μ(T − t)λη

N

)
λ

η
N ln λN ,C2 = C02 exp

(
μ(T − t)λη

N

)
λ

η
N

and C01,C02 independent of α − α̃, κ − κ̃ , λN and t . On the other hand, using
(16), we have

‖h‖2 +
∫ T

t
‖ fN (s, uN (s))‖2 ds ≤ ‖h‖2 + P2 exp

(
2μTλ

η
N

) ≤ P3 exp
(
2μTλ

η
N

)
,

where P3 independent of λN , t . Combining the latter inequality with (19), we have

exp
(
2μλ

η
N t

) ‖uN (t) − vN (t)‖2
≤ D0(D1 |||α − α̃||| + D2 |||κ − κ̃|||)2 exp (

2μTλ
η
N

)
+12T L2(M)

∫ T

t
exp

(
2μλ

η
N s

) ‖uN (s) − vN (s)‖2 ds.

where D1 = exp
(
μTλ

η
N

)
λ

η
N ln λN , D2 = exp

(
μTλ

η
N

)
λ

η
N and D0 independent

of α − α̃, κ − κ̃ , λN and t . Applying the Gronwall inequality yields

‖uN (t) − vN (t)‖ ≤ Q2 |||α − α̃||| + Q3 |||κ − κ̃||| , (20)

where Q2 = Q0 exp
(
2μTλ

η
N

)
λ

η
N ln λN , Q3 = Q0 exp

(
2μTλ

η
N

)
λ

η
N and

Q0 = √
D0 exp(6T 2L2(M)). The proof of the inequality (18) is completed.

Lastly, by using the triangle inequality, combining (17) and (18), we obtain the
result of Part (ii). This completes the proof of the Theorem 2. ��
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In the next theorem, we give a regularization result for the problem (1) under some
regularity assumptions of its exact solution.

Theorem 3 Suppose that the assumptions in Theorem 2 hold. Suppose further that the

problem (1) has a solution u ∈ C
(
[0, T ];Gα∗

θ

)
for θ > κ∗T , and supt∈[0,T ] ‖u(t)‖ ≤

M for some positive number M. Let ε ∈ (0, 1), hε ∈ H and κε, αε ∈ C[0, T ] be the
measurement data such that

‖h − hε‖ + |||α − αε ||| + |||κ − κε ||| ≤ ε, (21)

where h = u(T ). Then there exist M0 independent of ε such that

‖u(t) − uε(t)‖ ≤ M0ε
ρ0 ,

where uε is the solution of problemP(M, N , hε, αε, κε), and ρ0 = (θ −κ∗T )r0/(1+
(θ − κ∗T )r0 + 2κ∗T ) with r0 = e−1/e.

Proof For any N ∈ N, assign the solution of the problem P(M, N , h, α, κ) by uN .
Due to supt∈[0,T ‖u(t)‖ ≤ M , this implies that fM (t, u(t)) = f (t, u(t)), then by
straightforward, we have

‖u(t) − uN (t)‖2 ≤ T L2(M)

∫ T

t
exp

(
2κ∗λα∗

N (s − t)
)

‖u(s) − uN (s)‖2 ds

+
∞∑

k=N+1

|uk(t)|2. (22)

Now, we estimate the second term in the right-hand side of the inequality (22). Since

u ∈ C
(
[0, T ];Gα∗

θ

)
, we have

∞∑
k=N+1

|uk(t)|2 ≤ exp
( − 2θλα∗

N

) ∞∑
k=N+1

exp
(
2θλα∗

k

)|uk(t)|2 = � exp
(
−2θλα∗

N

)
.

Substituting the latter inequality into (22) and by direct computation gives

exp
(
2κ∗λα∗

N t
)

‖u(t) − uN (t)‖2

≤ 4T L2(M)

∫ T

t
exp

(
2κ∗λα∗

N s
)

‖u(s) − uN (s)‖2 ds + � exp
(
−2rλα∗

N

)
,

where r = θ − κ∗T . Applying the Gronwall inequality yields

‖u(t) − uN (t)‖ ≤ �0 exp
(
−rλα∗

N

)
, (23)

where �0 = √
� exp(2T 2L2(M)).
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Let us denote the solution of the problem P(M, N , hε, αε, κε) by uε and ν =
max{α∗, α∗

ε } , υ = max{κ∗, κ∗
ε }. Thank to (13), we have

‖uN (t) − uε(t)‖ ≤ Q1‖h − hε‖ + Q2 |||α − αε ||| + Q3 |||κ − κε ||| , (24)

where Q1 = Q̃1 exp
(
υTλ

η
N

)
, Q2 = Q0 exp

(
2υTλ

η
N

)
λ

η
N ln λN , and

Q3 = Q0 exp
(
2υTλ

η
N

)
λ

η
N . Herein Q̃1 defined in (17) and Q0 defined in (20).

Since exp
(
υTλν

N

) ≤ exp
(
2υTλν

N

)
λν
N ≤ exp

(
2υTλν

N

)
λν
N ln λN for N larger

enough; hence, we can combine (21) with (24) to obtain

‖uN (t) − uε(t)‖ ≤ Q4ε exp
(
2υTλν

N

)
λν
N ln λN , (25)

where Q4 = max
{
Q̃1, Q0

}
. Combining (23) with (25) and applying the triangle

inequality, we obtain

‖u(t) − uε(t)‖ ≤ Q4

(
ε exp

(
2υTλν

N

)
λν
N ln λN + exp

(
−rλα∗

N

))
, (26)

where Q4 = max{�0, Q3}. Since ln λN ≤ λN for any N ≥ 1 and λke−λ ≤ kke−k ≤
kk for any k > 0, we deduce

λν
N ln λN ≤ λν+1

N = eλν
N e−λν

N λ
ν(1+1/ν)
N ≤ eλν

N (1 + 1/α∗)(1+1/α∗).

From the latter inequality and (26), we obtain

‖u(t) − uε(t)‖ ≤ Q5

(
ε exp

(
(2υT + 1)λν

N

) + exp
(
−rλα∗

N

))
, (27)

where Q5 = Q4(1 + 1/α∗)(1+1/α∗). Now we can choose the parameter λN (or N )
such that the right-hand side of (27) convergence to zero as ε to 0. For example, we
put ρ = (1 + rr0 + 2κ∗T )−1, and choose λν

N = ρ ln(1/ε). We have

ε exp
(
(2υT + 1)λν

N

) = εε−(2υT+1)ρ

≤ ε1−ρ(1+2κ∗T )ε−2T (υ−κ∗)ρ ≤ Q6ε
1−ρ(1+2κ∗T ), (28)

where Q6 = ε−2Tρε < +∞. On the other hand, for any ε ≤ e−1/ρ , we have λ−ε
N =

(ρ ln(1/ε))−ε ≥ (ln(1/ε))−ε ≥ εε ≥ e−1/e := r0. This lead to

exp
(
−rλα∗

N

)
≤ exp

(−rλν
Nλ−ε

N

) ≤ εrr0ρ. (29)

Since rr0ρ = 1 − ρ(1 + 2κ∗T ), we can substitute (28) and (29) into (27) to obtain
the desired result. ��

123



3358 N. M. Dien, D. D. Trong

5 Conclusions

In this work, we presented a truncated method to regularized solution of the nonlinear
backward fractional diffusion problem with inexact variable diffusion coefficient and
variable order. Under appropriate regularity assumptions of the exact solution, we
obtained the order of convergence is O (ερ0). It would be interesting to extend this
work for problems with the diffusion coefficient and fractional order dependent on
both x and t .
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