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Abstract
The key goal of this article is to propose a modification of certain exponential type
operators defined by Ismail and May. Particularly, we concentrate on a sequence of
operators that preserve e−x and constant functions. We find the moments of these
modified operators using the concept of moment generating function with the help
of Mathematica software. We show uniform convergence of these modified operators
and analyze the asymptotic behaviour with a Voronovskaya type theorem. We also
illustrate via graphs that our modified operators approximate better than the original
operators for certain family of functions. Finally, we show the convergence of these
modified operators graphically using Mathematica Software.

Keywords Exponential operators · Ismail May operators · Voronovoskaya theorem ·
Degree of approximation

Mathematics Subject Classification 41A25 · 41A36

1 Introduction

In 2003, King [15] gained recognition for the modification of Bernstein operators
which preserve test functions e0 and e2 on [0, 1]. Later King grabbed researchers
attention in this direction and they put forward many relevant studies. Until now, many
researchers have done outstanding research in this direction by defining operators
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which preserve e0 and e2, e2 +ae1 for a > 0, linear functions, exponential functions,
etc. Depending on the ultimate goal of this paper, we will keep this study small and
focus on the preservation of exponential functions only. As far as we are aware, the
study of preservation of exponential functions is in its early stages. Here we represent
some most recent references which are relevant to this study.

In 2017, Acar et al. [2] presented a modification of Szász-Mirakyan operators that
preserve e2ax , a > 0. They showed a comparison ofmodified operatorswith the Szász-
Mirakyan operators and discussed shape preservation properties. They also estimated
error in terms of first-order modulus of continuity using a natural transformation. Aral
et al. [4] extended the study of these modified operators [2] and proved the usefulness
of these operators from a computational point of view.Acar et al. [1] introduced Szász–
Mirakyan operators that fixes eax and e2ax with a > 0 simultaneously and defined a
new weighted modulus of smoothness to establish the approximation order. Also they
gave some saturation result to confirm the goodness of the estimates for modified oper-
ators. In past four years, using the same theory, many researchers havemodified a lot of
operators like Bernstein [3], Stancu type Szász–Mirakyan–Durrmeyer Operators [14],
Baskakov–Szász–Mirakyan [9], Baskakov–Schurer–Szász–Stancu [19], Baskakov–
Schurer–Szász [21], Phillips operators [10,20]. Deo et al. [6,7]) proposed sequence of
operators using King’s approach which provides better rate of convergence than the
Szász–Mirakyan Durrmeyer and Baskakov Durrmeyer operators. In 2018, Yilmaz et
al. [22] modified Baskakov–Kantorovich operators and gave a sequence of operators
which preserve e−x and constant functions. The overall goal of this article is to propose
the modification of the operators [13] preserving e−x and constant functions.

We organise this article in the followingmanner. In Sect. 2, we discuss the technique
to construct the operators. In Sect. 3, we find the moment and central moment of
modified operators using the concept of mgf. In Sect. 4, we show uniform convergence
and analyze the asymptotic behaviour with a Voronovskaya type theorem. In Sect. 5,
we gave a result and supporting graphs to prove the goodness of modified operators.
In Sect. 6, we show the convergence using graphical approach.

2 Construction of the Operators

May [17] has done excellent work by defining exponential operators Ln as

Ln( f ; x) =
∞∫

−∞
W(n, x, t) f (t)dt,

where W is the kernel which satisfies two conditions given as follows:

1. Ln(1; x) = 1 normalisation condition.
2. ∂

∂xW(n, x, t) = (t−x)n
p(x) W(n, x, t), where p(x) is analytic and positive for x ∈

(−∞,∞).

This work was carried forward by Ismail and May [13]. They considered a couple
of more exponential operators and investigated their convergence properties. Using
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above definition, they regained some familiar operators like Bernstein operators, Szász
operators, etc. and constructed some new operators which were later studied in [11,
16,18]. Among these new operators defined in [13], one operator is given as

Tn ( f ; x) = e−n
√
x

⎧⎨
⎩ f (0) + n

∞∫

0

e−nt/
√
x t−1/2 I1

(
2n

√
t
)
f (t) dt

⎫⎬
⎭ (2.1)

where I1 is modified Bessel’s function of first kind defined as

Im (z) =
∞∑
j=0

( z
2

)m+2 j

j !� (m + j + 1)

Gupta [11] calculated the moments, central moments and obtain convergence estimate
and some direct results for the operators given in 2.1.

In this article, our aim is to construct operators preserving e0 and e−x . We presume
operators (2.1) preserve e−x , then

Tn
(
e−t ; x) = e−n

√
�n(x)

⎧⎨
⎩1 + n

∞∫

0

e−nt/
√

�n(x)t−1/2
∞∑
j=0

(
n
√
t
)1+2 j

j !� ( j + 2)
e−tdt

⎫⎬
⎭

= e−n
√

�n(x)

⎧⎨
⎩1 +

∞∑
j=0

n2(1+ j)

j !� ( j + 2)

∞∫

0

e
−
(
nt+√

�n (x)t√
�n (x)

)
t jdt

⎫⎬
⎭

= e−n
√

�n(x)

⎧⎨
⎩

∞∑
j=0

n2(1+ j)

j !� ( j + 2)

( √
�n (x)

n + √
�n (x)

) j+1 ∞∫

0

e−uu jdu + 1

⎫⎬
⎭

= e−n
√

�n(x)

⎧⎨
⎩1 +

∞∑
j=0

n2(1+ j)

( j + 1)!
( √

�n (x)

n + √
�n (x)

) j+1
⎫⎬
⎭

= e−n
√

�n(x)

⎧⎨
⎩

∞∑
j=0

1

j !
(

n2
√

�n (x)

n + √
�n (x)

) j
⎫⎬
⎭

= e
−n�n (x)
n+√

�n (x)

Taking into account Tn
(
e−t ; x) = e−x , then we can find without hesitation

�n (x) = x3/2
√
4n2 + x + 2n2x + x2

2n2
(2.2)
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For x ∈ R≥ where R≥ = [0,∞), We consider the following modified form of
operators (2.1)

T̈n ( f ; x) = e−n
√

�n(x)

⎧⎨
⎩ f (0) + n

∞∫

0

e−nt/
√

�n(x)t−1/2 I1
(
2n

√
t
)
f (t) dt

⎫⎬
⎭ (2.3)

where �n (x) is given as above.

3 Preliminaries

After simple calculations, the mgf of the operators (2.3) may be given as

T̈n
(
eφt ; x) = e

nφ�n (x)
n−φ

√
�n (x) (3.1)

Since the moments are related with the mgf, the m-th moment T̈n (em; x) , em(t) =
tm (m ∈ N ∪ {0}) may be obtained by the following relation:

T̈n (em; x) =
[

∂m

∂φm
T̈n

(
eφt ; x)

]
φ=0

=
[

∂m

∂φm

(
e

nφ�n (x)
n−φ

√
�n (x)

)]
φ=0

Employing Mathematica, the expansion of above expression in powers of φ may be
given as:

T̈n
(
eφt ; x)

= e
nφ�n (x)

n−φ
√

�n (x)

= 1 + φ�n (x) + φ2

(
�n (x)3/2

n
+ �n (x)2

2

)
+ φ3

(
�n (x)2

n2
+ �n (x)5/2

n
+ �n (x)3

6

)

+ φ4
(
n3�n (x)4 + 12n2�n (x)7/2 + 36n�n (x)3 + 24�n (x)5/2

)
24n3

+ O
(
φ5

)
(3.2)

Also, by change of scale property of mgf, if we expand e−φt T̈n
(
eφt ; x) in powers

of φ, the central moment of m-th order νm (x) = T̈n
(
(t − x)m; x) can be obtained by

collecting the coefficient of φm

m! .

e−φt T̈n
(
eφt ; x)

= e
−φx+ nφ�n (x)

n−φ
√

�n (x)

= 1 + φ(�n (x) − x) + φ2

(
�n (x)3/2

n
+ x2

2
− x�n (x) + �n (x)2

2

)
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+ φ3

(
�n (x)2

n2
− x�n (x)3/2

n
+ �n (x)5/2

n
− x3

6
+ x2�n (x)

2
− x�n (x)2

2
+ �n (x)3

6

)

+ φ4

[
n3x4 − 4n3x3�n (x) + 6n3x2�n(x)2 − 4n3x�n(x)3 + n3�n(x)4 + 12n2x2�n(x)3/2

−24n2x�n(x)5/2 + 12n2�n(x)7/2 − 24nx�n(x)2 + 36n�n(x)3 + 24�n(x)5/2

]

24n3

+ O
(
φ5

)
(3.3)

Lemma 3.1 Following the above argument, we can find the first four moments as
follows:

T̈n (e0; x) = 1

T̈n (e1; x) = �n (x)

T̈n (e2; x) = (�n (x))2 + 2(�n (x))3/2

n

T̈n (e3; x) = (�n (x))3 + 6(�n (x))5/2

n
+ 6(�n (x))2

n2

T̈n (e4; x) = (�n (x))4 + 12(�n (x))7/2

n
+ 36(�n (x))3

n2
+ 24(�n (x))5/2

n3

Lemma 3.2 Using (3.3), we have the central moments of the modified operator (2.3)
as:

ν1 (x) = �n (x) − x

ν2 (x) = (�n (x) − x)2 + 2(�n (x))3/2

n

ν3 (x) = (�n (x))3 + 6(�n (x))5/2

n
+

(
6

n2
− 3x

)
(�n (x))2

− 6x(�n (x))3/2

n
+ 3x2�n (x) − x3

ν4 (x) = (�n (x))4 + 12(�n (x))7/2

n
+

(
36

n2
− 4x

)
(�n (x))3 +

(
24

n3
− 24x

n

)
(�n (x))5/2

+
(

6

n2
+ 6x2

)
(�n (x))2 + 12x2(�n (x))3/2

n
− 4x3�n (x) + x4

Also,

lim
n→∞ nν1 (x) = lim

n→∞ n
[
�n (x) − x

] = x3/2
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and

lim
n→∞ nν2 (x) = lim

n→∞ n

[
(�n (x) − x)2 + 2(�n (x))3/2

n

]
= 2x3/2

4 Main Result

Let us represent the subspace of real-valued continuous functions having finite limit
at infinity equipped with uniform norm by C∗(R≥). Boyanov [5] gave approximation
properties of a function in an infinite interval. Later, Holhoş [12] verified the next
theorem to find the rate of convergence of a function quantitatively.

Theorem Let Ln : C∗(R≥) → C∗(R≥) be the sequence of linear positive operators
and

‖Ln (e0) − 1‖R≥ = βn,∥∥Ln
(
e−t) − e−x

∥∥
R≥ = γn,∥∥∥Ln

(
e−2t

)
− e−2x

∥∥∥
R≥

= δn .

then

‖Ln f − f ‖R≥ ≤ βn‖ f ‖R≥ + (2 + βn)ω
∗( f ,

√
βn + 2γn + δn).

The modulus of continuity is defined as:

ω∗(�, δ) = sup
|e−t−e−x |≤δ
x,t>0

|� (t) − � (x)|

with the property

|� (t) − � (x)| ≤
(
1 +

(
e−t − e−x

)2
δ2

)
ω∗ (�, δ) , δ > 0 (4.1)

In next theorem we give quantitative estimate for proposed operators as an application
of above-mentioned theorem.

Theorem 4.1 For f ∈ C∗(R≥), we have

∥∥T̈n f − f
∥∥

(R≥)
≤ 2ω∗ ( f ,

√
δn

)
.

Here T̈n f converges to f uniformly and δn → 0 as n → ∞
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Proof The operators preserve e−x as well as constant functions so βn = γn = 0. we
only have to evaluate δn . From (3.2), we have

T̈n
(
e−2t ; x

)
= e

−2n�n (x)
n+2

√
�n (x)

where

�n (x) = 2n2x + x2 + x3/2
√
4n2 + x

2n2
.

Using mathematica, we will get

T̈n
(
e−2t ; x

)
= e−2x +

(
2e−2x

)
x3/2

n
+

(
e−2x x2

)
(2x − 3)

n2
+ O

((
1

n

)3
)

Since

sup
x∈R≥

x3/2e−2x = 3
√
3

8e3/2
, sup
x∈R≥

x2e−2x = 1

e2

and

Sup
x∈R≥

x3e−2x = 27

8e3

So we get

δn =
∥∥∥T̈n

(
e−2t

)
− e−2x

∥∥∥
R≥

= sup
x∈R≥

∣∣∣T̈n
(
e−2t

)
− e−2x

∣∣∣

≤ 1

n

(
3
√
3

4e3/2

)
+ 1

n2

(
3

e2
+ 27

4e3

)
+ O

((
1

n

)3
)

≤ O

(
1

n

)
→ 0 as n → ∞

��
Remark 4.1 Using Mathematica and Lemma 3.2, we have

lim
n→∞ n2ν4 (x) = lim

n→∞ n2
[
(�n (x))4 + 12(�n (x))7/2

n
+

(
36

n2
− 4x

)
(�n (x))3

+
(
24

n3
− 24x

n

)
(�n (x))5/2 +

(
6

n2
+ 6x2

)
(�n (x))2
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+12x2(�n (x))3/2

n
− 4x3�n (x) + x4

]

= 12x3

and

lim
n→∞ n2T̈n

((
e−x − e−t)4; x) = lim

n→∞ n2T̈n

⎛
⎝ 4∑

j=0

(
4
j

) (
e−x) j (e−t)4− j

⎞
⎠

= lim
n→∞ n2

4∑
j=0

(
4
j

)
e− j x T̈n

(
e−(4− j)t ; x

)

= lim
n→∞ n2

4∑
j=0

(
4
j

)
e− j x e

−(4− j)n�n (x)
(n+(4− j)

√
�n (x))

= 12e−4x x3

Theorem 4.2 For x ∈ R≥, and f , f ′′ ∈ C∗(R≥) we have

∣∣∣n [T̈n ( f ; x) − f (x)
] − x3/2

[
f ′ (x) + f ′′ (x)

]∣∣∣
≤ |an (x)| ∣∣ f ′ (x)

∣∣ + |bn (x)| ∣∣ f ′′ (x)
∣∣ + 2ω∗ ( f ′′, δ

) ((
2bn (x) + x3/2

)
+ cn (x)

)

Proof By Taylor’s expansion we have

f (t) = f (x) + (t − x) f ′ (x) + 1

2
(t − x)2 f ′′ (x) + r̈ (t, x) (t − x)2

where

r̈ (t, x) = f ′′ (μ) − f ′′ (x)
2

, x < μ < t .

From Lemma 3.2 and applying T̈n to both sides of the above expression, we have

∣∣∣∣T̈n ( f ; x) − f (x) − ν1 (x) f ′ (x) − 1

2
ν2 (x) f ′′ (x)

∣∣∣∣ ≤
∣∣∣T̈n

(
r̈ (t, x) (t − x)2; x

)∣∣∣ .

Using Lemma 3.2

∣∣∣∣n
[
T̈n ( f ; x) − f (x)

] −
(
x3/2

)
f ′ (x) − 1

2

(
2x3/2

)
f ′′ (x)

∣∣∣∣
≤

∣∣∣n (ν1 (x)) −
(
x3/2

)∣∣∣ ∣∣ f ′ (x)
∣∣ + 1

2

∣∣∣n (ν2 (x)) −
(
2x3/2

)∣∣∣ ∣∣ f ′′ (x)
∣∣
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+
∣∣∣nT̈n

(
r̈ (t, x) (t − x)2; x

)∣∣∣ .

Taking an (x) = n (ν1 (x)) − (
x3/2

)
and bn (x) = 1

2

∣∣n (ν2 (x)) − (
2x3/2

)∣∣ , we get
∣∣∣n [T̈n ( f ; x) − f (x)

] −
(
x3/2

) [
f ′ (x) + f ′′ (x)

]∣∣∣
≤ |an (x)| ∣∣ f ′ (x)

∣∣ + |bn (x)| ∣∣ f ′′ (x)
∣∣ +

∣∣∣nT̈n
(
r̈ (t, x) (t − x)2; x

)∣∣∣ .

For completion of the proof, we need to evaluate
∣∣nT̈n (r̈ (t, x) (t − x)2; x)∣∣ .Applying

inequality (4.1), we get

|r̈ (t, x)| ≤
(
1 +

(
e−t − e−x

)2
δ2

)
ω∗ ( f ′′, δ

)

Two inequality |r̈ (t, x)| ≤ 2ω∗ ( f ′′, δ
)
and |r̈ (t, x)| ≤ 2(e−t−e−x)

2

δ2
ω∗ ( f ′′, δ

)
holds for the case

∣∣e−t − e−x
∣∣ ≤ δ and

∣∣e−t − e−x
∣∣ > δ respectively.

Thus

|r̈ (t, x)| ≤ 2

(
1 +

(
e−t − e−x

)2
δ2

ω∗ ( f ′′, δ
))

Using above argument and Cauchy Schwarz inequality, we get

nT̈n
(
r̈ (t, x) (t − x)2; x

)

≤ nT̈n

(
2

(
1 +

(
e−t − e−x

)2
δ2

ω∗ ( f ′′, δ
))

(t − x)2; x
)

= 2n (ν2 (x)) ω∗ ( f ′′, δ
) + 2n

δ2
ω∗ ( f ′′, δ

)
T̈n

((
e−t − e−x)2(t − x)2; x

)

= 2ω∗ ( f ′′, δ
) [

n (ν2 (x)) +
(
n2ν4 (x)

)1/2(
n2T̈n

((
e−t − e−x)2; x))1/2

]
.

We complete the proof by choosing δ = 1√
n

and cn (x) = (
n2ν4 (x)

)1/2
(
n2T̈n

((
e−t − e−x

)2; x))1/2. ��

Theorem 4.3 Let x ∈ R≥ and f , f ′′ ∈ C∗(R≥). Then we have

lim
n→∞ n

[
T̈n ( f ; x) − f (x)

] = x3/2
[
f ′ (x) + f ′′ (x)

]
(4.2)
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Proof By the Taylor’s expansion of f , we have

f (t) = f (x) + (t − x) f ′ (x) + 1

2
(t − x)2 f ′′ (x) + r̈ (t, x) (t − x)2 (4.3)

where

lim
t→x

r̈ (t, x) = 0.

From Lemma 3.2 and applying T̈n to (4.3), we get

T̈n ( f ; x) − f (x) = ν1 (x) f ′ (x) + 1

2
ν2 (x) f ′′ (x) + T̈n

(
r̈ (t, x) (t − x)2; x

)
.

Making use of Cauchy Schwarz inequality, we have

T̈n
(
r̈ (t, x) (t − x)2; x

)
≤

√
T̈n

(
r̈2 (t, x) ; x) T̈n ((t − x)4; x) (4.4)

Also, we have

lim
n→∞ T̈n

(
r̈2 (t, x) ; x

)
= 0. (4.5)

From (4.4) and (4.5), we get

lim
n→∞ nT̈n

(
r̈ (t, x) (t − x)2; x

)
= 0.

Thus we get

lim
n→∞ n

[
T̈n ( f ; x) − f (x)

]

= lim
n→∞ n

[
ν1 (x) f ′ (x) + 1

2
ν2 (x) f ′′ (x) + T̈n

(
r̈ (t, x) (t − x)2; x

)]

= x3/2
[
f ′ (x) + f ′′ (x)

]

��
Let us represent the class of bounded and uniform continuous functions on R≥

equipped with sup norm by CB(R≥). For a function g ∈ CB(R≥), the first and
second-order modulus of continuity is given by ωp (g, δ) = sup

x∈R≥
sup

0≤h≤δ

∣∣�p
h g (x)

∣∣ for
p = 1 and p = 2, respectively. Further, The Peetre’s K-functional and its relation with
ω2 (g, δ) for a function � ∈ C2

B(R≥) = {
� ∈ CB(R≥) : �

′, �
′′ ∈ CB(R≥)

}
is given

as:

K2 (g, δ) = inf
�∈C2

B (R≥)

{‖g − �‖ + δ ‖�‖ , (δ > 0)} ,
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and

K2(g; δ) ≤ Mω2(g;
√

δ)

respectively.

Theorem 4.4 Let f ∈ CB(R≥). Then, for all x ∈ R≥, there exists a positive constant
M such that

∣∣T̈n ( f ; x) − f (x)
∣∣ ≤ Mω2

⎛
⎝ f ,

1

2

√
ν2 (x) + (�n (x) − x)2

2

⎞
⎠ + ω ( f , (�n (x) − x))

Proof We construct the auxiliary operators Tn : CB(R≥) → CB(R≥)

Tn ( f ; x) = T̈n ( f ; x) + f (x) − f (�n (x)) ,

where �n(x) is given in 2.2. For the operators 2.3, we have

∥∥T̈n ( f ; x)∥∥ ≤ ‖ f ‖

implies

‖Tn ( f ; x)‖ ≤ ∥∥T̈n ( f ; x)∥∥ + 2 ‖ f ‖ ≤ 3 ‖ f ‖ (4.6)

Also the Taylor expansion for � ∈ C2
B(R≥) is given as

� (t) = � (x) + (t − x) �
′ (x) +

t∫

x

(t − μ)�′′ (μ) dμ, x ∈ R≥

Applying Cauchy schwarz inequality and Tn to the both sides of above equation, we
get

|Tn (�; x) − � (x)| =
∣∣∣∣∣∣Tn

⎛
⎝

t∫

x

(t − μ)�′′ (μ) dμ; x
⎞
⎠
∣∣∣∣∣∣

≤
∣∣∣∣∣∣T̈n

⎛
⎝

t∫

x

(t − μ)�′′ (μ) dμ; x
⎞
⎠
∣∣∣∣∣∣ +

∣∣∣∣∣∣∣

�n(x)∫

x

(�n (x) − μ) �
′′ (μ) dμ

∣∣∣∣∣∣∣

≤ ∥∥�
′′∥∥

(
ν2 (x) + (�n (x) − x)2

2

)
. (4.7)
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Using the estimates from Eqs. (4.6) and 4.7, we get

∣∣T̈n ( f ; x) − f (x)
∣∣ ≤ |Tn ( f − �; x) − ( f − �) (x)| + | f (�n (x)) − f (x)| + |Tn (�; x) − � (x)|

≤ 4 ‖ f − �‖ +
(

ν2 (x) + (�n (x) − x)2

2

)∥∥�
′′∥∥ + | f (�n (x)) − f (x)|

≤ 4K2

(
f ,

1

4

(
ν2 (x) + (�n (x) − x)2

2

))
+ | f (�n (x)) − f (x)|

≤ Mω2

⎛
⎝ f ,

1

2

√√√√
(

ν2 (x) + (�n (x) − x)2

2

)⎞
⎠ + ω ( f , (�n (x) − x))

��

5 Comparison with Tn

In the next theorem, using the asymptotic formulae satisfied by Tn and T̈n , we show
that for a particular class of functions the newly constructed operators T̈n approximate
better than the original operator Tn .
Theorem 5.1 Let f ∈ C2(R≥). Assume that there exist n0 ∈ N, such that

f (x) ≤ T̈n ( f ; x) ≤ T ( f ; x) ∀n ≥ n0, x ∈ R> where R> = (0,∞) (5.1)

then

f ′′ (x) ≥ − f ′ (x) ≥ 0, x ∈ R> (5.2)

In particular f ′′ (x) ≥ 0.

Contrarily, if (5.2) holdswith strict inequalities for a given x ∈ R>, there exist n0 ∈ N,

such that for n ≥ n0

f (x) < T̈n ( f ; x) < T ( f ; x) (5.3)

Proof From(5.1) we have

0 ≤ n(T̈n ( f ; x) − f (x)) ≤ n(T ( f ; x) − f (x)) ∀n ≥ n0, x ∈ R>

considering an asymptotic formula which is held by operators Tn defined in [11].

lim
n→∞ n(T ( f ; x) − f (x)) = x3/2 f ′′ (x) .

Now considering (4.2) and above equation, we get

0 ≤ − f ′ (x) ≤ f ′′ (x) .
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Contrarily, if (5.2) holds with strict inequality for a given x ∈ R>, then

0 < x3/2
(
f ′′ (x) + f ′ (x)

)
< x3/2 f ′′ (x)

⇒ 0 < lim
n→∞ n(T̈n ( f ; x) − f (x)) < x lim

n→∞ n(T ( f ; x) − f (x))

⇒ f (x) < T̈n ( f ; x) < T ( f ; x) .

This is the required result. ��

Example 5.1 This example is the graphical representation for the fact that for a function
f which satisfies Eq. (5.2), themodified operators T̈n converges better than the original
operators Tn . We can check that for the function f (x) = e−5x , (5.2) holds with strict
inequalities. In the following Figure, we have drawn the graph of f (Gray), T̈n( f ; x)
(Green), Tn( f ; x) (Orange) and in the following Table we have estimated the error
for the operators T̈n( f ; x) and Tn( f ; x). One can easily see from Fig. 1 and Table
1 that T̈n converges better than Tn( f ; x) for the class of functions which satisfies
5.2.

Fig. 1 Comparison of modified operators T̈n with original operators Tn

Table 1 Evaluation of error for the operators T̈n and Tn

x → 0.5 1 1.5 2

∣∣T̈n ( f ; x) − f (x)
∣∣ 0.0819647 0.0607227 0.0322153 0.0154151

|Tn ( f ; x) − f (x)| 0.125698 0.103568 0.0636199 0.0364577
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6 Convergence Graphs and Error Estimation Table

Example 6.1 For n = 10, 20, 100 the approximation for the function f (x) =
5cos (x) − xe

x
20 by the operators T̈n ( f ; x) is illustrated in Fig. 2. Further, in Table 2,

we estimated the absolute error Ën = ∣∣T̈n ( f ; x) − f (x)
∣∣ for different values of n and

given the corresponding graph for error depicting the convergence in Fig. 3. It can be
clearly seen from Figs. 2, 3 and from Table 2 that for larger values of n the proposed
operator (2.3) converges to f (x).

Fig. 2 The convergence of operators T̈n to the function f (x) = 5cos (x) − xe
x
20 for n = 20, 50, 100

Table 2 Evaluation of error for
f (x) = 5cos (x) − xe

x
20 for

n = 10, 20, 50, 100

x Ë10 Ë20 Ë50 Ë100

π/10 0.140182 0.0670473 0.0264392 0.0131557

2π/10 0.416172 0.205997 0.0817337 0.0407404

3π/10 0.730007 0.371476 0.149512 0.074855

4π/10 0.954686 0.507173 0.208961 0.10539

5π/10 0.977187 0.555486 0.237572 0.121236

6π/10 0.731075 0.472088 0.216107 0.112624

7π/10 0.219531 0.238647 0.133384 0.0734303

8π/10 0.479217 0.129237 0.0100886 0.00302205

9π/10 1.22514 0.58074 0.200355 0.0927286

π 1.84462 1.0357 0.410562 0.201475
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E

E

E

E

Fig. 3 Graphical representation of absolute error of operators T̈n to the function f (x) = 5cos (x) − xe
x
20

for n = 10, 20, 50, 100. The error clearly is converging to zero for the given function
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