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Abstract
In this paper, an SE I RS epidemic model is proposed, incorporating appropriate com-
partments as isolated exposed class and diagnosed class, relevant to interventions. In
the scenario of constant isolated proportion, the qualitative analyses are carried out
in terms of the basic reproduction number R0. The sensitivity of R0 with respect to
model parameters is discussed. The Pontryagin’s Maximum Principle is applied to
characterize the optimal control problem analytically, aiming at finding the optimal
value of the control tominimize the cost of interventions. A general explicit expression
for the optimal control is obtained. Numerical simulations are performed to illustrate
analytical results.

Keywords Epidemic model · Global dynamics · Optimal control theory · Sensitivity
analysis · Basic reproduction number

Mathematics Subject Classification 34K20 · 92D30

1 Introduction

Mathematical modeling of processes in epidemiology has played significant role in
both foreseeing the transmission dynamics of infectious diseases and allowing public
health policy makers to optimize the use of limited resources [2,4,5]. The concept
of compartmental model is from the classical SI R model proposed by Kermack and
McKendrick [13], inwhich the total population (N ) is divided into three compartments:
the susceptible individuals (S), the infectious individuals (I ), and the recovered indi-
viduals (R). Later, many epidemicmodels are inspired andwildly used, by considering
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different compartments based on the epidemiological status of individuals and incor-
porating various control strategies, such as isolation, vaccination, treatment, and so
on. Tremendous compartmental models are formulated and investigated even now, to
mimic the spread of infectious diseases, for instance, SE I R [16,23], SIC A [19], n-
group SI R model[22], and so on[21]. Motivated by previous compartmental models,
we study a SE I RS model, with diagnosed and undiagnosed infectious compartments,
which contribute differently to new infections. We consider a general incidence rate
which can be specified to characterize transmission dynamics in various scenarios.
Moreover, we incorporate the isolation rate as a time-dependent function, which may
simulate the situation of different response stages.

Optimal control is a branch of applied mathematics developed to find optimal ways
to control a dynamical system [8,11]. In optimal control theory, the Pontryagin’s Max-
imumPrinciple [17] is a classical result, used to find the best possible control for taking
a dynamical system from one state to another. It’s necessary for any optimal control
along with the optimal state trajectory to satisfy a Hamiltonian system, which is a two-
point boundary value problem, with a minimization condition on the Hamiltonian. In
recent years, numerous applications of optimal control problem in infectious disease
modeling deal with finding control laws for dynamical systems over a period of time
such that an objective functional is optimized [1,3,15,18,20,24]. Here, we consider
the time-dependent isolation rate as a control and derive the theoretic optimal control,
which is then simulated with a specified setting of parameters.

In this paper, we consider an SE I RS epidemic model, incorporating appropriate
compartments, such as isolated exposed class and diagnosed class, relevant to inter-
ventions. In the model, we use a general nonlinear decreasing function β(I ) as the
effective contact rate and a time-dependent isolated proportion q(t), which later will
be considered as a control. The paper is organized as follows. In Sect. 2, the compart-
mental model is formulated; in Sect. 3, the isolated proportion q(t) is set to a constant
q and the qualitative analyses are carried out in terms of the basic reproduction num-
ber R0. The sensitivity of R0 with respect to model parameters is studied using the
normalized forward sensitivity index; in Sect. 4, the optimal control problem of the
epidemic is investigated and solved by applying the Pontryagin’sMaximum Principle;
in Sect. 5, numerical simulations are performed to explore and extend the theoretical
results obtained. The paper ends up with a conclusion.

2 Model Formulation

The total population N is divided into six compartments, depending on the epidemi-
ological status of individuals: the susceptible individuals, S; the exposed individuals
but not isolated, E ; the isolated exposed individuals, Eq ; the undiagnosed infectious
individuals, I ; the diagnosed individuals, D; and the recovered individuals, R. Here,
we assume that only the exposed but not isolated individuals and the undiagnosed
infectious individuals can infect the susceptible individuals. Moreover, we introduce
a non-linear function β(I ) describing the effective contact rate, which mimics the
self-consciousness formulated in the transmission of disease due to the media effect.
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Fig. 1 Diagram of the SE I RS model. Susceptible individuals are infected by undiagnosed infectious indi-
viduals and become exposed; part of the exposed individuals are isolated and become diagnosed infectious,
who are not able to infect others; the other part of the exposed individuals are not isolated and become
undiagnosed infectious; the undiagnosed infectious individuals either get diagnosed or get recovered and
the diagnosed infectious individuals get recovered; the recovered individuals will lose immunity and be
susceptible again. A constant recruitment rate of susceptible individuals and a natural death rate of all
individuals are considered. For simplicity, no death from disease cause is included

The dynamical flow of the disease transmission between compartments is depicted in
Fig. 1.

The epidemic model is given by the following system of ordinary differential equa-
tions according to Fig. 1:

S′(t) = � − β(I (t))S(t)I (t) + φR(t) − dS(t), (2.1a)

E ′(t) = β(I (t))S(t)I (t)(1 − q(t)) − τ E(t) − dE(t), (2.1b)

E ′
q(t) = β(I (t))S(t)I (t)q(t) − δ2Eq(t) − dEq(t), (2.1c)

I ′(t) = τ E(t) − δ1 I (t) − r1 I (t) − dI (t), (2.1d)

D′(t) = δ1 I (t) + δ2Eq(t) − r2D(t) − dD(t), (2.1e)

R′(t) = r1 I (t) + r2D(t) − φR(t) − dR(t), (2.1f)

under initial conditions

S(0) > 0, E(0), Eq(0), I (0), D(0), R(0) ≥ 0, E(0)+Eq(0)+I (0) > 0. (2.2)
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Table 1 Model parameters

Symbol Description

� Recruitment rate of the susceptible class

d Natural death rate of individuals in each class

τ Transition rate of exposed but not isolated individuals to the infectious class

δ1 Transition rate of infectious individuals to the diagnosed class

δ2 Transition rate of isolated exposed individuals to the diagnosed class

r1 Recovery rate of undiagnosed infectious individuals

r2 Recovery rate of diagnosed infectious individuals

φ Transition rate of recovered individuals back to the susceptible class

β(I ) Effective contact rate

q(t) Isolated proportion

The effective contact rate β(I ) satisfies

β(0) = β0, β(I ) > 0, β ′(I ) < 0. (2.3)

It’s obvious that 0 < β(I ) ≤ β0, for I ≥ 0. Note that, many types of β(I ) satisfying
(2.3) have already been proposed, such as β0/(1+k I ) , β0/(1+α I 2), and so on [7,25].
Moreover, we denote the isolated proportion as q(t) and let 0 ≤ q(t) ≤ qmax < 1.
All the parameters involved in system (2.1) are listed in Table 1.

Let the total population N (t) = S(t)+E(t)+Eq(t)+ I (t)+D(t)+R(t), governed
by the following equation:

N ′(t) = � − dN (t), (2.4)

which leads to
lim

t→+∞ N (t) = �/d, (2.5)

no matter what initial total population size N (0) is. Therefore, it allows us to attack
the dynamics of system (2.1) in the following feasible positively invariant region:

� = {(S, E, Eq , I , D, R) ∈ R
6+ : S + E + Eq + I + D + R = �/d}. (2.6)

3 Dynamical Results with q(t) = q (Constant)

In this section, by setting q(t) = q, which means the isolated proportion of exposed
individuals is a constant, we discuss the dynamical behaviors of the following system:

S′(t) = � − β(I (t))S(t)I (t) + φR(t) − dS(t), (3.1a)

E ′(t) = β(I (t))S(t)I (t)(1 − q) − τ E(t) − dE(t), (3.1b)

E ′
q(t) = β(I (t))S(t)I (t)q − δ2Eq(t) − dEq(t), (3.1c)
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I ′(t) = τ E(t) − δ1 I (t) − r1 I (t) − dI (t), (3.1d)

D′(t) = δ1 I (t) + δ2Eq(t) − r2D(t) − dD(t), (3.1e)

R′(t) = r1 I (t) + r2D(t) − φR(t) − dR(t), (3.1f)

under initial condition (2.2), in feasible region defined by (2.6).

3.1 Disease-Free Equilibrium and Basic Reproduction Number

It can be verified that region� is positively invariant and globally attracting inR6+, with
respect to model (3.1). This guarantees that the model is well posed and biologically
meaningful.

The disease-free equilibrium of system (3.1) can be obtained from the following
equations {

E = 0, Eq = 0, I = 0, D = 0, R = 0,
� − dS0 = 0,

(3.2)

namely, there always exists a unique disease-free equilibrium E0,

E0 = (S0, 0, 0, 0, 0, 0)
T = (�/d, 0, 0, 0, 0, 0)T , (3.3)

where S0 = �/d.
Next, following the method of the next-generation matrix for deterministic com-

partmental models by van den Driessche and Watmough [10], we calculate the basic
reproduction number R0.

Using the samenotation as in [10],wedenote x(t) = (E(t), Eq(t), I (t), D(t), R(t),
S(t))T , and x0 = (0, 0, 0, 0, 0, S0)T . We rewrite system (3.1) as

dx

dt
= F (x) − V (x), (3.4)

where
F (x) = (β(I )SI (1 − q), β(I )SIq, 0, 0, 0, 0)T , (3.5)

and

V (x) =

⎛
⎜⎜⎜⎜⎜⎜⎝

(τ + d)E
(δ2 + d)Eq

(δ1 + r1 + d)I − τ E
(r2 + d)D − δ1 I − δ2Eq

(φ + d)R − r1 I − r2D
β(I )SI − � − φR + dS

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.6)

Taking the Fréchet derivatives ofF (x) and V (x), and evaluating them at x0, we
find

F =

⎛
⎜⎜⎝
0 0 β0S0(1 − q) 0
0 0 β0S0q 0
0 0 0 0
0 0 0 0,

⎞
⎟⎟⎠ , V =

⎛
⎜⎜⎝

τ + d 0 0 0
0 δ2 + d 0 0

−τ 0 δ1 + r1 + d 0
0 −δ2 −δ1 r2 + d

⎞
⎟⎟⎠ , (3.7)
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where F is nonnegative and V is non-singular. Additionally,

FV−1 =

⎛
⎜⎜⎜⎜⎜⎝

β0S0(1−q)τ
(τ+d)(δ1+r1+d)

0 β0S0(1−q)
δ1+r1+d 0

β0S0qτ
(τ+d)(δ1+r1+d)

0 β0S0q
δ1+r1+d 0

0 0 0 0

0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠

.

Therefore, FV−1 is nonnegative and the basic reproduction number R0 is given as
follows:

R0 = ρ(FV−1) = �β0τ(1 − q)

d(τ + d)(δ1 + r1 + d)
. (3.8)

Moreover, we then have the following theorem [10].

Theorem 1 The disease-free equilibrium E0 of system (3.1) is locally asymptotically
stable when R0 < 1, and unstable when R0 > 1.

3.2 Global Stability of Disease-Free Equilibrium

Now, we prove the global stability of disease-free equilibrium E0 by considering
following Lyapunov function:

V (E(t), I (t)) = τ E(t) + (τ + d)I (t), (3.9)

where V ≥ 0 in� and V = 0 if and only if (E, I ) = (0, 0). Recall that 0 < β(I ) ≤ β0
and 0 < S ≤ S0. Differentiating V along the solutions of (3.1) yields

dV

dt

∣∣∣∣
(

3.1)(E(t), I (t)) = τ E ′(t) + (τ + d)I ′(t)

= τβ(I )SI (1 − q) − (δ1 + r1 + d)(τ + d)I
≤ τβ0S0 I (1 − q) − (δ1 + r1 + d)(τ + d)I
= (δ1 + r1 + d)(τ + d)(R0 − 1)I
≤ 0,

(3.10)

when R0 ≤ 1. Moreover, V ′ = 0 if and only if R0 = 1 and evaluated at E0. By
LaSalle’s Invariance Principle [14], we have the following result:

lim
t→+∞(E(t), Eq(t), I (t), D(t), R(t), S(t))T = (0, 0, 0, 0, 0, S0)

T . (3.11)

Theorem 2 The disease-free equilibrium E0 is globally asymptotically stable when
R0 ≤ 1, and unstable when R0 > 1.
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3.3 Existence and Uniqueness of Endemic Equilibrium

To calculate the endemic equilibrium, let the right-hand side of system (3.1) be zero
and I ∗ 	= 0, such that

� − β(I ∗)S∗ I ∗ + φR∗ − dS∗ = 0, (3.12a)

β(I ∗)S∗ I ∗(1 − q) − (τ + d)E∗ = 0, (3.12b)

β(I ∗)S∗ I ∗q − (δ2 + d)E∗
q = 0, (3.12c)

τ E∗ − (δ1 + r1 + d)I ∗ = 0, (3.12d)

δ1 I
∗ + δ2E

∗
q − (r2 + d)D∗ = 0, (3.12e)

r1 I
∗ + r2D

∗ − (φ + d)I ∗ = 0. (3.12f)

From (3.12b)-(3.12f), we have

E∗ = δ1 + r1 + d

τ
I ∗, (3.13a)

S∗ = (τ + d)(δ1 + r1 + d)

(1 − q)τβ(I ∗)
, (3.13b)

E∗
q = q(τ + d)(δ1 + r1 + d)

(δ2 + d)(1 − q)τ
I ∗, (3.13c)

D∗ =
[

δ2q(τ + d)(δ1 + r1 + d)

(r2 + d)(δ2 + d)(1 − q)τ
+ δ1

r2 + d

]
I ∗ (3.13d)

and

R∗ =
[

r1
φ + d

+ r2δ2q(τ + d)(δ1 + r1 + d)

(φ + d)(r2 + d)(δ2 + d)(1 − q)τ
+ r2δ1

(φ + d)(r2 + d)

]
I ∗.
(3.14)

In the bounded region (2.6), we have

S∗ = �/d − (β(I ∗)S∗ I ∗/d − φR∗/d) ≤ �/d, (3.15)

and
0 ≤ β(I ∗)S∗ I ∗/d − φR∗/d

= MI ∗, (3.16)

where

M = (τ + d)(δ1 + r1 + d)

(1 − q)τ
− φ

[
r1

φ + d
+ r2δ2q(τ + d)(δ1 + r1 + d)

(φ + d)(r2 + d)(δ2 + d)(1 − q)τ

+ r2δ1
(φ + d)(r2 + d)

]
≥ 0.

(3.17)
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Substituting S∗, E∗, E∗
q , I ∗, D∗ and R∗ into (3.12a), we have

f (I ∗) � � − MI ∗ − (τ + d)(δ1 + r1 + d)

(1 − q)τβ(I ∗)
= 0. (3.18)

Directly, when R0 > 1

f (0) = � − (τ + d)(δ1 + r1 + d)

(1 − q)τβ0
= (τ + d)(δ1 + r1 + d)

(1 − q)τβ0
× (R0 − 1) > 0,

(3.19)
and

d f (I ∗)
dI ∗ = −M + (τ + d)(δ1 + r1 + d)

(1 − q)τβ2(I ∗)
× β ′(I ∗) ≤ 0. (3.20)

Therefore, from the sketch of function f (I ∗) with respect to I ∗, there exists a unique
I ∗ > 0 in �, if and only if R0 > 1.

Theorem 3 System (3.1) exists a unique endemic equilibrium E∗ = (S∗, E∗, E∗
q , I

∗, D∗,
R∗)T when R0 > 1, and a unique disease-free equilibrium E0 = (S0, 0, 0, 0, 0, 0)T

when R0 ≤ 1.

3.4 Uniformly Persistent

Now, we establish the uniform persistence for system (3.1) whenR0 > 1, by applying
the following Lemma of Zhao [27].

Lemma 1 [27] Let φt : X → X be a semiflow and X0 ⊂ X an open set. Define
∂X0 = X\X0, and M∂ = {x ∈ ∂X0 : φt x ∈ ∂X0, t ≥ 0}. Assume that
(I) φt X0 ⊂ X0 and φt has a global attractor A;
(II) there exists a finite sequence of M = {M1, . . . , Mk} of disjoint, compact, and

isolated invariant sets in ∂X0 such that

(i) �(M∂ ) := ∪x∈M∂
ω(x) ⊂ ∪k

i=1Mi;
(ii) no subset ofM forms a cycle in ∂X0;
(iii) Mi is isolated in X;
(iv) Ws(Mi ) ∩ X0 = ∅ , where Ws(Mi ) = {x ∈ X0 : ω(x) ⊂ Mi }, for each

1 ≤ i ≤ k.

Then, φt is uniformly persistent with respect to (X0, ∂X0), namely, there exists η > 0,
such that lim inf

t→+∞ d(φt x, ∂X0) ≥ η for x ∈ X0.

Theorem 4 If R0 > 1, then system (3.1) is uniformly persistent, namely, there exists
η > 0, such that lim inf

t→+∞{S(t), E(t), Eq(t), I (t), D(t), R(t)} ≥ η, under initial con-

ditions S(t), E(t), Eq(t), I (t), D(t), R(t) > 0.

Proof Choose X = R
6+, X0 = {(S, E, Eq , I , D, R) ∈ X , E + Eq + I +D+ R > 0},

and ∂X0 = X\X0 = {(S, E, Eq , I , D, R) ∈ X , E = Eq = I = D = R = 0}.
Let φt be the semiflow induced by the solutions of system (3.1). It’s easy to verify
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that φt X0 ⊂ X0 and φt is ultimately bounded in X0, which implies that there always
exists a global attractor for φt . E0 is the unique boundary equilibrium on ∂X0, and it’s
globally stable on ∂X0. Let M1 = {E0} andM = {M1}. Then ∪x∈M∂

ω(x) = M1 and
no subset of M forms a cycle in ∂X0. If R0 > 1, then E0 is unstable in X0, which
guarantees conditions (i i i) and (iv) are satisfied. Therefore, applying Lemma 1, the
proof is complete. ��

3.5 Sensitivity of the Basic Reproduction Number

The sensitivity of the basic reproduction numberR0 is an important issue, because it
determines the model robustness to parameter values. Next, we discuss the sensitivity
ofR0 with respect to model parameters measured by the so-called sensi tivi t y index .
More specifically, the impact of β0, q, δ1, δ2 on R0 is investigated, respectively.

Definition 1 [9,26] The normalized forward sensitivity index of a variable v that
depends differentiably on a parameter p is defined by

Y v
p := ∂v

∂ p
× p

|v| . (3.21)

Remark 1 If Y v
p = +1, then an increase (decrease) of p by x% increases (decreases)

v by x%. If Y v
p = −1, then an increase (decrease) of p by x% decreases (increases)

v by x%.

It follows directly from (3.8) and (3.21),

Y R0
β0

:= ∂R0

∂β0
× β0

|R0| = 1,

Y R0
q := ∂R0

∂q
× q

|R0| = − q

1 − q
,

Y R0
δ1

:= ∂R0

∂δ1
× δ1

|R0| = − δ1

δ1 + r1 + d
,

Y R0
δ2

:= ∂R0

∂δ2
× δ2

|R0| = 0.

(3.22)

From the signs of the normalized forward sensitivity index, we conclude that the basic
reproduction numberR0 increases with β0, and decreases with δ1 and q, respectively;
whereas, δ2 has no impact on the values ofR0. Note that the most sensitive parameter
p it corresponds the largest absolute value of normalized forward sensitivity index,
which indicates: if 0 < q < 1/2, then β0 is the most sensitive parameter under consid-
eration; if 1/2 < q < 1, then q is the most sensitive parameter. Moreover, increasing
the isolated proportion q and the transition rate δ1 of the undiagnosed infectious indi-
viduals to the diagnosed class can decrease R0, but changing the transition rate δ2
of the isolated exposed individuals to the diagnosed class cannot alter the value of
R0. Actually, we can decreaseR0 until it’s no greater than 1, which indicates that the
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infection will die out in long run, by letting q ≥ qc or δ1 ≥ δc1, where

qc = 1 − d(τ + d)(δ1 + r1 + d)

�β0τ
, δc1 = �β0τ(1 − q)

d(τ + d)
− r1 − d. (3.23)

4 Optimal Control Problemwith q(t) (Non-constant)

In this section, we present the optimal control problem of the epidemic, aiming to
find the optimal value q∗ of the control q(t), such that the associated state trajectories
S∗, E∗, E∗

q , I
∗, D∗, R∗ are the solutions of system (2.1) in the time interval [0, T ]

with initial conditions (2.2), and minimize the objective functional given as follows:

J (q(·)) =
∫ T

0

[
m1 I (t) + m2D(t) + m3q

2(t)
]
dt, (4.1)

where m1, m2 and m3 are given constant weights, measuring the number of infec-
tious individuals I , the number of diagnosed infectious individuals D and the cost of
the intervention associated to the control q(t), respectively. To be clear, the weight
parameters m1, m2 and m3 are to be chosen according to different optimal control
scenarios, such as to increase weight m1 in order to emphasize the number of infec-
tious individuals in the objective functional. The set of admissible control function is
given by

� = {q(·) ∈ L∞(0, T )|0 ≤ q(t) ≤ qmax , ∀t ∈ [0, T ]}. (4.2)

We consider the optimal control problem of determining (S∗(·), E∗(·), E∗
q (·), I ∗(·),

D∗(·), R∗(·)), associated to an admissible control q∗(·) ∈ � in the time interval [0, T ],
satisfying system (2.1), with initial conditions (2.2) andminimizing the cost functional
(4.1), namely,

J (q∗(·)) = min
�

J (g(·)). (4.3)

It’s obvious that the integrand of the cost functional J is concave with respect to
the control q. The control system (2.1) is Lipschitz with respect to the state variables
(S, E, Eq , I , D, R). These properties ensure the existence of an optimal control q∗(·)
of the optimal control problem (see [8] for details).

According to the Pontryagin’s Maximum Principle [17], if q∗(·) is an optimal
control for problem (2.1), (4.3) with the initial conditions given in (2.2) and fixed final
time T > 0, then there exists a nontrivial absolutely continuousmapping λ : [0, T ] →
R
6, λ(t) = (λ1(t), λ2(t), λ3(t), λ4(t), λ5(t), λ6(t)), called ad joint vector , such that

S′ = ∂H

∂λ1
, E ′ = ∂H

∂λ2
, E ′

q = ∂H

∂λ3
, I ′ = ∂H

∂λ4
, D′ = ∂H

∂λ5
, R′ = ∂H

∂λ6
, (4.4)

and

λ′
1 = −∂H

∂S
, λ′

2 = −∂H

∂E
, λ′

3 = − ∂H

∂Eq
, λ′

4 = −∂H

∂ I
, λ′

5 = −∂H

∂D
, λ′

6 = −∂H

∂R
,

(4.5)
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where function H defined by

H = H(S(t), E(t), Eq(t), I (t), D(t), R(t), q(t))
= m1 I (t) + m2D(t) + m3q2(t)

+λ1(t)(� − β(I (t))S(t)I (t) + φR(t) − dS(t))
+λ2(t)(β(I (t))S(t)I (t)(1 − q(t)) − τ E(t) − dE(t))
+λ3(t)(β(I (t))S(t)I (t)q(t) − δ2Eq(t) − dEq(t))
+λ4(t)(τ E(t) − δ1 I (t) − r1 I (t) − d I (t))
+λ5(t)(δ1 I (t) + δ2Eq(t) − r2D(t) − dD(t))
+λ6(t)(r1 I (t) + r2D(t) − φR(t) − dR(t))

(4.6)

is called the Hamiltonian, and the minimization condition

H(S∗(t), E∗(t), E∗
q (t), I

∗(t), D∗(t), R∗(t), q∗(t))
= min

0≤q≤qmax
H(S∗(t), E∗(t), E∗

q (t), I
∗(t), D∗(t), R∗(t), q) (4.7)

holds almost everywhere on [0, T ]. Moreover, the transversality conditions

λi (T ) = 0, i = 1, . . . , 6, (4.8)

hold.
Applying the Pontryagin’sMaximumPrinciple to the optimal control problem (2.1),

(4.3), the following theorem is derived.

Theorem 5 The optimal control problem (2.1), (4.3) with the initial conditions given
in (2.2) and fixed final time T admits a unique optimal solution (S∗(·), E∗(·), E∗

q (·),
I ∗(·), D∗(·), R∗(·)), associated to the optimal control q∗(·) ∈ � on [0, T ] described
by

q∗(t) = min

{
max

{
0,

β(I ∗(t))S∗(t)I ∗(t)(λ2(t) − λ3(t))

2m3

}
, qmax

}
, (4.9)

where the adjoint functions satisfy

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ′
1(t) = λ1(t)(β(I (t))I (t) + d) − λ2(t)β(I (t))I (t)(1 − q(t))

−λ3(t)β(I (t))I (t)q(t),
λ′
2(t) = λ2(t)(τ + d) − λ4(t)τ,

λ′
3(t) = λ3(t)(δ2 + d) − λ5(t)δ2,

λ′
4(t) = λ1(t)[β(I (t))S(t) + β ′(I (t))S(t)I (t)]

−λ3(t)[β(I (t))S(t) + β ′(I (t))S(t)I (t)]q(t)
−λ2(t)[β(I (t))S(t) + β ′(I (t))S(t)I (t)](1 − q(t))
+λ4(t)(δ1 + r1 + d) − λ5(t)δ1 − λ6(t)r1 − m1,

λ′
5(t) = λ5(t)(r2 + d) − λ6(t)r2 − m2,

λ′
6(t) = −λ1(t)φ + λ6(t)(φ + d),

(4.10)

subject to the transversality conditions λi (T ) = 0, i = 1, . . . , 6.
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Proof Existence of an optimal control solution (S∗, E∗, E∗
q , I

∗, D∗, R∗) associated to
an optimal controlq∗ comes from the convexity of the integrand of the cost functional J
with respect to the control q, and the Lipschitz property of the state systemwith respect

to state variables (S, E, Eq , I , D, R). From
∂H

∂q
(S∗, E∗, E∗

q , I
∗, D∗, R∗, q) = 0, we

have

2m3q − λ2(t)β(I ∗(t))S∗(t)I ∗(t) + λ3(t)β(I ∗(t)S∗(t)I ∗(t)) = 0, (4.11)

and

q(t) = β(I ∗(t))S∗(t)I ∗(t)(λ2(t) − λ3(t))

2m3
. (4.12)

Therefore, the final expression of the optimal control q∗(t) is defined by (4.9).
System (4.10) is derived from the Pontryagin’sMaximumPrinciple and the optimal

control (4.9) comes from the minimization condition (4.7). For some final time T > 0,
the optimal control by (4.9) is unique due to the boundedness of the state and adjoint
functions, and the Lipschitz property of system (2.1) and system (4.10). ��
Remark 2 Detailed theory is referred to [11,12,18].

5 Numerical Results

The following specified form of β(I ) (as in [7]) is chosen to illustrate the obtained
theoretical results for system (2.1):

β(I ) = β0

1 + k I
, (5.1)

where β(I ) satisfies condition (2.3), and β0, k > 0.
First, we consider the dynamical behaviors of system (3.1) with constant isolated

proportion q. The parameter values are listed in Table 2, which may to some extent
characterize the flu transmission dynamics. The initial number of individuals in each
compartment is given by E(0) = 800, Eq(0) = 200, I (0) = 100, D(0) =
100, R(0) = 50, and S(0) = �/d − E(0) − Eq(0) − I (0) − D(0) − R(0). The
simulation results show: Fig. 2a presents the global asymptotic stability of the disease-
free equilibrium with R0 < 1; Fig. 2b presents the global asymptotic stability of the
endemic equilibrium withR0 > 1.

Next, we investigate the numerical solution of the optimal problem studied in Sect.
4. The optimal control given by Theorem 5 is computed numerically by implementing
a forward-backward fourth-order Runge–Kutta method[6,15]. Following the method
in [6], system (2.1) is solved with a guess for the control over time interval [0, T ],
using a forward fourth-order Runge–Kutta scheme and the transversal condition (4.8);
the adjoint system (4.10) is solved by backward fourth-order Runge–Kutta scheme
using the current iteration solution of system (2.1). The controls are updated by using
the expression given by (4.9). In this simulation, we consider qmax = 0.5 and T = 40;
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Table 2 Parameter values
assigned in simulations

Parameters Estimated value Unit

� 1 Number×Day−1

d 1/(70×365) Day−1

τ 1/10 Day−1

δ1 1/20 Day−1

δ2 1/15 Day−1

r1 1/15 Day−1

r2 1/10 Day−1

φ 1/15 Day−1

β0 2× 10−5 (or 2× 10−6) Day×Number−1

q0 0.1 1

k 0.005 Number−1

Fig. 2 Illustration of the dynamical nature of the infected compartments, namely E(t), Eq (t), I (t) and
D(t): a R0 = 0.3939 < 1 with β0 = 2 × 10−6; b R0 = 3.9391 > 1 with β0 = 2 × 10−5

namely, the set of admissible controls is given by

� = {q(·) ∈ L∞(0, 40)|0 ≤ q(t) ≤ 0.5, ∀t ∈ [0, 40]}. (5.2)

Let m1 = m2 = 1 and m3 = 500. The numerical solution of the optimal control q∗
is given in Fig. 3a, as well as the comparison of solutions of system (2.1) with and
without control.
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Fig. 3 a Optimal control q∗(t); b Comparison: solutions of system (2.1) with optimal control q∗(t) versus
solutions without control q(t) = 0

6 Conclusion

In this paper, an SE I RS epidemic model is formulated, incorporating appropriate
compartments such as isolated exposed class and diagnosed class, relevant to inter-
ventions. The dynamical behaviors and the optimal control problem of the model are
investigated.

On one hand, the isolated proportion of exposed individuals is set to a constant
q. The dynamical behaviors of system (3.1) are discussed. The basic reproduction
number R0 is derived by the next-generation matrix method, which is crucial to the
global dynamics of the model. The qualitative analyses are carried out in terms ofR0.
The system only has a globally asymptotically stable disease-free equilibrium when
R0 ≤ 1, and it implies that the disease eventually dies out; the system has a unique
endemic equilibrium when R0 > 1, and the disease becomes uniformly persistent in
the long run. The sensitivity of the basic reproduction number with respect to model
parameters is studied by the normalized forward sensitivity index. As we can see, β0
is the most sensitive parameter under consideration, and R0 increases with β0 and
decreases with δ1 and q, respectively, whereas δ2 has no impact on the value of R0.
Moreover, we give the critical values qc and δc1, in order to ensureR0 ≤ 1.

On the other hand, the paper investigates the optimal control problem of the
epidemic, aiming to find the optimal value q∗ of the control q(t). The celebrated Pon-
tryagin’s Maximum Principle is applied to optimal control problem and an explicit
expression of the optimal control is presented. The numerical solution of the optimal
control is computed by implementing a forward-backward fourth-order Runge–Kutta
method. Furthermore, the simulation results indicate that using the optimal control
measure, the number of the infectious individuals undiagnosed and the diagnosed
individuals diminish.

The time-dependent isolation rate may be able to depict the scenarios with different
intervention response stages, such as due to the delayed public awareness of disease
transmission. The optimal control suggests a reasonable isolation rate function to
minimize the number of both the diagnosed and undiagnosed individuals, as well
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as the cost of intervention, which can give some suggestions to control the disease
transmission dynamics.
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