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Abstract
For a connected graphG and a, b ∈ R, the general degree-eccentricity index is defined
as DEIa,b(G) = ∑

v∈V (G) d
a
G(v)eccbG(v), where V (G) is the vertex set of G, dG(v)

is the degree of a vertex v and eccG(v) is the eccentricity of v in G. We obtain sharp
upper and lower bounds on the general degree-eccentricity index for trees of given
order in combination with given matching number, independence number, domination
number or bipartition. The bounds hold for 0 < a < 1 and b > 0, or for a > 1 and
b < 0. Many bounds hold also for a = 1. All the extremal graphs are presented.

Keywords General degree-eccentricity index · Tree · Matching number ·
Independence number · Domination number · Eccentric connectivity index

Mathematics Subject Classification 05C05 · 92E10 · 05C12

1 Introduction

Topological indices are invariants which play an important role in chemistry, pharma-
ceutical sciences, materials science and engineering, because they can be correlated
with many properties of molecules. Eccentricity-based indices have shown very good
correlations with respect to both physical and biological properties of chemical sub-
stances; see [12]. They provide an excellent predictive power for pharmaceutical
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properties, for example, for predicting anti-HIV activity of chemical substances; see
[5].

Let G be a simple connected graph with vertex set V (G) and edge set E(G). The
number of vertices of G is called the order. The number of edges incident to a vertex
v ∈ V (G) is the degree of v, denoted by dG(v). A vertex of degree one is a pendant
vertex. For u, v ∈ V (G), the number of edges in a shortest path between u and v is the
distance dG(u, v) between u and v. The distance between v and any vertex furthest
from v in G is the eccentricity eccG(v) of v. The distance between any two furthest
vertices in G is the diameter of G. A shortest path between any two furthest vertices
is a diametral path in G. A tree is a connected graph without cycles. The path and star
of order n are denoted by Pn and Sn , respectively. Let Pk = v1v2 . . . vk be a path with
V (Pk) = {v1, v2, . . . , vk} and E(Pk) = {v1v2, v2v3, . . . , vk−1vk}.

For a, b ∈ R, we propose the concept of the general degree-eccentricity index,
which is defined for a connected graph G as

DEIa,b(G) =
∑

v∈V (G)

daG(v)eccbG(v).

Several important eccentricity-based indices are special cases of this general index.
Note that DEIa,1(G) is the general eccentric connectivity index, DEI1,1(G) is the
classical eccentric connectivity index,DEI1,−1(G) is the connective eccentricity index,
DEI0,1(G) is the total eccentricity index, andDEI0,2(G) is the first Zagreb eccentricity
index of G.

The eccentric connectivity index has been extensively studied. Sharp upper and
lower bounds on the eccentric connectivity index for trees with prescribed order were
obtained in [24], tight upper and lower bounds for trees in terms of order and diameter
were given in [16] and [24], sharp bounds for trees with given maximum degree were
obtained in [10], and the tight lower bound and upper bound for trees of prescribed
order and number of pendant vertices were presented in [9] and [24], respectively.
Trees with respect to degree sequence were studied in [22], upper bounds for graphs
with prescribed order and vertex connectivity/edge connectivity were given in [17], the
eccentric connectivity index for generalized thorn graphs was given in [20], values of
this index for polyacenic nanotubes were presented in [13], values for 3-fence graphs
and their line graphs were given in [14], and composite graphs were considered in [4].

Zagreb eccentricity indices have been investigated a lot as well. For example, upper
and lower bounds on those indices for trees and general graphs were given in [2] and
[23], and bounds for trees of given domination number or bipartition were determined
in [19].

Sharp upper and lower bounds on the general eccentric connectivity index of trees
with prescribed order and diameter/number of pendant vertices were given in [21],
exact values on the connective eccentricity index for several classes of path-thorn
graphs were obtained in [11], and the total eccentricity index was studied in [3].

Several other indices which contain the eccentricity have been studied. For exam-
ple, the eccentric distance sum of trees was investigated in [6] and [15], the eccentric
connectivity coindex was studied in [8], and the eccentric adjacency index was inves-
tigated in [1].
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Fig. 1 Tree Pl (r , t)
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We obtain upper and lower bounds on the general degree-eccentricity index for
trees of given order and matching number, independence number, domination number
or bipartition. The bounds hold for 0 < a < 1 and b > 0, or for a > 1 and b < 0.
Many bounds hold also for a = 1. We show that all our bounds are best possible by
presenting the extremal graphs.

2 Preliminary Results

The following lemmawas presented in [21]. This lemma is used in the proofs of several
theorems and lemmas.

Lemma 1 Let x, y, c, a ∈ R, where 1 ≤ x < y and c > 0. For 0 < a < 1, we have

(x + c)a − xa > (y + c)a − ya .

For a > 1 and a < 0, we have

(x + c)a − xa < (y + c)a − ya .

For integers l ≥ 2 and r ≥ t ≥ 1, let Pl(r , t) be the tree of order n obtained from the
path Pl = v1v2 . . . vl by joining v1 to r pendant vertices and vl to t pendant vertices;
see Fig. 1. Clearly, r + t = n − l.

We study the general degree-eccentricity index of the trees Pl(r , t).

Lemma 2 Let l ≥ 2 and r ≥ t ≥ 2. Then, for any b ∈ R, we have

(i) DEIa,b(Pl(r , t)) > DEIa,b(Pl(r + 1, t − 1)) if 0 < a < 1,
(ii) DEIa,b(Pl(r , t)) < DEIa,b(Pl(r + 1, t − 1)) if a > 1,
(iii) DEIa,b(Pl(r , t)) = DEIa,b(Pl(r + 1, t − 1)) if a = 1.

Proof Let T ′ ∼= Pl(r , t), where Pl = v1v2 . . . vl , and let u be any pendant vertex
adjacent to vl in T ′. Let T ′′ be the tree with V (T ′′) = V (T ′) and E(T ′′) = {uv1} ∪
E(T ′)\{uvl}. So, T ′′ ∼= Pl(r + 1, t − 1). Then dT ′(v1) = r + 1, dT ′′(v1) = r + 2,
dT ′(vl) = t + 1, dT ′′(vl) = t and dT ′(x) = dT ′′(x) for each x ∈ V (T ′)\{v1, vl}. It is
clear that eccT ′(z) = eccT ′′(z) for all z ∈ V (T ′) and eccT ′(v1) = eccT ′′(vl) = l. We
obtain

DEIa,b(T
′) − DEIa,b(T

′′) = daT ′(v1)ecc
b
T ′(v1) − daT ′′(v1)ecc

b
T ′′(v1)
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+daT ′(vl)ecc
b
T ′(vl) − daT ′′(vl)ecc

b
T ′′(vl)

= [(r + 1)a − (r + 2)a + (t + 1)a − ta]lb.

For 0 < a < 1, by Lemma 1, we have (t + 1)a − ta > (r + 2)a − (r + 1)a , so
(r + 1)a − (r + 2)a + (t + 1)a − ta > 0 and DEIa,b(T ′) > DEIa,b(T ′′).

For a > 1, we get (t + 1)a − ta < (r + 2)a − (r + 1)a , so (r + 1)a − (r + 2)a +
(t + 1)a − ta < 0 and DEIa,b(T ′) < DEIa,b(T ′′).

For a = 1, we obtain (r + 1)a − (r + 2)a + (t + 1)a − ta = 0 and DEIa,b(T ′) =
DEIa,b(T ′′). �	

From Lemma 2, we obtain sharp lower and upper bounds on the general degree-
eccentricity index of the trees Pl(r , t).

Corollary 1 Let T be any tree of order n = l + r + t having the form Pl(r , t), where
l ≥ 2 is fixed and r ≥ t ≥ 1.

If 0 < a < 1, then

DEIa,b(Pl(n − l − 1, 1)) ≤ DEIa,b(T ) ≤ DEIa,b

(

Pl

(⌈
n − l

2

⌉

,

⌊
n − l

2

⌋))

with equalities if and only if T is Pl(n − l − 1, 1) and Pl(
 n−l
2 �, � n−l

2 
), respectively.
If a > 1, then

DEIa,b

(

Pl

(⌈
n − l

2

⌉

,

⌊
n − l

2

⌋))

≤ DEIa,b(T ) ≤ DEIa,b(Pl(n − l − 1, 1))

with equalities if and only if T is Pl(
 n−l
2 �, � n−l

2 
) and Pl(n − l − 1, 1), respectively.

In Lemmas 3 and 4 we compare the general degree-eccentricity indices of trees
having the same order, but different diameters.

Lemma 3 Let l ≥ 2, r ≥ 2 and t ≥ 1. Let T ∼= Pl+1(r − 1, t) if r > t and
T ∼= Pl+1(t, r − 1) if r = t . Then, for 0 < a ≤ 1 and b > 0, we have

DEIa,b(Pl(r , t)) < DEIa,b(T ).

Proof Let T ′ ∼= Pl(r , t), where Pl = v1v2 . . . vl , and let u be any pendant vertex
adjacent to v1 in T ′. Let T be the tree with V (T ) = V (T ′) and E(T ) = {uv2} ∪
E(T ′)\{v1v2}. So T ∼= Pl+1(r − 1, t) if r > t and T ∼= Pl+1(t, r − 1) if r = t . Then,
dT ′(v1) = r + 1, dT (v1) = r , dT ′(u) = 1, dT (u) = 2 and dT ′(x) = dT (x) for all
x ∈ V (T ′)\{v1, u}.

For all z ∈ V (T ′)\{u}, we have eccT ′(z) ≤ eccT (z), which implies that eccbT ′(z) ≤
eccbT (z) for b > 0. Note that eccT ′(v1) = l, eccT (v1) = l + 1, eccT ′(u) = l + 1 and
eccT (u) = l. Thus,

DEIa,b(T
′) − DEIa,b(T ) ≤ daT ′(v1)ecc

b
T ′(v1) − daT (v1)ecc

b
T (v1)
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+ daT ′(u)eccbT ′(u) − daT (u)eccbT (u)

= (r + 1)alb − ra(l + 1)b + 1a(l + 1)b − 2alb

= [(r + 1)a − 2a]lb + [1a − ra](l + 1)b

< [(r + 1)a − 2a + 1a − ra](l + 1)b.

For 0 < a < 1, by Lemma 1, we have (r + 1)a − 2a < ra − 1a , so (r + 1)a −
2a + 1a − ra < 0. If a = 1, then (r + 1)a − 2a + 1a − ra = 0. Then, DEIa,b(T ′)
< DEIa,b(T ). �	
Lemma 4 Let l ≥ 2, r ≥ 2 and t ≥ 1. Let T ∼= Pl+1(r − 1, t) if r > t and
T ∼= Pl+1(t, r − 1) if r = t . Then, for a ≥ 1 and b < 0, we have

DEIa,b(Pl(r , t)) > DEIa,b(T ).

Proof Let us present those parts of the proof of Lemma 4 which are different from the
proof of Lemma 3.

For all z ∈ V (T ′)\{u}, we have eccT ′(z) ≤ eccT (z), which implies that eccbT ′(z) ≥
eccbT (z) for b < 0. Thus

DEIa,b(T
′) − DEIa,b(T ) ≥ daT ′(v1)ecc

b
T ′(v1) − daT (v1)ecc

b
T (v1)

+ daT ′(u)eccbT ′(u) − daT (u)eccbT (u)

= [(r + 1)a − 2a]lb + [1a − ra](l + 1)b

> [(r + 1)a − 2a + 1a − ra](l + 1)b.

For a > 1, by Lemma 1, we have (r + 1)a − 2a > ra − 1a . If a = 1, then (r + 1)a −
2a + 1a − ra = 0. It follows that DEIa,b(T ′) > DEIa,b(T ). �	

3 Trees of Given Order

In this section, we generalize results on the general eccentric connectivity index for
trees of given order which were presented in [21]. We include results on the general
degree-eccentricity index for trees with given order also because Theorems 1 and 2
are used in the proofs of bounds for trees with domination number 
 n

3 �.
The only tree with two vertices is P2 and the unique tree with three vertices is P3;

thus, we prove the bounds given in this section for n ≥ 4.

Theorem 1 Let T be any tree with n vertices, where n ≥ 4. For 0 < a ≤ 1 and b > 0,

DEIa,b(T ) ≤ DEIa,b(Pn)

with equality if and only if T is Pn.

Proof Let T ′ be any tree with the maximum DEIa,b index among trees of order n. We
show that T ′ is Pn .
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Suppose to the contrary that T ′ is not Pn . Let u0u1u2 . . . ud be a diametral path in
T ′. Then, T ′ has a pendant vertex w1 other than u0 and ud . Let us denote the vertex
joined to w1 in T ′ by w. For any vertex z in T ′, we get eccT ′(z) = dT ′(z, u0) or
eccT ′(z) = dT ′(z, ud). Thus, we can assume that eccT ′(w) = dT ′(w, u0).

Let T ′′ be the tree with V (T ′′) = V (T ′) and E(T ′′) = {u0w1} ∪ E(T ′)\{ww1}.
For all z ∈ V (T ′), we get eccT ′′(z) ≥ eccT ′(z); thus, eccbT ′′(z) ≥ eccbT ′(z). Note that
eccT ′′(w) = dT ′′(w,w1) = eccT ′(w) + 1 and eccT ′(u0) = eccT ′′(u0) = d.

Let dT ′(w) = p ≥ 2. Then dT ′′(w) = p − 1, dT ′(u0) = 1, dT ′′(u0) = 2, and
dT ′′(z) = dT ′(z) for z ∈ V (T ′)\{u0, w}. Then,

DEIa,b(T
′′) − DEIa,b(T

′)
≥ daT ′′(w)eccbT ′′(w) − daT ′(w)eccbT ′(w) + daT ′′(u0)ecc

b
T ′′(u0) − daT ′(u0)ecc

b
T ′(u0)

= (p − 1)a[eccT ′(w) + 1]b − paeccbT ′(w) + 2adb − 1adb

> [(p − 1)a − pa]eccbT ′(w) + (2a − 1)db

≥ [(p − 1)a − pa]eccbT ′(w) + (2a − 1)eccbT ′(w).

If a = 1 or p = 2, then (p − 1)a − pa + 2a − 1 = 0. If 0 < a < 1 and p > 2, then
by Lemma 1, we have 2a − 1 > pa − (p − 1)a , so (p − 1)a − pa + 2a − 1 > 0.
This implies that DEIa,b(T ′′) − DEIa,b(T ′) > 0 and DEIa,b(T ′′) > DEIa,b(T ′), a
contradiction. Hence, Pn is the tree with the maximum DEIa,b index. �	
Theorem 2 Let T be any tree with n vertices, where n ≥ 4. For a ≥ 1 and b < 0,

DEIa,b(T ) ≥ DEIa,b(Pn)

with equality if and only if T is Pn.

Proof We present only those parts of the proof of Theorem 2 which are different from
the proof of Theorem 1.

Let T ′ be any tree with the minimum DEIa,b index among trees of order n. Let us
show by contradiction that T ′ is Pn .

For all z ∈ V (T ′), we have eccT ′′(z) ≥ eccT ′(z); thus, eccbT ′′(z) ≤ eccbT ′(z). Then,

DEIa,b(T
′′) − DEIa,b(T

′)
≤ daT ′′(w)eccbT ′′(w) − daT ′(w)eccbT ′(w) + daT ′′(u0)ecc

b
T ′′(u0) − daT ′(u0)ecc

b
T ′(u0)

= (p − 1)a[eccT ′(w) + 1]b − paeccbT ′(w) + 2adb − 1adb

< [(p − 1)a − pa]eccbT ′(w) + (2a − 1)db

≤ [(p − 1)a − pa]eccbT ′(w) + (2a − 1)eccbT ′(w).

If a = 1 or p = 2, then (p − 1)a − pa + 2a − 1 = 0. If a > 1 and p > 2, then
by Lemma 1, we have 2a − 1 < pa − (p − 1)a , so (p − 1)a − pa + 2a − 1 < 0.
This implies that DEIa,b(T ′′) − DEIa,b(T ′) < 0 and DEIa,b(T ′′) < DEIa,b(T ′), a
contradiction. Hence, Pn is the tree with the minimum DEIa,b index. �	
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Theorem 3 Let T be any tree with n vertices, where n ≥ 4. For 0 < a < 1 and b > 0,

DEIa,b(T ) ≥ (n − 1)a + (n − 1)2b

with equality if and only if T is Sn.

Proof The star Sn has one vertex of degree n−1 and eccentricity 1, and n−1 vertices
of degree 1 and eccentricity 2; therefore, DEIa,b(Sn) = (n − 1)a + (n − 1)2b.

Let T ′ be a tree with the minimum DEIa,b index among trees of order n. We show
by contradiction that T ′ is Sn .

Suppose that T ′ is not Sn . Let u0u1u2 . . . ud be a diametral path in T ′. Then d ≥ 3.
Let dT ′(u1) = p and dT ′(ud−1) = q. Without loss of generality, p ≥ q. Let V (T ′′) =
V (T ′) and E(T ′′) = {u1ud} ∪ E(T ′)\{ud−1ud}. We have dT ′′(u1) = p + 1 and
dT ′′(ud−1) = q − 1. Moreover, eccT ′(ud−1) = eccT ′′(ud−1) = eccT ′(u1) = d − 1
and d − 2 ≤ eccT ′′(u1) ≤ d − 1. For each z ∈ V (T ′)\{u1, ud−1}, dT ′(z) = dT ′′(z)
and eccT ′(z) ≥ eccT ′′(z). Thus, eccbT ′(z) ≥ eccbT ′′(z) and

DEIa,b(T
′) − DEIa,b(T

′′) ≥ daT ′(u1)ecc
b
T ′(u1) − daT ′′(u1)ecc

b
T ′′(u1)

+daT ′(ud−1)ecc
b
T ′(ud−1) − daT ′′(ud−1)ecc

b
T ′′(ud−1)

≥ [pa − (p + 1)a](d − 1)b + [qa − (q − 1)a](d − 1)b.

From Lemma 1, we have qa − (q − 1)a > (p + 1)a − pa , so pa − (p + 1)a + qa −
(q − 1)a > 0. Hence, DEIa,b(T ′) > DEIa,b(T ′′), which is a contradiction. �	
Theorem 4 Let T be any tree with n vertices, where n ≥ 4. For a > 1 and b < 0,

DEIa,b(T ) ≤ (n − 1)a + (n − 1)2b

with equality if and only if T is Sn.

Proof We present those parts of the proof of Theorem 4 which are different from the
proof of Theorem 3.

Let T ′ be a tree with the maximum DEIa,b index among trees of order n. Let us
show by contradiction that T ′ is Sn .

Since eccT ′′(u1) ≤ d − 1, we obtain eccbT ′′(u1) ≥ (d − 1)b. For each z ∈ V (T ′),
eccT ′(z) ≥ eccT ′′(z). Thus, eccbT ′(z) ≤ eccbT ′′(z) and

DEIa,b(T
′) − DEIa,b(T

′′) ≤ daT ′(u1)ecc
b
T ′(u1) − daT ′′(u1)ecc

b
T ′′(u1)

+daT ′(ud−1)ecc
b
T ′(ud−1) − daT ′′(ud−1)ecc

b
T ′′(ud−1)

≤ [pa − (p + 1)a](d − 1)b + [qa − (q − 1)a](d − 1)b.

From Lemma 1, for a > 1, we have qa − (q − 1)a < (p + 1)a − pa , so pa − (p +
1)a +qa − (q −1)a < 0, Hence, DEIa,b(T ′) < DEIa,b(T ′′), which is a contradiction.

�	
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4 Trees of Given Order andMatching Number

In Theorems 5 and 6, we present sharp bounds on the general degree-eccentricity
index for trees with perfect matchings. In Theorems 7 and 8, we obtain bounds for
trees with matching number β ≥ 3. Bounds for trees with matching number 2 are
given in Theorems 9 and 10. Then, in Theorems 11, 12 and 13, we present sharp
bounds for trees with given independence number.

A matching is a set of edges of a graph G such that no two edges have a vertex in
common. The cardinality of a maximum matching in G is the matching number of G.
Obviously, for any tree of order n and matching number β, we have

1 ≤ β ≤ n

2
.

The lower bound is achieved only by stars, and the upper bound is achieved by trees
with perfect matchings.

The following lemma about matchings in trees was proved by Hou and Li [7].

Lemma 5 Let T be any tree of order n ≥ 3 and matching number β, where n > 2β.
Then, T has a maximum matching M and a pendant vertex v such that M does not
match v.

It is easy to bound the maximum degree of a tree with respect to order and matching
number.

Lemma 6 Let T be a tree of order n, matching number β and maximum degree �.
Then, � ≤ n − β.

Proof Assume to the contrary that T contains a vertex, say v, of degree at leastn−β+1.
Since at most one edge incident to v is in every matching of T , at least n − β edges
of T are not in the matching, which implies that at most β − 1 edges of T are in the
matching. A contradiction. Hence, every vertex of T is of degree at most n − β. �	

For positive integers n and β, where 3 ≤ β ≤ n
2 , let Tn,β be the tree that contains

one vertex v of degree n − β, where v is adjacent to n − 2β + 1 pendant vertices and
β − 1 vertices of degree 2; thus, each vertex of degree 2 is adjacent to one pendant
vertex. Then, Tn,β has order n and matching number β; see Fig. 2. The tree Tn,β

contains one vertex of degree n − β and eccentricity 2, n − 2β + 1 vertices of degree
1 and eccentricity 3, β − 1 vertices of degree 1 and eccentricity 4, and β − 1 vertices
of degree 2 and eccentricity 3. Therefore,

DEIa,b(Tn,β) = (n − β)a2b + (β − 1)(2a3b + 4b) + (n − 2β + 1)3b. (1)

A tree with a perfect matching is called a conjugated tree. Obviously, a conjugated
tree with the matching number β has 2β vertices. The only conjugated tree with
matching number 1 is P2 and the only conjugated tree with matching number 2 is P4,
so we present bounds for trees with perfect matchings for β ≥ 3.
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Fig. 2 Tree Tn,β

β − 1 n − 2β + 1

Theorem 5 Let T be any tree of order 2β with matching number β ≥ 3. Then, for
0 < a ≤ 1 and b > 0, we have

DEIa,b(T ) ≥ βa2b + (β − 1)(2a3b + 4b) + 3b

with equality if and only if T is T2β,β .

Proof Let T ′ be a tree with the minimum DEIa,b index among trees of order 2β with
matching number β ≥ 3. We prove Theorem 5 by induction on β. For β = 3, we
have two trees, P6 and T6,3. Since DEIa,b(P6) > DEIa,b(T6,3), Theorem 5 holds for
β = 3. We assume that Theorem 5 holds for β − 1 and prove that it holds for β ≥ 4.

The only trees of diameter 2 are stars with β = 1, and all the trees of diameter 3
(double stars) have matching number 2; therefore, the diameter of T ′ is d ≥ 4.

Let D = v0v1 . . . vd be a diametral path of T ′. Obviously, v0 is a pendant vertex
and the edge v0v1 is in a maximum matching. The vertex v1 is not adjacent to any
other pendant vertex; otherwise, that vertex is not matched by a maximum matching.
The vertex v1 cannot be adjacent to a non-pendant vertex except for v2; otherwise,
D is not a diametral path. Thus, dT ′(v1) = 2. Let V (T ′′) = V (T ′)\{v0, v1} and
E(T ′′) = E(T ′)\{v0v1, v1v2}.

Then T ′′ is a tree of order 2β − 2 with matching number β − 1. By the induction
hypothesis, we have

DEIa,b(T
′′) ≥ DEIa,b(T2β−2,β−1) = (β − 1)a2b + (β − 2)(2a3b + 4b) + 3b.

Let dT ′(v2) = p. By Lemma 6, we obtain p ≤ β. We have dT ′′(v2) = p − 1
and dT ′′(x) = dT ′(x) for each x ∈ V (T ′′)\{v2}. Moreover, eccT ′(v0) = d,
eccT ′(v1) = d − 1, eccT ′(v2) = eccT ′′(v2) = d − 2 and eccT ′(x) ≥ eccT ′′(x)
for all x ∈ V (T ′′)\{v2}. Then eccbT ′(x) ≥ eccbT ′′(x) and

DEIa,b(T
′) − DEIa,b(T

′′)
=

∑

x∈V (T ′′)\{v2}
[daT ′(x)eccbT ′(x) − daT ′′(x)eccbT ′′(x)]

+ [daT ′(v2) − daT ′′(v2)]eccbT ′(v2) + daT ′(v1)ecc
b
T ′(v1) + daT ′(v0)ecc

b
T ′(v0)

≥ [pa − (p − 1)a](d − 2)b + 2a(d − 1)b + db.

If 0 < a < 1 and p < β, then by Lemma 1, we have pa −(p−1)a > βa −(β−1)a . If
a = 1or p = β, then pa−(p−1)a = βa−(β−1)a . Thus pa−(p−1)a ≥ βa−(β−1)a
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and DEIa,b(T ′)

≥ DEIa,b(T
′′) + [pa − (p − 1)a](d − 2)b + 2a(d − 1)b + db

≥ (β − 1)a2b + (β − 2)(2a3b + 4b) + 3b + [pa − (p − 1)a]2b + 2a3b + 4b

≥ (β − 1)a2b + (β − 2)(2a3b + 4b) + 3b + [βa − (β − 1)a]2b + 2a3b + 4b

= βa2b + (β − 1)(2a3b + 4b) + 3b

with the first equality holding if and only if eccT ′(x) = eccT ′′(x) for all x ∈
V (T ′′)\{v2}, the second equality if and only if T ′′ ∼= T2β−2,β−1 and d = 4,
and the third equality if and only if p = β. So T ′ is T2β,β . By (1), we have
DEIa,b(T2β,β) = βa2b + (β − 1)(2a3b + 4b) + 3b; thus, the proof is complete.

�	
Theorem 6 Let T be a tree of order 2β with matching number β ≥ 3. Then, for a ≥ 1
and b < 0, we have

DEIa,b(T ) ≤ βa2b + (β − 1)(2a3b + 4b) + 3b

with equality if and only if T is T2β,β .

Proof The proofs of Theorems 5 and 6 are similar. We present only those parts of the
proof of Theorem 6 which are different from the proof of Theorem 5.

We consider a tree T ′ having the maximum DEIa,b index among trees of order 2β
with matching number β ≥ 3. We have DEIa,b(P6) < DEIa,b(T6,3). By the induction
hypothesis,

DEIa,b(T
′′) ≤ DEIa,b(T2β−2,β−1) = (β − 1)a2b + (β − 2)(2a3b + 4b) + 3b.

Since eccT ′(x) ≥ eccT ′′(x) for all x ∈ V (T ′′)\{v2}, we obtain eccbT ′(x) ≤ eccbT ′′(x).
If a > 1 and p < β, then by Lemma 1, we have pa − (p − 1)a < βa − (β − 1)a .
Hence, DEIa,b(T ′)

≤ DEIa,b(T
′′) + [pa − (p − 1)a](d − 2)b + 2a(d − 1)b + db

≤ (β − 1)a2b + (β − 2)(2a3b + 4b) + 3b + [pa − (p − 1)a]2b + 2a3b + 4b

≤ (β − 1)a2b + (β − 2)(2a3b + 4b) + 3b + [βa − (β − 1)a]2b + 2a3b + 4b

= βa2b + (β − 1)(2a3b + 4b) + 3b.

�	
In the next two theorems, we obtain the tree having the minimum DEIa,b index

among trees with given order and matching number β ≥ 3.

Theorem 7 Let T be a tree of order n with matching number β, where 3 ≤ β ≤ n
2 .

Then, for 0 < a ≤ 1 and b > 0, we have

DEIa,b(T ) ≥ (n − β)a2b + (β − 1)(2a3b + 4b) + (n − 2β + 1)3b
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with equality if and only if T is Tn,β .

Proof Let T ′ be a tree of order n ≥ 2β and matching number β ≥ 3 having the
minimum DEIa,b index. We prove Theorem 7 by induction on n. From Theorem 5
we know that Theorem 7 holds for n = 2β. We assume that Theorem 7 holds for
n − 1 and prove that it holds for n > 2β. Then, by Lemma 5, there is a maximum
matching and a pendent vertex v in T ′ which is not matched by that matching. Let u
be the vertex adjacent to v in T ′. Let T ′′ be the tree with V (T ′′) = V (T ′)\{v} and
E(T ′′) = E(T ′)\{vu}. So T ′′ is a tree having order n − 1 and matching number β.
By the induction hypothesis, we have

DEIa(T
′′) ≥ DEIa(Tn−1,β) = (n − β − 1)a2b + (β − 1)(2a3b + 4b) + (n − 2β)3b.

Since v is a pendant vertex of T ′ and T ′ is not a star, we know that eccT ′(v) ≥ 3.
So eccT ′(u) = eccT ′′(u) ≥ 2. Let dT ′(u) = p. By Lemma 6, we obtain p ≤ n − β.
Then, dT ′′(u) = p − 1. For each x ∈ V (T ′)\{u}, we obtain dT ′(x) = dT ′′(x) and
eccT ′(x) ≥ eccT ′′(x). Then, eccbT ′(x) ≥ eccbT ′′(x) and

DEIa,b(T
′) − DEIa,b(T

′′) =
∑

x∈V (T ′′)
[daT ′(x)eccbT ′(x) − daT ′′(x)eccbT ′′(x)]

+[daT ′(u) − daT ′′(u)]eccbT ′(u) + daT ′(v)eccbT ′(v)

≥ [pa − (p − 1)a]eccbT ′(u) + 1aeccbT ′(v).

If 0 < a < 1 and p < n−β, then by Lemma 1, we have pa − (p−1)a > (n−β)a −
(n − β − 1)a . If a = 1 or p = n − β, then pa − (p− 1)a = (n − β)a − (n − β − 1)a .
Thus, pa − (p − 1)a ≥ (n − β)a − (n − β − 1)a and

DEIa,b(T
′) ≥ DEIa,b(T

′′) + [pa − (p − 1)a]eccbT ′(u) + eccbT ′(v)

≥ (n − β − 1)a2b + (β − 1)(2a3b + 4b) + (n − 2β)3b

+ [(n − β)a − (n − β − 1)a]2b + 3b

= (n − β)a2b + (β − 1)(2a3b + 4b) + (n − 2β + 1)3b

with thefirst equality holding if andonly if eccT ′(x) = eccT ′′(x) for all x ∈ V (T ′′)\{u}
and the second equality if and only if T ′′ ∼= Tn−1,β , p = n − β and eccT ′(v) = 3.
That is, T ′ is Tn,β . By (1), we have DEIa,b(Tn,β) = (n − β)a2b + (β − 1)(2a3b +
4b) + (n − 2β + 1)3b; thus, the proof is complete. �	
Theorem 8 Let T be a tree of order n with matching number β, where 3 ≤ β ≤ n

2 .
Then, for a ≥ 1 and b < 0, we have

DEIa,b(T ) ≤ (n − β)a2b + (β − 1)(2a3b + 4b) + (n − 2β + 1)3b

with equality if and only if T is Tn,β .
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Proof We present only those parts of the proof of Theorem 8 which are different from
the proof of Theorem 7.

Let T ′ be a tree of order n ≥ 2β with matching number β ≥ 3 having the minimum
DEIa,b index. For T ′′, by the induction hypothesis, we have

DEIa,b(T
′′) ≤ DEIa,b(Tn−1,β) = (n − β − 1)a2b

+(β − 1)(2a3b + 4b) + (n − 2β)3b.

Since eccT ′(x) ≥ eccT ′′(x) for x ∈ V (T ′′)\{u}, we obtain eccbT ′(x) ≤ eccbT ′′(x). If
a > 1and p < n−β, thenbyLemma1,wehave pa−(p−1)a < (n−β)a−(n−β−1)a .
We obtain

DEIa,b(T
′) ≤ DEIa,b(T

′′) + [pa − (p − 1)a]eccbT ′(u) + eccbT ′(v)

≤ (n − β − 1)a2b + (β − 1)(2a3b + 4b) + (n − 2β)3b

+ [(n − β)a − (n − β − 1)a]2b + 3b

= (n − β)a2b + (β − 1)(2a3b + 4b) + (n − 2β + 1)3b.

�	
In Theorems 7 and 8, we presented bounds for matching number β ≥ 3. Since the

only trees with matching number 1 are stars, it remains to find bounds for matching
number 2.

Theorem 9 Let T be a tree of order n ≥ 4withmatching number 2. Then for 0 < a < 1
and b > 0, we have

DEIa,b(T ) ≥ [(n − 2)a + 2a]2b + (n − 2)3b

with equality if and only if T is P2(n − 3, 1).

Proof The only trees having matching number 2 are P2(r2, t2), where r2 + t2 = n−2,
and P3(r3, t3), where r3 + t3 = n − 3. From Corollary 1, we know that among trees
of the form P2(r2, t2), where r2 + t2 = n − 2, the tree P2(n − 3, 1) has the minimum
DEIa,b index. Similarly, P3(n − 4, 1) is the tree having the minimum DEIa,b index
among trees of the form P3(r3, t3), where r3 + t3 = n − 3. Finally, by Lemma 3, we
have DEIa,b(P2(n− 3, 1)) < DEIa,b(P3(n− 4, 1)), which means that P2(n− 3, 1) is
the tree with the minimum DEIa,b index among trees of order n and matching number
2. We have DEIa,b(P2(n − 3, 1)) = [(n − 2)a + 2a]2b + (n − 2)3b. �	
Theorem 10 Let T be a tree of order n ≥ 4 with matching number 2. Then, for a > 1
and b < 0, we have

DEIa,b(T ) ≤ [(n − 2)a + 2a]2b + (n − 2)3b

with equality if and only if T is P2(n − 3, 1).
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Proof Let us present only the parts of the proof which are different from the proof of
Theorem 9. By Corollary 1, among trees of the form P2(r2, t2), where r2+ t2 = n−2,
the tree P2(n − 3, 1) has the maximum DEIa,b index. Similarly, among trees of the
form P3(r3, t3), where r3 + t3 = n−3, the tree P3(n−4, 1) has the maximum DEIa,b

index. By Lemma 4, we have DEIa,b(P2(n − 3, 1)) > DEIa,b(P3(n − 4, 1)), which
means that P2(n − 3, 1) is the tree with the maximum DEIa,b index among trees of
order n and matching number 2. �	

A subset S of V (G) is called an independent set of a graph G if no two vertices
from S are adjacent inG. The independence number ofG is the cardinality of a largest
independent set. It is well known that for any tree of order n, independence number α

and matching number β, we have

α + β = n.

Since 1 ≤ β ≤ n
2 , we obtain the bounds

n

2
≤ α ≤ n − 1.

The only trees with independence number n − 1 are stars. We present Theorems 11
and 12 for n

2 ≤ α ≤ n − 3. In Theorem 13, we consider the case α = n − 2.
Since we have the equality α +β = n, Theorem 7 says that if T is a tree of order n

with matching number n − α, where 3 ≤ n − α ≤ n
2 , then for 0 < a ≤ 1 and b > 0,

we have

DEIa,b(T ) ≥ αa2b + (n − α − 1)(2a3b + 4b) + (2αn + 1)3b

with equality if and only if T is Tn,n−α . Thus, from Theorem 7, we easily obtain
Theorem 11.

Theorem 11 Let T be a tree of order n with independence number α, where n
2 ≤ α ≤

n − 3. Then, for 0 < a ≤ 1 and b > 0, we have

DEIa,b(T ) ≥ αa2b + (n − α − 1)(2a3b + 4b) + (2αn + 1)3b

with equality if and only if T is Tn,n−α .

Similarly, from Theorem 8 we get Theorem 12. Let us note that the inequality
n
2 ≤ n − 3 implies that n ≥ 6.

Theorem 12 Let T be a tree of order n with independence number α, where n
2 ≤ α ≤

n − 3. Then, for a ≥ 1 and b < 0, we have

DEIa,b(T ) ≤ αa2b + (n − α − 1)(2a3b + 4b) + (2αn + 1)3b

with equality if and only if T is Tn,n−α .
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Theorems 9 and 10 yield Theorem 13.

Theorem 13 Let T be a tree of order n ≥ 4 with independence number n − 2. Then,
for 0 < a < 1 and b > 0, we have

DEIa,b(T ) ≥ [(n − 2)a + 2a]2b + (n − 2)3b.

For a > 1 and b < 0, we have

DEIa,b(T ) ≤ [(n − 2)a + 2a]2b + (n − 2)3b.

The equalities hold if and only if T is P2(n − 3, 1).

5 Trees of Given Order and Bipartition

A graph G is bipartite if V (G) can be partitioned into the subsets V1 and V2, where
every edge joins a vertex in V1 with a vertex in V2. If V1 contains p vertices and V2
contains q vertices, where p+q = n, then G has a (p, q)-bipartition. We can suppose
that p ≥ q ≥ 1.

We state bounds on the general degree-eccentricity index for trees with a (p, q)-
bipartition for p ≥ q ≥ 2, since the only tree with a (p, 1)-bipartition is the star
Sp+1.

Theorem 14 Let T be any tree with n vertices and a (p, q)-bipartition, where p ≥
q ≥ 2. Then, for 0 < a ≤ 1 and b > 0, we have

DEIa,b(T ) ≥ (pa + qa)2b + (n − 2)3b

with equality if and only if T is P2(p − 1, q − 1).

Proof Let T be any tree with n vertices and a (p, q)-bipartition having the minimum
DEIa,b index. We show that T ′ is P2(p − 1, q − 1).

Suppose to the contrary that T ′ is not P2(p−1, q−1). Let v0v1 . . . vd be a diametral
path of T ′. For p ≥ q ≥ 2, there is no tree of diameter d ≤ 2 and the unique tree with
diameter 3 is P2(p − 1, q − 1); therefore, d ≥ 4. Without loss of generality, suppose
that v0 is in the partite set V2. Then, v1 ∈ V1 and v2 ∈ V2. Let u1, u2, . . . , ur be all
the (pendant) vertices adjacent to vd−1 in T ′. Note that vd is one of them, so r ≥ 1.
We consider three cases.
Case 1: d is odd.

Then, we have vd−1 ∈ V2 and vd ∈ V1. Let V (T ′′) = V (T ′) and E(T ′′) =
{v2u1, v2u2, . . . , v2ur } ∪ E(T ′)\{vd−1u1, vd−1u2, . . . , vd−1ur }. Then the tree T ′′
has n vertices and a (p, q)-bipartition. Let dT ′(v2) = t ≥ 2. Then, dT ′′(v2) = t + r ,
dT ′(vd−1) = r + 1, dT ′′(vd−1) = 1 and dT ′(x) = dT ′′(x) for x ∈ V (T ′)\{v2, vd−1}.
For each x ∈ V (T ′), we obtain eccT ′(x) ≥ eccT ′′(x), so eccbT ′(x) ≥ eccbT ′′(x). Note
that eccT ′(v2) = d − 2, eccT ′′(v2) ≤ d − 2 and eccT ′(vd−1) = eccT ′′(vd−1) = d − 1.
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Thus

DEIa,b(T
′) − DEIa,b(T

′′) ≥ daT ′(v2)ecc
b
T ′(v2) − daT ′′(v2)ecc

b
T ′′(v2)

+daT ′(vd−1)ecc
b
T ′(vd−1) − daT ′′(vd−1)ecc

b
T ′′(vd−1)

≥ [ta − (t + r)a](d − 2)b + [(r + 1)a − 1a](d − 1)b

> ([ta − (t + r)a] + [(r + 1)a − 1a])(d − 2)b

≥ 0,

since by Lemma 1, we have (r + 1)a − 1a > (t + r)a − ta for 0 < a < 1 and
[ta − (t + r)a] + [(r + 1)a − 1a] = 0 for a = 1. Hence, DEIa,b(T ′) > DEIa,b(T ′′).
Case 2: d is even and 0 < a < 1.

Then vd−1 ∈ V1 and vd ∈ V2. Let T ′′ be the treewithV (T ′′) = V (T ′) and E(T ′′) =
{v1u1, v1u2, . . . , v1ur }∪E(T ′)\{vd−1u1, vd−1u2, . . . , vd−1ur }. LetdT ′(v1) = t ≥ 2.
Then, dT ′′(v1) = t + r , dT ′(vd−1) = r + 1, dT ′′(vd−1) = 1 and dT ′(x) = dT ′′(x)
for all x ∈ V (T ′)\{v1, vd−1}. For each x ∈ V (T ′), we obtain eccT ′(x) ≥ eccT ′′(x),
so eccbT ′(x) ≥ eccbT ′′(x). Note that eccT ′(v1) = d − 1, eccT ′′(v1) ≤ d − 1 and
eccT ′(vd−1) = eccT ′′(vd−1) = d − 1. Thus,

DEIa,b(T
′) − DEIa,b(T

′′) ≥ daT ′(v1)ecc
b
T ′(v1) − daT ′′(v1)ecc

b
T ′′(v1)

+daT ′(vd−1)ecc
b
T ′(vd−1) − daT ′′(vd−1)ecc

b
T ′′(vd−1)

≥ [ta − (t + r)a](d − 1)b + [(r + 1)a − 1a](d − 1)b

> 0,

since by Lemma 1, we have (r + 1)a − 1a > (t + r)a − ta for 0 < a < 1. Hence,
DEIa,b(T ′) > DEIa,b(T ′′).
Case 3: d is even and a = 1.

Let u1, u2, . . . , us be all the (pendant) vertices at distance d from v0 in T ′. Note that
vd is one of them, so s ≥ 1. Let u′

i be the neighbor of ui in T ′, where i = 1, 2, . . . , s.
The vertices in the setU ′ = {u′

1, u
′
2, . . . , u

′
s} are not necessarily different, so we have

|U ′| = l, where 1 ≤ l ≤ s.
For the tree T ′′, let V (T ′′) = V (T ′) and E(T ′′) = {v1u1, v1u2, . . . , v1us} ∪

E(T ′)\{u′
1u1, u′

2u2, . . . , u
′
sus}. Then, the tree T ′′ has n vertices and a (p, q)-

bipartition. Let dT ′(v1) = t ≥ 2. Then dT ′′(v1) = t + s. All the vertices in U ′ have
degree 1 in T ′′; therefore,

∑
u′∈U ′ dT ′′(u′) = l. We know that

∑
u′∈U ′ dT ′(u′) = l + s.

For x ∈ V (T ′)\(U ′ ∪ {v1}), we obtain dT ′(x) = dT ′′(x).
For each x ∈ V (T ′), we get eccT ′(x) ≥ eccT ′′(x), so eccbT ′(x) ≥ eccbT ′′(x). Note

that eccT ′(v1) = d − 1, eccT ′′(v1) = d − 2 and eccT ′(u′) = eccT ′′(u′) = d − 1 for
every u′ ∈ U ′. Thus,

DEI1,b(T
′) − DEI1,b(T

′′) ≥
∑

u′∈U ′
[dT ′(u′)eccbT ′(u′) − dT ′′(u′)eccbT ′′(u′)]

+dT ′(v1)ecc
b
T ′(v1) − dT ′′(v1)ecc

b
T ′′(v1)

= [(l + s) − l](d − 1)b + t(d − 1)b − (t + s)(d − 2)b
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= (t + s)[(d − 1)b − (d − 2)b]
> 0.

Hence, DEI1,b(T ′) > DEI1,b(T ′′).
In all 3 cases we showed that T ′ does not have the minimum DEIa,b index, which

is a contradiction.
Thus, T ′ is P2(p−1, q−1). The graph P2(p−1, q−1) contains p+q−2 = n−2

vertices having degree 1 and eccentricity 3, one vertex having degree p and eccentricity
2, and one vertex of degree q and eccentricity 2. Hence,

DEIa,b(P2(p − 1, q − 1)) = (pa + qa)2b + (n − 2)3b.

�	
Theorem 15 Let T be any tree with n vertices and a (p, q)-bipartition, where p ≥
q ≥ 2. Then, for a ≥ 1 and b < 0, we have

DEIa,b(T ) ≤ (pa + qa)2b + (n − 2)3b

with equality if and only if T is P2(p − 1, q − 1).

Proof We present the parts of the proof of Theorem 15 which are different from the
proof of Theorem 14.

Let T be any tree with n vertices and a (p, q)-bipartition having the maximum
DEIa,b index. Suppose to the contrary that T ′ is not P2(p − 1, q − 1).

In Case 1, where d is odd, for each x ∈ V (T ′), we obtain eccT ′(x) ≥ eccT ′′(x), so
eccbT ′(x) ≤ eccbT ′′(x). Since eccT ′′(v2) ≤ d − 2, we get eccbT ′′(v2) ≥ (d − 2)b and

DEIa,b(T
′) − DEIa,b(T

′′) ≤ daT ′(v2)ecc
b
T ′(v2) − daT ′′(v2)ecc

b
T ′′(v2)

+daT ′(vd−1)ecc
b
T ′(vd−1) − daT ′′(vd−1)ecc

b
T ′′(vd−1)

≤ [ta − (t + r)a](d − 2)b + [(r + 1)a − 1a](d − 1)b

< ([ta − (t + r)a] + [(r + 1)a − 1a])(d − 2)b

≤ 0,

since by Lemma 1, we have (r + 1)a − 1a < (t + r)a − ta for a > 1 and [ta − (t +
r)a] + [(r + 1)a − 1a] = 0 for a = 1. Hence, DEIa,b(T ′) < DEIa,b(T ′′).

Case 2 is for even d and a > 1. For each x ∈ V (T ′), we get eccT ′(x) ≥ eccT ′′(x), so
eccbT ′(x) ≤ eccbT ′′(x). Note that eccT ′′(v1) ≤ d − 1; therefore, eccbT ′′(v1) ≥ (d − 1)b.
We have

DEIa,b(T
′) − DEIa,b(T

′′) ≤ daT ′(v1)ecc
b
T ′(v1) − daT ′′(v1)ecc

b
T ′′(v1)

+daT ′(vd−1)ecc
b
T ′(vd−1) − daT ′′(vd−1)ecc

b
T ′′(vd−1)

≤ [ta − (t + r)a](d − 1)b + [(r + 1)a − 1a](d − 1)b

< 0,
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since by Lemma 1, we obtain (r + 1)a − 1a < (t + r)a − ta for a > 1. Hence,
DEIa,b(T ′) < DEIa,b(T ′′).

Case 3 is for even d and a = 1. For each x ∈ V (T ′), we get eccT ′(x) ≥ eccT ′′(x),
so eccbT ′(x) ≤ eccbT ′′(x). Thus

DEI1,b(T
′) − DEI1,b(T

′′) ≤
∑

u′∈U ′
[dT ′(u′)eccbT ′(u′) − dT ′′(u′)eccbT ′′(u′)]

+ dT ′(v1)ecc
b
T ′(v1) − dT ′′(v1)ecc

b
T ′′(v1)

= (t + s)[(d − 1)b − (d − 2)b]
< 0.

Hence, DEI1,b(T ′) < DEI1,b(T ′′).
Hence, T ′ is not a tree having the maximumDEIa,b index, which is a contradiction.

�	

6 Trees of Given Order and Domination Number

A dominating set � in a graph G is a subset of V (G) such that each vertex not in � is
adjacent to a vertex in �. The domination number of G is the cardinality of a smallest
dominating set. From the work of Ore [18], we know that for any connected graph
with n vertices and domination number γ , we have

1 ≤ γ ≤ n

2
.

Both bounds can be achieved by trees, since stars have domination number 1 and for
the trees T2γ,γ defined in Sect. 4, we have γ = n

2 .
In Theorems 16 and 17, we state sharp bounds for the general degree-eccentricity

index of trees having domination number 2. Bounds for trees with domination number

 n
3 � are given in Theorems 18 and 19.
The only trees of order n ≤ 5 and domination number 2 are P4, P5 ∼= P3(1, 1)

and P2(2, 1). By Lemma 3, for 0 < a < 1 and b > 0, we have DEIa,b(P2(2, 1)) <

DEIa,b(P3(1, 1)). By Lemma 4, for a > 1 and b < 0, we have DEIa,b(P2(2, 1)) >

DEIa,b(P3(1, 1)). Thus, in Theorems 16 and 17, we investigate bounds for n ≥ 6.

Theorem 16 Let T be a tree having order n ≥ 6 and domination number 2. Then for
0 < a < 1 and b > 0,

DEIa,b(T ) ≤
(⌈

n − 2

2

⌉a

+
⌊
n − 2

2

⌋a)

4b + 2a+13b + (n − 4)5b

with equality if and only if T is P4(
 n−4
2 �, � n−4

2 
).
Proof The only trees with domination number 2 are P2(r2, t2), where r2 + t2 = n−2,
P3(r3, t3), where r3 + t3 = n − 3 and P4(r4, t4), where r4 + t4 = n − 4. From
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Corollary 1, we know that among trees of the form P2(r2, t2), where r2 + t2 =
n − 2, the tree P2(
 n−2

2 �, � n−2
2 
) has the maximum DEIa,b index. Among trees

of the form P3(r3, t3), where r3 + t3 = n − 3, the tree P3(
 n−3
2 �, � n−3

2 
) has the
maximum DEIa,b index. Similarly, P4(
 n−4

2 �, � n−4
2 
) is the tree having the max-

imum DEIa,b index among trees of the form P4(r4, t4), where r4 + t4 = n − 4.
We need to compare DEIa,b(P2(
 n−2

2 �, � n−2
2 
)), DEIa,b(P3(
 n−3

2 �, � n−3
2 
)) and

DEIa,b(P4(
 n−4
2 �, � n−4

2 
)). By Lemma 3, DEIa,b(P2(
 n−2
2 �, � n−2

2 
)) < DEIa,b

(P3(
 n−3
2 �, � n−3

2 
)) < DEIa,b(P4(
 n−4
2 �, � n−4

2 
)), which implies that P4(
 n−4
2 �,

� n−4
2 
) is the tree with the maximum DEIa,b index among trees of order n and domi-

nation number 2. The tree P4(
 n−4
2 �, � n−4

2 
) contains n − 4 vertices of degree 1 and
eccentricity 5, two vertices of degree 2 and eccentricity 3, a vertex of degree 
 n−2

2 �
and eccentricity 4 and a vertex of degree � n−2

2 
 and eccentricity 4. Therefore,

DEIa,b

(

P4

(⌈
n − 4

2

⌉

,

⌊
n − 4

2

⌋))

=
(⌈

n − 2

2

⌉a

+
⌊
n − 2

2

⌋a)

4b + 2a+13b + (n − 4)5b.

�	
The proof of Theorem 17 is similar to the proof of Theorem 16.

Theorem 17 Let T be a tree having order n ≥ 6 and domination number 2. Then, for
a > 1 and b < 0,

DEIa,b(T ) ≥
(⌈

n − 2

2

⌉a

+
⌊
n − 2

2

⌋a)

4b + 2a+13b + (n − 4)5b

with equality if and only if T is P4(
 n−4
2 �, � n−4

2 
).
Theorem 18 Let T be a tree having order n ≥ 4 and domination number 
 n

3 �. Then,
for 0 < a ≤ 1 and b > 0,

DEIa,b(T ) ≤ DEIa,b(Pn)

with equality if and only if T is Pn.

Proof By Theorem 1, the path Pn is the only tree having the maximum DEIa,b index
among trees of order n. Thus, it suffices to show that γ (Pn) = 
 n

3 �.
Let n = 3k − ε, where k ≥ 2 and 0 ≤ ε ≤ 2 and let P3k−ε = v1v2 . . . v3k−ε . We

use the set S = {v2, v5, . . . , v3k−4} of k − 1 vertices. If n = 3k − 2, then S ∪ {v3k−2}
is a dominating set of Pn . If n = 3k − 1 or n = 3k, then S ∪ {v3k−1} is a dominating
set of Pn . Thus, γ (Pn) ≤ k = 
 n

3 �.
The path Pn has at least 3(k − 1) + 1 vertices. If Pn has a dominating set �, where

|�| ≤ k − 1, then Pn contains a vertex, say u ∈ �, which dominates 3 vertices of Pn
other than u, which is not possible. Hence, γ (Pn) = k = 
 n

3 �, which means that Pn is

123



General Degree-Eccentricity Index of Trees 2771

the tree with the maximum DEIa,b index among trees with n vertices and domination
number 
 n

3 �. �	
By Theorem 2, the path Pn is the only tree having the minimum DEIa,b index

among trees of order n for a ≥ 1 and b < 0. Since the domination number of Pn is

 n
3 �, we obtain the following theorem.

Theorem 19 Let T be a tree having order n ≥ 4 and domination number 
 n
3 �. Then,

for a ≥ 1 and b < 0,

DEIa,b(T ) ≥ DEIa,b(Pn)

with equality if and only if T is Pn.

From [18], we know that 1 ≤ γ ≤ n
2 for any tree of order n and domination number

γ . The only trees of domination number 1 are stars. We found sharp bounds on the
DEIa,b index only for γ = 2 and γ = 
 n

3 �. It would be interesting to know sharp
bounds also for 3 ≤ γ ≤ n

2 , where γ �= 
 n
3 �. This remains an open problem.
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