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Abstract

In this paper, we obtain error bound for pseudo-binomial and negative binomial
approximations to weighted sums of locally dependent random variables, using Stein’s
method. We also discuss approximation results for weighted sums of independent ran-
dom variables. We demonstrate our results through some applications in finance and
runs in statistics.
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1 Introduction and Preliminaries

Sums of random variables (rvs) have always a special attraction as it raises in rele-
vant theoretical challenges. Moreover, several linear statistics can be represented as
weighted sums of rvs. Also, itis difficult to find the exact distribution of weighted sums
of rvs, especially, if the underlying rvs are non-identical. So, it is of interest to study
the behavior of such distributions. Many researchers studied the limiting behavior of
weighted sums of rvs such as Chow and Lai [7], Olvera-Cravioto [18], and Zhengyan
[28], among many others. But if weights are natural numbers, then it is also difficult
to get asymptotic limits. Therefore, the study of the proximity of such distributions
with a suitable distribution is of interest when the summation is taken over a finite set.

In this paper, we consider weighted sums of Z,-valued rvs, where Z, =
{0,1,2,...}, the set of nonnegative integers, and propose its approximation with
pseudo-binomial and negative binomial distributions by matching the first two
moments. Also, we assume weights are natural numbers. Let X; ~ PB(N, p), the
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pseudo-binomial distribution (see Cekanavi¢ius and Roos [24], p. 370), and X, ~
NB(r, p), the negative binomial distribution, then their probability mass functions are
given by

1/N B
IP’(Xl=k)=g<k>pkq/v kK k=0,1,...,|N|

and

P(X, = k) = (Hi l)ﬁ’q‘k, k=0,1,...,
respectively, where N > 1,r > 0,0 <g=1-p < 1,0<g=1—-—p < 1,
5 =Y () pkg¥ T, () = N(N = 1)--- (N —k + 1)/k!, and [ N] is the greatest
integer function of N. The study of asymptotic behavior for weighted sums of rvs is
discussed widely in the literature under certain conditions on weights; for example,
the sum of squares of weights is finite (see Chow and Lai [7]), weights are normalized
(see Etemadi [9]) and geometrically weighted (see Bhati and Rattihalli [6]), among
many others. However, we consider weights are natural numbers which do not satisfy
these types of conditions and obtain error bounds for pseudo-binomial and negative
binomial approximations. This study of proximity is useful to identify the behavior
of such distributions over a finite set. We use the total variation distance metric and
Stein’s method to derive our approximation results.

Next,letG = {g : Z+ — R| gis bounded}and Gy = {g € G| g(0) = 0and g(y) =
0, for y ¢ S(Y)}, for a Z,-valued rv Y, where S(Y) is the support of the rv Y. We
discuss briefly Stein’s method (Stein [20]) which can be carried out mainly in the three
steps. First, compute a Stein operator Ay which satisfies E[Ay g(Y)] = 0, for g € Gy.
Second, find the solution of Stein equation

Aygk) = f(k) —Ef(Y), f €Gand g € Gy. (1.1)

Finally, use a rv Z in place of k in (1.1) and take expectation and supremum which
leads to the total variation distance between Y and Z as follows:

drv(Y,Z) = sup |[Ef(Y) —Ef(Z)| = sup [EAyg(2)|, (1.2)
fer feH

where H = {I(A)|A € Z,} and I (A) is the indicator function of the set A.
Next, consider a rv X and its Stein operator of the form

Axgk) = (a + pk)gk + 1) —kg(k), k€ Zy, g € Gx, (1.3)
which represent pseudo-binomial Stein operator if « = Np/q and B = —p/q and

negative binomial Stein operator if @ = rq and B = g, respectively. For details, see
(5) and (6) of Upadhye et al. [23]. Also, the upper bound for the solution of (1.1) (say

gr) is given by
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I/LN]p, it X ~ PB(N, p);
”Ag”'5{1ﬁﬁ, if X ~ NB(r, p), (1.4
where Ag (k) = g7 (k+1) — g7 (k) and [| Ag || = sup; |Agy(k)|. See (2.8), (2.10),
and (2.11) of Kumar et al. [14] and (57) of Cekanavi¢ius and Roos [24] for more
details. Observe that

o _{Np, if X~ PB(N, p);

__ | Npg, if X ~PB(N, p);
1—-8 |ra/p.if X ~ NB(r, p) (1-p2

rg/p?, if X ~ NB(r, p)

are mean and variance of pseudo-binomial and negative binomial distributions, respec-
tively. For more details, we refer the reader to Brown and Xia [5], Eichelsbacher and
Reinert [8], Kumar et al. [14], Ley et al. [16], Upadhye and Barman [22], Upadhye et
al. [23], and references therein.

This paper is organized as follows: In Sect. 2, we present our main results and
discuss some relevant remarks and applications. In Sect. 3, we give the proofs of our
main results.

2 Main Results

LetJ c N={1,2,...} befinite and {n;, i € J} be a collection of Z, -valued random
variables. Also, for each i, let w; € N, E(w; 77,)3 <oo,andi € A; € B; C J be such
that »; is independent of n A and 74, is independent of n B¢ where 14 is the collection
of random variables {n;,i € A} and A° denotes the complement of the set A. See
Section 3 of Rollin [19] for a similar type of locally dependent structure. In addition,
if A; = B; = {i}, then our locally dependent structure reduced to the independent
collection of random variables. Now, let w; = 1 for at least one i € J and define

wu:E:@m, 2.1)

iel

the weighted sum of locally dependent random variables. Foraset A C J, weletn’ =
Y ica win;i. For any random variables Z, we define D(Z) := 2dry (L(Z), L(Z +1)).
Throughout this section, let X be a random variable having Stein operator (1.3) and

2 _
— EW) and B = M (2.2)
Var(W) Var(W)

so that EX = EW and Var(X) = Var(W).

2.1 Locally Dependent Random Variables

In this subsection, we consider {i} C A; C B; and discuss the approximation result
for the weighted sum of locally dependent random variables.
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Theorem 2.1 Let W be the weighted sum of locally random variables as defined in
(2.1) and X be a random variable having Stein operator (1.3) satisfying (2.2). Then,

1—
drv(LW), L(X)) <[ Ag]| {(2’3) [Z o EniBln}, g, — 04, — DDWlna,, ns,)]
iel

+ Y oiBlni(n}, — D@0, — 0, — DWW ni, na,, UB,~)]:|
iel
+ Y |1 = BIE@)EMS,)
iel
—E®mi (i, — D)1 + BEm)|Elng D(Wns,)]

+1B1 Y oy Elni (np, — 1)D(W|773,-)]} , (2.3)

iel
where the upper bound of || Ag|| is given in (1.4).

Remark 2.1 (i) Observethat W can be represented as a conditional sum of independent
random variables. Therefore, Subsections 5.3 and 5.4 of Rollin [19] are useful to
find the upper bound of D(W|-).

(ii) The choice of parameters in (2.2) is valid if EW > Var(W) and EW < Var(W)
for pseudo-binomial and negative binomial approximations, respectively.

Next, we discuss some applications of Theorem 2.1.

Example 2.1 ((1,1)-runs) Let J = {1,2,...,n} and {¢;,i € J} be a sequence of

independent Bernoulli trials with success probability p; = P(¢; = 1) = 1-P(; = 0).

Also,let A; = (j: |j—il < WNJ. Bi=(j:1j—il <2NJ. &= —Goni,

and W,, = Z?:z ¢i. Then, the distribution of W,, is known as the distribution of (1, 1)-

runs and it adopted our locally dependent structure with @; = 1. For more details, see

Huang and Tsai [12], Upadhye et al. [23], Vellaisamy [25], and reference therein.
Next, it can be easily verified that

> (1= pis)pi =E(W,) > Var(W,)
i=2

=Y (U =piypi— Y Y (A =pi)(I = pj-1)pipj.
i=2

i=2 jeA;

Therefore, the pseudo-binomial approximation to W, is suitable in the view of the valid
choice of parameters. Now, let D(W}) = D(W,|¢5,) and ¢, = {{n, | <k < [n/2]}
then £(Wl.*|fe = k) can be represented as the sum of independent random variables
(say ¢F,i e {1,2,...,n} = Fy and k € {0, 1}"/2]), and therefore, from (5.11) if
Ro6llin [19], we have

D(W?) < E{E[W}|¢]} <E T2
V.

Le
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Approximations to Weighted Sums of Random Variables 2451

where V: _, = Y7 min [1/2, 1 D(;]’f)}. Let1/2 > P(ch = 1) = 1 — P(¢f =

0) = >4, koefo.1) PG = 1¢i1 = ki, &1 = ko) = P& = 1|¢i—1 = 0,41 =
0) = (1 — pi—1)pi. Therefore,

1
1=DEH =1~ % Pt =m— 1) =Pt =m))

m=0

1 3
=1 - 02P¢f =0~ P = D} = S0 = pi)pi-

Hence, VZL,:k = %Zje]_—k min {1, 3(1 — p;—1)pi} and, from Theorem 2.1 with the
pseudo-binomial setting, we have

AA 1 . - pEs 2k 2% PR e 2%
dry (LW, PBG. ) <Tors {Z[EGE[CA,OCB,. — &5 — DI+EIG &S, - D@L, — 5 —21]
i=2

+2) [EGECa) — B@ (5, — 1) — PEEG)|ELZH,]
i=2

—1/2
N s o 1 4
+2p ) El5i (55 — 1>]} (2 > min{1,3(1 p,-l)pi}) .

i=2 jeF

where i = (37, (1 — Pi—l)Pi)z/Z?zz >jen,d = pi-)( = pj-Dpipj, p =
Yica 2 jen,(1=pim)A=pj—Dpipj/ 3-i(1 = pi—1) pi, and F = min Fi. Note
that the above bound is of O (n~!/2) which is an improvement over (77) of Upadhye
et al. [23], Theorem 2.1 of Vellaisamy [25], which are of O (1), and Theorem 2.1 of
Godbole [11], which is of order O (n).

Example 2.2 (Collateralized Debt Obligation (CDO)) A CDO is a type of asset-backed
security that transferred pool of assets into a product and sold to investors. These
assets divided into a set of repayment which is called tranches. The tranches have
different payment priorities and interest rates. The basic tranches used in CDO are
senior, mezzanine, and equity. Investors can invest in their interested tranches. For
more details, see Neammanee and Yonghint [17], Yonghint et al. [27], and reference
therein.

In Yonghint et al. [27], it is demonstrated that the locally dependent CDO occurs in
the borrower’s related assets that arise from several groups. If the element of groups
have weights in terms of economy. Then, the weighted locally dependent CDO is also
useful in applications.

We consider the CDO similar to discussed by Yonghint et at. [27]. Let the CDO
tranche pricing is based on 7 assets and the recovery rate of ith assets is R; > 0. The
percentage cumulative loss in CDO up to time T is

L(T) = %Z(l — R)wil;.

i=1
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2452 A.N. Kumar

where I; = I(t; < T), and 1; is the default time of the ith asset. Assume the recovery
rate is constant, say R; then, the CDO pricing problem is reduced to calculate

1-R_ —
E[(L(T) —z)"] = TE[(WFL -7, 2.4

where z* = (1 — R)z/n > 0 is the attachment or the detachment point of the tranche,
W; = Y wil;, and ()t = max(a, 0). Note that, from (2.4), it is sufficient to
deal with E[(Wj; — z)*]. For additional details, see Yonghint et al. [27] and reference
therein.

We are interested to approximate E[(Wj; — z)T] by E[(PB(N, p) — z)*]. First, let
us modify the Stein equation (1.1) as

(k— 2t —E[(PB(N, p) — )] = Ag(k). (2.5)

Here, f : Z4 — R such that f(k) = (k — z)T. Using the rv W in place of k and
taking expectation, we get

E[(Wi — 271 —E[(PB(N, p) — 2)T] = E[Ag(Wp)].

Therefore, it is enough to deal with the right-hand side, that is, E[Ag(Wﬁ)].
Next, we move to find the upper bound for ||Ag||. Following the steps similar to
Lemma 1 of Neammanee and Yonghint [17], for z > 0, we have

LAt N
E[PB(N, p) —9)F]= £ ) m—2)* (m)p’"qN’"
m=1

N —m
m( )pqu = Np. (2.6)

It can be easily verified that (2.5) has a solution

V]

NN =1)---(N — j+ D]k — 1! ik
TSI o LG e R U R )<p>

[NN—1)---(N—k+DIj! \q

=k
x ((j —2)T —E[(PBW, p) — 2)T1),

for k > 1. For details, see (2.6) of Eichelsbacher and Reinert [8]. Now, following the
steps similar to Lemma 2 Neammanee and Yonghint [17], for k > 1, we get

LN] . j—k LN—k] j

[NV = 1) (N = j + DIk = D) (p)f N (N—k) (p)f
0<Y 4 = 1+ L
S keng \g) YT E L)

<q" M <N @27
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Approximations to Weighted Sums of Random Variables 2453

where [x] denote the least integer more than or equal to x. Also, for k < Np, we have

LN

Z[N(N—1)~~~(N—j+1)](k—1)! (E)H< LNk (N=j+1) (g)j‘k
[N(N—=1)---(N —k+ D]j! q B (—k+D! q

j=k
LN—k]

_ i
- 1 3 (N.k+l><g)
N—k+1 5\ j+1 q
k=N _
1 4 _4
(N —=k)p Np

—INT

(2.8)

and, for k > np,

% IN(N=1)--- (N—j+D)](k—1)! <E>H€_l 1+% [N(N=1) - (N—j+1)Jk! <£>H
~ [N(N—-1---(N—-k+DI]j! \q Tk [NN=1)---(N=k+D]j! \ ¢

=k j=k+1

(T CE)) e

j=1

Combining (2.8) and (2.9), for k > 1, we have

LN] IR _ j=k =N
03 W =DV =+ DItk = ! (g) ™M o
& IN DV —k+ DI \g Np

Therefore, from (2.6) and (2.10), we have

L]

Z[N(N—1)---(N—j+1)](k—1)!
[IN(N —1)--- (N —k + D]j!

ik
(3) E[(PB(N, p) — 2)"] < ¢~ V1.
j=* 1
2.11)

Next, observe that
Ag(k) = gk + 1) — g(k) = Cx + Dy,

where

LN : —k
N(N —=1)---(N = j + DIk — 1)! ]
Ck:Z[ ( ) (N —j+DIk—1) <p> G—2*

INN—1)--(N—k+DIj! \q

- % NN = 1)+ (N = j + D! (g)j_k_l(._ o+
INN - D (N—hljl \q 1o

j=k+1
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2454 A.N. Kumar

and
LN] . j—k—1
[N(N—=1)--- (N —j+ DIk! <p>’ ¥
D, = - E[(PB(N, p) —
k ; N =T =B\ [((PB(N, p) = )]
Jj=k+1
LN)

NN =1)---(N —j+ D]tk — D! ik
LS IV DV Dk )(g) E((PBV. ) — )]
= [N(N—=1)--- (N —k+ ]! q

Using (2.7) and (2.11), we have
1Agl < ICkl + 1Dkl < g~ ™ (1 + ).

Hence, from (3.5), we have

_ A+q) [1[L _
|E[<7g(Wi)]| Squ—]El {5 [Z o BLE[L 215, — I}, — DD(Willa,. Is,)]

i=1

n
+ ) o B T;, — DI, — I;, = 2DWilli, L4, IB,.)]]
i=1

+ Y i [EUDEU ) — B (I;, — 1) — pE(I)|EL 5 D(W|15,)]

i=1

+p Y wElL (T — I)D(Wﬁllg,-)]} ; (2.12)

i=1

where ¢ = 1 — p = Var(Wp)/EW;, N = (EW;)?/(EW; — Var(Wp)), IF =
ZieA w; I;, I 5 is the collection of random variables {/; : i € A},forA C {1,2,...,n},
and D(Wj|-) can be computed subject to the exact structure of dependency. For exam-
ple, if the dependency structure is the same as discussed in Example 2.1 and w; = 1,
1 <i <n,then

|E[«/g(Wi)]| <

= VT Y [ELELL; @I — I}, — DI+ EIL(UIS, — DQIG — I;, = 2)]]

i=1

(Hq){ﬁ

+2) [EUNEU) — B (I, — 1) — pEU)|ELL; ]

i=1

; —1/2
+2p ) ElL:(U}, — 1)1} (; > min{1,3(1— E(Ii_l»Eli}) :

i=1 JEF

which is an improvement over the bound given in Theorem 2(1) of Yonghint et al.
[27].
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Approximations to Weighted Sums of Random Variables 2455

2.2 Independent Random Variables

In this subsection, we consider B; = A; = {i} in the earlier discussed setup and
obtain approximation results for W* = 3", _; w;n;, the weighted sum of independent
random variables. To simplify the presentation, let us define p; (k) := P(n; = k) and
y = 2max;ey dry (Wi, W; + 1) where W; = W* — w;n;.

Theorem 2.2 Let W* be the weighted sum of independent random variables and X be
a random variable having Stein operator (1.3) satisfying (2.2). Then,

drv(LOWH), LX) < vIagl Y o (Z hi (k) +dl-> , (2.13)

ieJ k=1

where d; = E(w;n)|(1 = B)Em:)?* = E(m;i (i — )] + BE(:)| and

hoto = | S = BEnipi (k) + Bpi () — k + Dtk + D), if o = 1;
’ Wk (1 — B)EER; + Btk — (€ — Dk|pi(k), ifor > 2.

Remark 2.1 Note that Remark 4.1 of Vellaisamy et al. [26] can be applied to our results,
and hence for y; = min{1/2, I —drv(w;nj, w;n; + 1)}, y* = max ;e y;, we have

-1/2

2 (1 .
yeyo gt vy

jeJ

Therefore, if 7y is of O(n), then the bound (2.13) is of O(n~1/2). Observe that the
above bound for y is useful when w; = 1 for many values of ;.

Corollary 2.1 Assume the conditions of Theorem 2.2 hold with X ~ PB(N, p) and
EW* > Var(W*). Then,

)/ o0
drv (L(W*), PB(N, < i hik) +d; |,
Tv(LW?), PB(N, p)) N pa iz]w (kE_l (k) )

where d; = E(win))|[Em;)*> — E(m;(n; — 1)) — pE(n;)| and

bty = | 2 LEnpi () = phpi () =gk + Dpi (e + D). if o = 1:
i) =1 2 ;
P2 ICEn; — ptk — q (€ — Dk|pi (k). foi = 2.

Remark2.2 (i) If J = {1,2,...,n}, w; = 1, and n; ~ Ber(p), forall 1 <i < n.
Then, h; (k) = d; = 0, and hence, dry (L(W*), PB(N, p)) = 0, as expected.
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2456 A.N. Kumar

(i) Let w; = 1 and n; ~ Ber(p;), fori € J = {1,2,...,n}. Then, from Corol-
lary 2.1, we have

—1/2 n
1
dry (L(W*), PB(N, p)><,/ ( +§ i — ) LNJME pilp — pil.
i=1

(2.14)

where y; = mm{l 1+ pi — |1 —2p;|} and y* = max;<;<y, ;. The bound
given in (2.14) is of O(n~'/?) and is an order improvement over Theorem 1 of
Barbour and Hall [2], Theorem 9.E of Barbour et al. [3], and the bounds discussed
by Kerstan [13] and Le Cam [15].

(iii) Consider the setup of CDO discussed in Example 2.2 under independent
Bernoulli trials and unit weights, that is, W: = Zl'-’zl I; where I;,for1 <i <n,
are independent Bernoulli trials. Using A; = B; = {i} in (3.1), routine calcula-
tions lead to

+
[EL/ g (W)]| < (rmfl) Zmp pil, (2.15)

where p = % Z?:l pi. Note that if p; = p in (2.15), for 1 < i < n, then
|E[.«7g(W,)]| = 0, as expected. Also, from (3.8) with w; = 1, for I <i < n,
we have

—1/2
. D) 1 n 5 » / 1+C] n 5
[EL/ s W] </~ Z+;m—y W;mp—m, (2.16)
1= 1=

where y; = %min{l, 1+ pi — |1 —2pil}and p* = max|<j<p yi.g=1—p =

S pigi) Y pi-and N = Q0 pi)?/ Y0, pl.z. For Poisson approxima-
tion, the existing bound given in (4) of Neammanee and Yonghint [17] is

B[/ g(W,)]| < (2 exp (Z p,-) — 1) > pt (2.17)
i=1 i=1

Note that, for small values of p;, the bound given in (2.15) is better than the
bound given in (2.17). For instance, let n = 50 and p;, 1 <i < 50, be defined

as follows:
L Pi L Pi L Pi
0-10 0.05 21-30 0.15 41-50 0.25
11-20 0.10 31-40 0.20

Next, the following table gives a comparison between (2.15), (2.16), and (2.17).
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Approximations to Weighted Sums of Random Variables 2457

n From (2.15) From (2.16) From (2.17)
10 7.14 x 10717 6.00 x 10~18 0.0574

20 0.3711 0.01630 0.9954

30 4.9800 0.36415 13.7099

40 111.8440 11.7054 221.8700
50 3311.4600 897.600 4970.7400

Observe that our bounds are better than existing bounds for various values of N
and p;.

Corollary 2.2 Assume the conditions of Theorem 2.2 hold with X ~ NB(r, p) and
EW* < Var(W*). Then,
y o
drv(L(W™). NB(r. p)) < = > o (Z hi (k) + di) : (2.18)
iel k=1

where d; = E(win;)| pIEMm:)? — EMmi (i — 1)1+ gE(n:)| and

B = k(kfl) | pEn; pi (k) + gkp; (k) — (k + V) p;i(k + 1), ifw; = 1;
i w,k Y\ peEn; + Gtk — (¢ — Dk|pi(k), ifo; > 2.

Remark2.3 (i) If J = {1,2,...,n} and w; = 1, for all i, then, from Corollary 2.2,
we have

dry (L(W),NB(r, p))

k(k—
Z(Z ( |pEmp,~(k>+cikpl~(k>—(k+1>p,-(k+1)|+d,->,

i=1

(2.19)

which is an improvement over the bound given in (17) of Vellaisamy et al.
[26]. Also, if n; ~ Geo(p), the geometric distribution, for 1 < i < n, then
drv(L(W*),NB(n, p)) = 0, as expected.

(ii) If n; ~ NB(n;, pi), | <i < n, then the bound given in (2.19) leads to

. I A o g q|nini+1gq?
drv(LOW*),NB(r, p)) < = Y | pluigi + 1) |- — =| ———L +di |,
U i P p;
where y* < J2(4 4+ Y/ P = L —Dgi/pi)) — maxi<i<y

P(np; = L(nj — gqi/pi)))~"/? and g; = 1 — p;, which is an order improvement
over the bound given in Theorem 3.1 of Teerapabolarn [21].
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2458 A.N. Kumar

Example 2.3 (Compound Poisson Distribution) Let w; = i, n; ~ Po(A;), the Pois-
son distribution, fori € J = {1,2,...,n},and S, = Z?:l in;. The distribution of

Soo 1s known as compound Poisson distribution. The mean and variance of S,, satisfy
n L]

Z?:l ir, =ES, < Var(S,) = Zi: 1 i2x;. Therefore, the negative binomial approx-
imation is suitable in the view of the applicability of parameters. Hence, from (2.18),
we have

i} 22
drv (L(Sy), NB(r, p)) < \/j—_ > Ei.
T rq iz

whereg = >"" 1 i(i—DA; /Y1 i*Aandr = (31, iAi)z />0 i — 1A, and

£ < {q‘k?(ki + 1)+ Gn)?, ifi=1:
PSRl Ging — DGing + i) + 21+ GGan2, if i > 2.

Note that if iA; is decreasing in i, then the bound is useful in practice. For similar
conditions, see Barbour et al. [1] and Gan and Xia [10].

3 Proofs

In this section, we prove the main results presented in Sect. 2.

Proof of Theorem 2.1 Consider the Stein operator (1.3), and taking expectation with
respect to W, we have

Elotxg(W)] = eE[g(W + 1)] + BE[Wg(W + 1)] — E[Wg(W)]
=(1-p) [%E[g(w + D] - E[Wg(W)]} + BE[W Ag(W)].

Using (2.2), the above expression leads to

E[e/xg(W)] = (1 - B) [Z o EniE[g(W + D] - ZwiE[mg(W)]} + BE[W Ag(W)].
ieJ ieJ

3.1

Let W, =W — ZjeA,- wini =W — nj‘i so that n; and W; are independent random
variables. Therefore,

Elxg(W)] = (1 - B) ZwiEmE[g(W + 1) —g(W;+ 1]
ieJ

— (1= B) ) oiBlni(g(W) — g(W; + 1))] + BE[W Ag(W)]

ieJ
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mh,
=(1-8) ZwiEmE[Z Ag(W; + j)]
ieJ j=1
M, =1
—(1-p ZwﬂE[m D Ag(Wi+ j)} +B8)_ oEniAg(W)].
iel j=1 iel

(3.2)

Next, let W* = W — 3 jeg wini =W — nzi so that n; and 74, are independent of
W, Also, observe that

'7;,[ njgi—l
(1=p) 1D oEnE [Z] Y o [ > 1} +BY wln
iel j=1 iel j=l1 iel

= =B 1> oEnEi - Y oEhiGh, - 1)1} +B) wln

ieJ ie ieJ
=(1=-8)— Zlem Z Z wiwj(Enin;] — EniEn;)

| ze] ieJ jeA;
=(1-p8) mE(W)—Var(w )} (3.3)

Multiply E[Ag(W + 1)] in (3.3) and using the corresponding expression in (3.2), we
get

1721_
EL/xg(W)] =(1 — ) ZwiEniE[Z(Ag(Wi + ) — Ag(W; + 1))}
iel j=1
My, —1
—(1-p) Zw,-E[m D (Ag(Wi+ j) — Ag(W) + 1))}
= j=1
+BY_ Bl (Ag(W) — Ag(W; + 1))]
ieJ
= il (1=B)Em)EMm} ) —E(mi (n},
ieJ
—)HBEMEIAG(W + 1)—Ag(W; + 1)]
"f\i ”EﬂA,-JFj*]

=(1-8) Zwi]Em]E[Z > AWy +6)}

iel j=1 =1
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M, =1 g\, F7 =1
—(1-p) ZwiE[ni Do) AW+ z)]
iel j=1 =1
g, =1
+ B ZwiE[ﬂi > AW+ ﬁ)]
iel (=1
=Y i1 = HIE@)EMS,) — Emi (7, — )]
ieJ
s,
+ BEM)IE | Y A%g(W/ +0)
=1
T, Nga,Hi—1
=1-8)_ w,-EmE[ D> EIA*(W 4 Olnas nB,.]}
ieJ j=I1 =1
M, =1 Mg\, F7 =1

—(1=pY oFn Y. > E[A%(Wi*+z>|m,nA,.,nB,.]]
j=1 (=1

ieJ
g, =1
+8 sz‘E[m > EIA (W] + Z)InB,-]}
iel (=1
=Y il (1=BEm)EM; ) —E(i (75, —1))]
ieJ
U
+BEM)IE | D EIA*g(W/+0)ns,] | . (3.4)
(=1
Hence,
1-5 * * *
[Elx s Wl <l Aglly —— Y oiEnEln}, g, — ni, — DDWina,, ns,)]
ieJ

+> i (7, — D@0y, — s, — DD(Wlni. na,. nB,-)]]
iel

+ Y @i (1= BIE®M)ES,) — EMi(nh, — )]
ieJ

+ BE®:) |Elnz, D(Wns,)]

+ 181> il (n, — 1)D(W|773,»)]} : (3.5)

iel
Using (1.2), the proof follows.
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Proof of Theorem2.2 Let A; = B; = {i}, then {n;,i € J} becomes independent
random variables, and W; = Wl.* is independent of n4;, = np, = n;. Therefore, from
(3.4), we have

.
Ela/xg(W)] =(1 — ) Y wEnE [ZZ [A2g<w,+6>}
=1 /(=1

ieJ

wini—17j
—(1=pB)) oF [m > ZE[A%;(W +m]

iel j=1 ¢=1

wini—1
+ﬁzwi1E[ni > EIA%g(W +m]

iel =1
=Y il = BIE@m)* —Emni (i — 1)]
iel

wj ;i
+ BEm:)}E [Z E[A*g(W; + z)]}
=1

oo wik j—1

=(1=B) ) wiBni Y Y Y EIA (W, + O)]pi(k)

iel k=1 j=1 =1
0o wik—1j—1

— (=B iy Y > KEIAT(W; + 0)]pi (k)

ieJ k=1 j=1 (=1
oo wik—1

+ﬂ2w, D) KEIAg(Wi + 0]pi (k)

ieJ k=1 (=1

=Y il = BIE@m)* —Emi (i — 1))]

ieJ
o0 w,-k
+BEMm)} Y > EIAZg(Wi + 0)]1pi (k)
k=1 {=1

o0 a),-k j—l

=Y @iy Y > [(1— BBy + BKIEIAg(W; + )] pi (k)
ieJ k=1 j=1¢t=1
oo wik—1 j—1

=D iy > D KEIATg(W; + O)]pi(k)

ieJ k=1 j=1 t=1

=Y wi{(1 = BIE@m) —EGi(ni — )]

iel
oo wik
+ BEMN} Y Y EIA*g(Wi + 0)]pi (k)
k=1 t=1
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-1

o0 l'k
=Y @iy > U —BEn + BKIE[A (Wi + wik — 0)]pi (k)
iel

k=1 (=

w;

—

oo wik—2

=Y @iy Y EKE[ATg(W; + wik — € — 1)]p; (k)

iel k=1 (=1

— Yol = BIE@m)” —Em;i(n; — 1))

iel
oo wik
+ BEM)}Y Y Y EIA*g(Wi + O)1pi (k).
k=1 t=1
Case I: If w; = 1, then
oo k—1
Elaxg(WH1 =Y Y € — B)En; + BKIE[A>g(W; + k — 0)]pi (k)
ielJ k=2 (=1
oo k-2
=Y YD EKEIAP(W; +k — £ — D]pi(k)
ie k=3 (=1
— Y 11 = BIEM)? —EMmi(n; — )] + BEMm:))

ieJ

ook
x > EIA%(W; + 0)]pi (k)
k=1 t=1
oo k—1

=> "> e = B)Eni pi k) + Bkpi (k)

ieJ k=2 (=1
— (k+ D pi(k + DIE[A2g(W; +k — 0)]
=Y {0 = BEm)* = E@mi(n — )] + BEM)}

ieJ

oo k
x ) > EIA’g(Wi+ Olpi(k). (3.6)

k=1 t=1
Case II: If w; > 2, then

oo wik—1
El/g(W)] =Y i Y > (1 — B)En; + BKIE[A(Wi + wik — 0)]p; (k)
ieJ k=1 (=1
oo wik—2
=Y @iy Y CKE[ATg(W; + wik — € — 1)]p; (k)

iel k=1 (=1

— > wi((1 = AIE®mN? ~ Eri (i — )] + BE:))

ieJ
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o w,-k

D) EIA’g(Wi + O1pi (k)
k=1 ¢=1

oo wik—1

=D o) ) (= p)En + plk

ie] k=1 t=1
— (€ — DKIE[A® (Wi + wik — £)]p; (k)

— > w1 = BIE@m)® —Em;i(n; — )] + BEMm:)}
iel
oo a),-k

x ) > EIA’g(Wi + 0lpi(k). (3.7)

k=1 t=1

It is shown that in Barbour and Xia [5] (see also Barbour and Cekanaviius [4], p-
517) |]E(A2g(W,- + )| < yllAgll. Hence, from (3.6) and (3.7), we have

B/ g(WIl < vl Agl Y o | Y hitk) +di |- (3.8)
ieJ k=1

Using (1.2), the proof follows. O
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