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Abstract

Due to the Nevanlinna theory, the paper gives the general structure of transcendental
meromorphic solutions of a certain ordinary differential equation with rational coeffi-
cients. As an application, the meromorphic solutions of the FitzHugh—Nagumo system
are obtained in explicit form.
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1 Introduction

The FitzHugh—Nagumo model (FHN) is given by the following famous FitzHugh—
Nagumo system of polynomial ordinary differential equations

:vtzv—v3—u+a

Tuy =v—Pu—«o

The FitzHugh—Nagumo model (FHN), named after Richard FitzHugh [1,2] who sug-
gested the system in 1961 and Nagumo et al. [3] who created the equivalent circuit
the following year, describes a prototype of an excitable system (e.g., a neuron). The
FitzHugh—Nagumo model is a simplified version of the Hodgkin—Huxley model which
models in a detailed manner activation and deactivation dynamics of a spiking neuron.
Many works handle numerical simulation and dynamical properties of this model.

In [4], N. Kudryashov considered the analytical properties of the well-known
FitzHugh—Nagumo model which is used for description of potential on the neuron
membrane. Solving the first equation of the system yields

u:v—v3—vt+o.

Substituting this relation into the second equation of this system, one has
3tvv 4+ AP + v + (B — v + (1 — B)v — (o + Bo) = 0. (1.1)

Obviously, the system of FitzHugh-Nagumo ordinary differential equations can
be transformed to the second nonlinear differential equation in the form (1.1). N.
Kudryashov applied the Painlevé test to Eq. (1.1) to understand the integrability of
this equation. However, Eq. (1.1) does not pass the Painlevé test, and the attempt to
look for the general solution of Eq. (1.1) has not met with success. The question about
the meromorphic solution for the transformed question requires further investigations
(see p. 154 in [4]).

In 2018, Demina and Kudryashov [5] studied local properties of solutions of a
second-order ordinary differential equation related to the FitzHugh—Nagumo model
in the special case. By introducing the new function w(z) = v2 (1), they obtained the
algebraic second-order ordinary differential equation

2Twws — rwtz + 2{3tw2 + B —1wlw; + 4/3w3 +4(1 — ,B)w2 =0, (1.2

whenever « = —fo. The time ¢ and parameters («, 8, o, T) are supposed to be com-
plex variables. The functions u(#) and v(¢) are supposed to be complex-valued. Due
to the Nevanlinna theory and the Painlevé test, the general structure of transcendental
meromorphic solutions of Eq. (1.2) is obtained. Furthermore, with the method in [4,6—
11], they constructed all the transcendental meromorphic solutions in explicit form
and obtained the following result.
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Theorem A Any transcendental meromorphic solutions of Eq. (1.2) takes the form

2B{r — to})

w(t) = %ﬁcot (VL{t = t0}) + ho + hyexp (- £

where hg, h1, L are constants, t( is an arbitrary constants, ¢ = 0 or ¢ = 1, and there
exists ¢ € Q/{0} such that /L = i Bq/(37) whenever h1 # 0.

Motivated by the work of Demina and Kudryashov in [5], we will use the Nevanlinna
theory to find all the transcendental meromorphic solutions of Eq. (1.1) which posed
by M. Demina and N. Kudryashov.

2 Main Result

In this section, we first concern the transcendental meromorphic solutions of the fol-
lowing ordinary differential equation (ODE)

P]Uzv[ + P2v3 + P3vy + Pyvy + Psv + Pg =0, 2.1
with rational coefficients P (s 0), P,, ..., Ps. Obviously, Eq. (2.1) is a generalization
of Eq. (1.1) from the constant coefficients to the rational coefficients. In this following,

we pay an attention to the meromorphic solutions of Eq. (2.1). Our main result is the
following theorem.

Theorem 1 Any transcendental meromorphic solutions of Eq. (2.1) takes the form
q
v(r) = H(t _ Zj)mjeP(z‘)7
j=1

where P is a polynomial, my, ma, ..., my are integers and 21, 22, . . ., 24 are distinct
complex numbers. In particular,

Piv, + Pbv =0, P3vy + Pyv + Psv+ Pg = 0.

Remark 1t is pointed out that P; # 0 is necessary in the main theorem. Consider the
function v(¢) = tanz. Then, v(¢) is a meromorphic solution of ODE

203 — v +2v=0.

But, the form of v does not satisfy the conclusion of Main theorem. Some further
information about the coefficient P; = 0 in Eq. (2.1) will be found in Sect. 3.

Example 1 Let f = % Then f is a transcendental meromorphic solution of
(t— Dv*o, — (t =20 + (1 — D?vy — (t — D —2)v, —v = 0.
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As an application, we get the form of the meromorphic solutions of Eq. (1.1).

Corollary 1 Any transcendental meromorphic solutions of Eq. (1.1) takes the form

B
v(t) = e 3T,
where A is a constant. In particular,
287 2
i~|——'B=1, o+ Bo =0.
9t 3

From the proof of Theorem 1, we can obtain the transcendental meromorphic solu-
tion of the following nonlinear differential equation.

Theorem 2 If f is a transcendental meromorphic solutions of
Av" 'y, 4+ Bv" 4+ L(v) =0, (2.2)

wheren > 3, L(v) = ka(k) +---+ Piv,+ Pyand Py, . .., Py are polynomials, then
f has the form

q
() = [ —z)mie"®,

j=1
where P is a polynomial, my, my, ..., my are integers and z1, 22, . . . , 24 are distinct
complex numbers. In particular,
Av; +Bv =0, L) =0. 2.3)

3 Proof of the Main Results

In this following, we will employ the Nevanlinna theory to prove the main theorem.
Firstly, some basic results in Nevanlinna theory will be introduced. For a meromorphic
function f, we will use the notations the proximity function m(r, f) and N(r, f) the
integrated counting function, which are defined as

1 2 )
m(r, f) = E/o log* | f(re'?)|d6,

/Oon(tvf)_n(ovf)
0 t

N, f) = dr +n(, f)logr,

where logt s = max{logs, 0} and n(¢, f) denotes the number of poles of f in the
disk |z| < ¢, each pole is counted according to its multiplicity. We also need the
characteristic function 7'(r, f) := m(r, f) + N(r, f), and utilize five results in
Nevanlinna theory. (see e.g., [12—15]):
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Lemma 1 (The Nevanlinna First Fundamental Theorem) Let f be a transcendental
function. Then

TG, =T <r, %) + O0(D).

Lemma 2 (The Logarithmic Derivative Lemma) Let f be a transcendental function.
Then

f(k)
m r»T = O(log{rT(r, )},

possibly outside a set of finite linear measure, where f® is the k-th derivative of f.

Lemma 3 (Clunie’s Lemma) Let f be a transcendental meromorphic function satis-
fying the following equation

fnP(Z’f’va-”):Q(Z’f’fzv---)a

where P, Q are polynomials in f and its derivatives with rational coefficients. If the
degree of Q is at most n, then

m(r, P(z, f, fz,...)) = O(ogrT(r, f)),r - 00

possibly outside a set of finite linear measure.

Lemma4 A meromorphic function f is transcendental if and only if

lim T(r, f)
im inf =00
r—00 ]()gr

and if f is a non-constant rational function, then
T(r, f)=dlogr+ O(1)
for some d # 0.

Lemma5 Let f(z) be a non-constant meromorphic function and let ay, ay, . . ., a, (F
0) be constants. Then

T(r,anf" +an1 f"" 4 +a) =nT(r, f)+ O(D).
Proof of Theorem 1 Rewrite (2.1) as follows
v2(Pyv, + Pov) = —[P3vy + Pav; + Psv + Pg] = L(v). 3.1
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Obviously, L (v) is a differential polynomial in v of degree 1 with rational coefficients.
Suppose that Pjv; + Prv # 0. Then, by Clunie’s Lemma, we see that

m(r, Piv; + Pov) = O(log{rT (r,v)}), (3.2)

possibly outside a set of finite linear measure. From Eq. (3.1), it is easy to derive that
all the poles of v must be the zeros of Pj(z). So, v has finitely many poles. Further,

N(r, Pivy + Pov) <2N(r,v) = O(logr). 3.3)
Combining (3.2) and (3.3) yields that
T(r, Pyvy + Pov) = m(r, Piv; + Pov) + N(r, Py, + Pov) = O(log{rT(r, v)}),

possibly outside a set of finite linear measure. By the Nevanlinna first fundamental
theorem, one has

T <r, m) =T (r, Piv; + Pov) = O(log{rT(r,v)}), 3.4

possibly outside a set of finite linear measure. We will estimate the proximity function
of L(v). Again by the logarithmic derivative lemma, one has

m(r, L(v)) = m(r, P3vy + Pyvy + Psv + Pe)
<m(r, P3vy + Psv; + Psv) +~m(r, Ps)

P P P (3.5)
< m(p, DBV OV ISV 0y + Ologr)
v

=m(r,v) + O(log{rT (r,v)}),

possibly outside a set of finite linear measure. Rewrite (3.1) as

v? = L .
Piv; + Pyv

By the above function and (3.5), we derive that

2T (r, v) + O(1)
=T(r,v®) =m@r, v2) + N, v>) = m(r, v*) + O(logr)

(7 s ) (
=m|r, ——— |+ O(ogr) <m|r, L(v)) + m(r,

) o
Piv, + Pov )+ (logr)

Piv; + Pyv

<m(@r,Lw)+T (r ) + O(logr) <m(r,v) + O(log{rT(r,v)})

" Piv; + Pov
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which implies that
T(r,v) = O(log{rT (r,v)}), (3.6)

possibly outside a set of finite linear measure. By the Lemma 4, we have

.. . T@r,v)
lim inf =00
r—oo logr

which contradicts with (3.6). Then, all the above discussion yields that
Piv; + Pov =0, P3vy + Psav; + Psv+ Ps=0.

From the form

Uy P

v P1

yields that —% just has simple poles. Then, we can set

q
1% P2 m
L =S =P+ , 3.7
v Py 0 Z t—2zj S
Jj=1
where Py is a polynomial, ¢ > 0 and my, m», ..., m, are integers such thatif g = 0,
then
LA
>,
=1t T
andif ¢ > 1,thenm; (1 < j < g) are g nonzero integers, and z1, 22, ..., Z4 are the

zeros and poles of v. By integrating two sides of (3.7), we have that
q
v=e’ H(t —z;)",
j=l1

where P is a primitive function of Py such that P’ = Py. This finishes the proof of
Main theorem. O

Proof of Corollary 1 1f t = 0. Then, Eq. (1.1) reduces to
BV’ + Bu + (1 — B)v — (@ + Bo) = 0.
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The above equation yields that v has no poles. Hence by Lemma 5, we have

3T(r,v) + O(1) = T(r, Bv°) = m(r, v>)
=m(r, v, + (1 — v — (a + Bo))

<m (r, w) +m(r,v) + 0(1)

= m(r,v) + O(log{rT(r, v)}),

possibly outside a set of finite linear measure, which is impossible. Below, we assume
that t # 0. Therefore, by the conclusion (2.3) and Eq. (1.1), one has

Bv + 37, = 0, (3.8)
vy +(B—1)v+ (1= B)v— (e + Bo) =0. (3.9

Then, integrating the equation of (3.8) yields that
B
v(t) = e 5T,

Substituting this form of v into the equation of (3.9) leads to

(-2/32 — 68T +91

9 ) e HHA _ (a4 Bo) = 0.

From the equality, we can obtain that

2
2% 2

9 3 =1 and o+ fo =0.

This finishes the proof of Corollary 1.

4 Discussion

In this section, we turn our attention to Eq. (2.1) when P; = 0. Then, Eq. (2.1)
becomes

Pyv’ + P3vy + Pyvy + Psv + Po = 0. 4.1
This is a nonlinear ordinary differential equation. As is well known, there is no fool-
proof way to solve this kind of differential equations. A slight variation of an equation
might require a different method. So, it is hard to give the general structure of tran-

scendental meromorphic solutions of the above equation.
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Using the complex method, Yuan et al. [16] got the meromorphic solutions to a
class special differential equations

Pyv3 + P3v,; + Psv+ Pg = 0,

where P>, P3, Ps and Pg are constants. Also by the same method, they [17] also gave
the meromorphic solution of

sz3 + P3v;; + Pyv; + Psv =0,

where P>, P3, P4 and Ps are constants, and the solution of the Fisher equation with
degree three (see [18])

v3—vt,—cv,—v=0,

where c is a constant.

We also observed that the Painlevé equation (II) is the special cases of Eq. 2.2. In
mathematics, Painlevé transcendents are solutions to certain nonlinear second-order
ordinary differential equations in the complex plane with the Painlevé property. The
equation traditionally called Painlevé (II), are as follows:

(D) : vy = 203 +1v +a.

It is well known that the Painlevé equations can all be represented as Hamiltonian
systems. By the Painlevé test, one can give the representation of the meromorphic
solutions of the Painlevé (7).
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