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Abstract
We provide sufficient conditions for the existence of one positive solution for a fourth-
-order beam equation with a discontinuous nonlinear term. Also a multiplicity result
is established. They are based on a recent generalization of the Krasnosel’skiı̆ fixed
point theorem in cones.
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1 Introduction

We study the existence of positive solutions for the following fourth-order equation

u(4)(t) = g(t) f (u(t)), t ∈ (0, 1),
u(0) = u(1) = 0 = u′′(0) = u′′(1), (1.1)

where g ≥ 0 a.e. on I = [0, 1] and g ∈ L1(0, 1) and the function f : [0,∞) → [0,∞)

is such that u �→ f (u) is measurable for every u ∈ C2([0, 1]) and f ∈ L∞
loc([0,∞)).

Problem (1.1) was intensively studied in the literature (see, for example [4,6,13])
and it arises in many applications. For instance, fourth-order problems appear in non-
linear suspension bridge models (see [5,13] and the references therein).
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However, continuity assumptions are usually imposed about f . Our goal is to
weaken this hypothesis without using monotonicity conditions and, even in that case,
to obtain positive Carathéodory solutions for (1.1). We achieve an existence result
when f has a superlinear or sublinear behavior. Also a result concerning the existence
of two positive solutions for problem (1.1) is obtained in Sect. 4.

Our approach is based on a multivalued version of the well-known Krasnosel’skiı̆
compression-expansion fixed point theorem [10] which we apply in order to get fixed
points of a regularization of the integral operator associated to (1.1). The mentioned
multivalued mapping is constructed by ‘convexifying’ the fixed point operator related
to the fourth-order problem (1.1). These ideas can be found in [8] and we will detail
them in Sect. 2. They recall the classical ideas of Filippov and Krasovskij envelopes
which regularize the differential equation and transform it into a differential inclusion,
see [9,11] .

2 Fixed Point Theorem

In the sequel, we need the following definitions. A subset K of aBanach space (X , ‖·‖)
is a cone if it is closed, K + K ⊂ K , λK ⊂ K for all λ ≥ 0 and K ∩ (−K ) = {0}.
A cone K defines the partial order in X given by x � y if and only if y − x ∈ K . We
will denote Kc = {x ∈ K : ‖x‖ < c} and Kc its closure, with 0 < c < ∞.

Let U be a relatively open subset of K and let T : U ⊂ K → K be an operator,
not necessarily continuous.

Definition 2.1 The closed-convex envelope of an operator T : U −→ K is the multi-
valued mapping T : U −→ 2K given by

Tx =
⋂

ε>0

co T
(
Bε(x) ∩U

)
for everyx ∈ U , (2.2)

where Bε(x) denotes the closed ball centered at x and radius ε, and co means closed
convex hull.

In other words, we say that y ∈ Tx if for every ε > 0 and every ρ > 0 there exist
m ∈ N and a finite family of vectors xi ∈ Bε(x) ∩ U and coefficients λi ∈ [0, 1]
(i = 1, 2, . . . ,m) such that

∑
λi = 1 and

∥∥∥∥∥y −
m∑

i=1

λi Txi

∥∥∥∥∥ < ρ.

Now we present a discontinuous version of Krasnosel’skiı̆ theorem which is a
straightforward consequence of the multivalued version given by Fitzpatrick and
Petryshyn [10].

Proposition 2.2 Let ri ≤ R (i = 1, 2) with r1 = r2 positive numbers and T : KR →
K a mapping such that T KR is relatively compact and fulfills condition

{x} ∩ Tx ⊂ {T x} for all x ∈ KR, (2.3)
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Positive Solutions of a Discontinuous One-Dimensional beam… 2359

where T is the closed--convex envelope of T as defined in (2.2).
Suppose that

(a) λx /∈ Tx for all x ∈ K with ‖x‖ = r1 and all λ ≥ 1,
(b) there exists w ∈ K with ‖w‖ = 0 such that x /∈ Tx + λw for all λ ≥ 0 and all

x ∈ K with ‖x‖ = r2.

Then T has a fixed point x ∈ K such that

min {r1, r2} < ‖x‖ < max {r1, r2} .

Observe that condition (2.3) is equivalent to Fix(T) ⊂ Fix(T ), where Fix(S)

denotes the set of fixed points of the operator S. For more details about the previ-
ous fixed point theorem, see [8].

Remark 2.3 Condition (a) in Proposition 2.2 is satisfied if one of the following two
conditions holds:

(i) y � x for all y ∈ T x and all x ∈ K with ‖x‖ = r1,
(ii) ‖y‖ < ‖x‖ for all y ∈ T x and all x ∈ K with ‖x‖ = r1.

Analogously, assumption (b) in Proposition 2.2 holds if

(I) y � x for all y ∈ T x and all x ∈ K with ‖x‖ = r2, or
(II) ‖y‖ > ‖x‖ for all y ∈ T x and all x ∈ K with ‖x‖ = r2.

3 Positive Solutions

In this section, we establish sufficient conditions for the existence of positive solutions
for the simply supported beam Eq. (1.1).

Technical reasons make that we need to work in the Banach space (C2([0, 1]), ‖·‖),
where ‖u‖ = max{‖u‖∞ ,

∥∥u′∥∥∞ ,
∥∥u′′∥∥∞} and ‖·‖∞ is the usual supremum norm.

We shall look for fixed points of the operator T : C2([0, 1]) → C2([0, 1]) given by

Tu(t) :=
∫ 1

0
G(t, s)g(s) f (u(s)) ds,

where G is the Green’s function. It is given by

G(t, s) =

⎧
⎪⎪⎨

⎪⎪⎩

1

6
s(1 − t)(2t − s2 − t2), s ≤ t,

1

6
t(1 − s)(2s − t2 − s2), s > t,

which is nonnegative and satisfies (see [4,13])

G(t, s) ≤ �(s), for t, s ∈ [0, 1],
c 8(s) ≤ G(t, s), for t ∈ [ 1

4 ,
3
4

]
, s ∈ [0, 1],
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where

�(s) =

⎧
⎪⎪⎨

⎪⎪⎩

√
3

27
s(1 − s2)3/2, for 0 ≤ s ≤ 1/2,√

3

27
(1 − s)s3/2(2 − s)3/2, for 1/2 ≤ s ≤ 1,

and c = 45
√
3/128 ≈ 0.608924.

We shall look for fixed points of T in the cone

K =
⎧
⎨

⎩u ∈ C2([0, 1]) : u ≥ 0, min
t∈

[
1
4 , 34

] u(t) ≥ c ‖u‖∞

⎫
⎬

⎭ .

Proposition 3.1 The operator T : K → K is well-defined and maps bounded sets
into relatively compact sets.

Proof The fact that T K ⊂ K can be verified by using the properties of the Green’s
function G together with the mapping �. In addition, from the hypotheses about f
and g and the regularity of the Green’s function it is routine to conclude that T maps
bounded sets into relatively compact ones by means of the Áscoli-Arzela’s theorem.

��
Now we define the points where we allow the function f to be discontinuous. The

following definition is an adjustment to the admissible discontinuity curves of [7,12]
in the case of a fourth-order problem and a function f only dependent on the space
variable u.

Definition 3.2 An admissible discontinuity point is a nonnegative real number x sat-
isfying one of the following conditions:

(a) f (x) = 0 (x is said a viable point),
(b) There exist ε > 0 and ψ ∈ L1(0, 1), ψ(t) > 0 for a.a. t ∈ [0, 1] such that

ψ(t) < g(t) f (y) for a.a. t ∈ [0, 1] and all y ∈ [x − ε, x + ε] (x is inviable).
(3.4)

Remark 3.3 Notice that the hypotheses about the admissible discontinuity points
defined here are similar to the condition

0 ∈ F(x) =
⋂

ε>0

co f (Bε(x)) implies f (x) = 0;

given in [11] for first-order discontinuous autonomous systems. Indeed, they are equiv-
alent whenever g ≡ 1.

Moreover, observe that if g(t) > 0 for a.a. t ∈ [0, 1], then the fact that there exists
ε > 0 such that

inf
y∈[x−ε,x+ε] f (y) > 0
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Positive Solutions of a Discontinuous One-Dimensional beam… 2361

implies condition (3.4) in Definition 3.2. Similar assumptions were required in [1,2]
in the study of second-order problems, but the approach there relies on critical point
theory for non-smooth operators.

Now we enunciate three technical results whose proofs can be looked up in [12].

Lemma 3.4 ([[12], Lemma 4.1]) Let a, b ∈ R, a < b, and let g, h ∈ L1(a, b), g ≥ 0
a.e., and h > 0 a.e. in (a, b). For every measurable set J ⊂ (a, b) with m(J ) > 0,
there is a measurable set J0 ⊂ J with m(J \ J0) = 0 such that for every τ0 ∈ J0 we
have

lim
t→τ+

0

∫
[τ0,t]\J g(s) ds∫ t

τ0
h(s) ds

= 0 = lim
t→τ−

0

∫
[t,τ0]\J g(s) ds∫ τ0

t h(s) ds
.

Corollary 3.5 ([[12], Corollary 4.2]) Let a, b ∈ R, a < b, and let h ∈ L1(a, b) be
such that h > 0 a.e. in (a, b). For every measurable set J ⊂ (a, b) with m(J ) > 0,
there is a measurable set J0 ⊂ J with m(J \ J0) = 0 such that for all τ0 ∈ J0 we have

lim
t→τ+

0

∫
[τ0,t]∩J h(s) ds
∫ t
τ0
h(s) ds

= 1 = lim
t→τ−

0

∫
[t,τ0]∩J h(s) ds
∫ τ0
t h(s) ds

.

Corollary 3.6 ([[12],Corollary 4.3]) Let a, b ∈ R, a < b, and let f , fn : [a, b] −→ R

be absolutely continuous functions on [a, b] (n ∈ N), such that fn → f uniformly on
[a, b] and for a measurable set A ⊂ [a, b] with m(A) > 0 we have

lim
n→∞ f ′

n(t) = g(t) for a.a.t ∈ A.

If there exists M ∈ L1(a, b) such that | f ′(t)| ≤ M(t) a.e. in [a, b] and also | f ′
n(t)| ≤

M(t) a.e. in [a, b] (n ∈ N), then f ′(t) = g(t) for a.a. t ∈ A.

We shall also need the following result whose proof is similar to that of Lemma
3.11 in [8].

Lemma 3.7 If M ∈ L1(0, 1), M ≥ 0 almost everywhere, then the set

Q =
{
u ∈ C3([0, 1]) : ∣∣u′′′(t) − u′′′(s)

∣∣ ≤
∫ t

s
M(r) dr whenever 0 ≤ s ≤ t ≤ 1

}
,

is closed in C2([0, 1]).
Moreover, if un ∈ Q for all n ∈ N and un → u in the C2 norm, then there exists a

subsequence {unk } which tends to u in the C3 norm.
Following the notation of [3], we define

γ∗ = inf
t∈[1/4,3/4]

∫ 3/4

1/4
G(t, s)g(s) ds, γ ∗ = sup

t∈[0,1]

∫ 1

0
G(t, s)g(s) ds,

γ ∗
1 = sup

t∈[0,1]

∫ 1

0

∣∣∣∣
∂G

∂t
(t, s)

∣∣∣∣ g(s) ds, γ ∗
2 = sup

t∈[0,1]

∫ 1

0

∣∣∣∣
∂2G

∂t2
(t, s)

∣∣∣∣ g(s) ds
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and we suppose γ∗ > 0.
Now we prove the main result of this section.

Theorem 3.8 Assume that the functions f and g satisfy the following hypotheses:

(H1) g ≥ 0 a.e. on I = [0, 1] and g ∈ L1(0, 1);
(H2) f : [0,∞) → [0,∞) is such that

• u �→ f (u) is measurable for every u ∈ C2([0, 1]), and
• f is locally bounded;

(H3) There exist admissible discontinuity points xn ≥ 0 such that the function u �→
f (u) is continuous in [0,∞) \ ⋃

n∈N {xn}.
Moreover, assume that either

(i) f0 := limu→0+
f (u)

u
= +∞ and f∞ := limu→∞

f (u)

u
= 0 (sublinear

case); or
(ii) f0 = 0 and f∞ = ∞ (superlinear case).

Then BVP (1.1) has one positive solution.

Proof We are going to prove that the conditions of Proposition 2.2 are satisfied. We
suppose that f satisfies (i) (it is similar if the nonlinearity f is in the superlinear case).
Claims 1 and 2 are standard (see, e.g., [[4], Theorem 3.1]), but here some changes are
necessary due to the use of the set-valued operator T, and the last one is a technical
result which follows the ideas of [[12],Theorem 4.4].

Claim 1: There exists r1 > 0 such that ‖y‖ < ‖u‖ for all y ∈ T u and all u ∈ K with
‖u‖ = r1.

Since f∞ = 0, for each L > 0 there exists M > 0 such that

f (s) ≤ M + Ls for s ≥ 0.

We can choose L > 0 small enough such that 5max{γ ∗, γ ∗
1 , γ ∗

2 }L < 2 and r1 > 0
large enough such that 2max{γ ∗, γ ∗

1 , γ ∗
2 }M < r1. Suppose that u ∈ K with ‖u‖ = r1,

then for every finite family ui ∈ Br (u) ∩ K and λi ∈ [0, 1] (i = 1, 2, . . . ,m), with∑
λi = 1 and r = ‖u‖∞ /4, we have

v(t) =
m∑

i=1

λiTui (t) ≤
m∑

i=1

λi

∫ 1

0
G(t, s)g(s) [M + Lui (s)] ds

≤
m∑

i=1

λiγ
∗[M + L ‖ui‖∞] ≤ γ ∗[M + 5L ‖u‖∞ /4] < ‖u‖ .

In addition,

∣∣v′(t)
∣∣ =

∣∣∣∣∣

m∑

i=1

λi (Tui )
′(t)

∣∣∣∣∣ ≤
m∑

i=1

λi

∫ 1

0

∣∣∣∣
∂G

∂t
(t, s)

∣∣∣∣ g(s) [M + Lui (s)] ds

≤ γ ∗
1 [M + 5L ‖u‖∞ /4] < ‖u‖ ,
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Positive Solutions of a Discontinuous One-Dimensional beam… 2363

and

∣∣v′′(t)
∣∣ =

∣∣∣∣∣

m∑

i=1

λi (Tui )
′′(t)

∣∣∣∣∣ ≤
m∑

i=1

λi

∫ 1

0

∣∣∣∣
∂2G

∂t2
(t, s)

∣∣∣∣ g(s) [M + Lui (s)] ds

≤ γ ∗
2 [M + 5L ‖u‖∞ /4] < ‖u‖ .

Hence, if y ∈ T u, then it is the limit of a sequence of functions v as above, so
‖y‖ < ‖u‖ for all y ∈ T u and all u ∈ K with ‖u‖ = r1.
Claim 2: There exists r2 > 0 such that y � u for all y ∈ T u and all u ∈ K with
‖u‖ = r2.

Hypothesis (i) f0 = ∞ guarantees that we can choose L > 0 large enough such
that γ∗Lc > 2 and C > 0 satisfying f (s) ≥ Ls provided that 0 ≤ s ≤ C . Suppose
that u ∈ K with ‖u‖ = C/2 =: r2, then for every finite family ui ∈ Br (u) ∩ K
and λi ∈ [0, 1] (i = 1, 2, . . . ,m), with

∑
λi = 1 and r = ‖u‖∞ /2, we have

‖ui‖∞ ≤ 3r2/2 < C , so 0 ≤ ui (t) ≤ C for all t ∈ [1/4, 3/4] and
m∑

i=1

λiTui (t) ≥
m∑

i=1

λi

∫ 3/4

1/4
G(t, s)g(s) f (ui (s)) ds

≥ γ∗Lc
m∑

i=1

λi ‖ui‖∞ ≥ γ∗Lc (‖u‖∞ − r) > ‖u‖∞ ,

which implies that y � u for all y ∈ Tu with u ∈ K and ‖u‖ = r2.
Claim 3: The operator T satisfies the condition {u} ∩ Tu ⊂ {Tu} for all u ∈ KR with
R ≥ r1.

First, notice that there exists R̃ > 0 such that f (u) ≤ R̃ for all u ∈ KR. Therefore,
there exists M ∈ L1(0, 1) such that

g(t) f (u) ≤ M(t) for a.a. t ∈ [0, 1] and all u ∈ KR. (3.5)

Now we consider the set

Q =
{
u ∈ C3([0, 1]) : ∣∣u′′′(t) − u′′′(s)

∣∣ ≤
∫ t

s
M(r) dr (s ≤ t)

}
, (3.6)

which is a closed and convex subset of C2([0, 1]) by Lemma 3.7. It is immediate to see
that T K ⊂ Q, by the definition of the operator T , and since Q is a closed and convex
subset of X= C2([0, 1]) we have that T K ⊂ Q. In particular, T KR ⊂ Q. We note
that condition {u} ∩ Tu ⊂ {Tu} needs only to be verified for every u ∈ KR ∩ T KR ⊂
KR ∩ Q.

Therefore, we fix u ∈ KR ∩ Q and we consider the following three cases.
Case 1: m ({t ∈ [0, 1] : u(t) = xn}) = 0 for all n ∈ N. Let us prove that then T is

continuous at u.
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The assumption implies that for a.a. t ∈ [0, 1] the function f (·) is continuous at
u(t). Hence, if uk → u in Q, then

f (uk(t)) → f (u(t)) for a.a. t ∈ [0, 1],

which, along with (3.5), yield Tuk → Tu in C2([0, 1]).
Case 2: m ({t ∈ [0, 1] : u(t) = xn}) > 0 for some n ∈ N such that xn is inviable.

In this case, we can prove that u /∈ Tu.
Let us assume that for some n ∈ N we have m ({t ∈ [0, 1] : u(t) = xn}) > 0 and

we will simply denote x instead of xn. There exist ε > 0 and ψ ∈ L1(0, 1), ψ(t) > 0
for a.a. t ∈ [0, 1] such that (3.4) holds.

We denote J = {t ∈ [0, 1] : u(t) = x}, and we deduce from Lemma 3.4 that there
exists a measurable set J0 ⊂ J with m(J0) = m(J ) > 0 such that for all τ0 ∈ J0 we
have

lim
t→τ+

0

∫
[τ0,t]\J M(s) ds

(1/4)
∫ t
τ0

ψ(s) ds
= 0 = lim

t→τ−
0

∫
[t,τ0]\J M(s) ds

(1/4)
∫ τ0
t ψ(s) ds

. (3.7)

By Corollary 3.5, there exists J1 ⊂ J0 with m(J0 \ J1) = 0 such that for all τ0 ∈ J1
we have

lim
t→τ+

0

∫
[τ0,t]∩J0

ψ(s) ds
∫ t
τ0

ψ(s) ds
= 1 = lim

t→τ−
0

∫
[t,τ0]∩J0

ψ(s) ds
∫ τ0
t ψ(s) ds

. (3.8)

Let us now fix a point τ0 ∈ J1. From (3.7) and (3.8), we deduce that there exist
t− < t̃− < τ0 and t+ > t̃+ > τ0, t± sufficiently close to τ0 so that the following
inequalities are satisfied for all t ∈ [t̃+, t+]:

∫

[τ0,t]\J
M(s) ds <

1

4

∫ t

τ0

ψ(s) ds, (3.9)

∫

[τ0,t]∩J
ψ(s) ds ≥

∫

[τ0,t]∩J0
ψ(s) ds >

1

2

∫ t

τ0

ψ(s) ds, (3.10)

and for all t ∈ [t−, t̃−]:
∫

[t,τ0]\J
M(s) ds <

1

4

∫ τ0

t
ψ(s) ds, (3.11)

∫

[t,τ0]∩J
ψ(s) ds >

1

2

∫ τ0

t
ψ(s) ds. (3.12)

Finally, we define a positive number

ρ̃ = min

{
1

4

∫ τ0

t̃−
ψ(s) ds,

1

4

∫ t̃+

τ0

ψ(s) ds

}
, (3.13)

and we are now in a position to prove that u /∈ Tu. It suffices to prove the following
claim:
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Claim --Let ε > 0begivenbyourassumptions over x and let ρ = ρ̃

2
min

{
t̃− − t−, t+ − t̃+

}

be where ρ̃ is as in(3.13).For every finite family ui ∈ Bε(u) ∩ K andλi ∈ [0, 1]
(i = 1, 2, . . . ,m), with

∑
λi = 1, we have ‖u − ∑

λi T ui‖ ≥ ρ.
Let ui and λi be as in the Claim and, for simplicity, denote y = ∑

λiTui . For a.a.
t ∈ J = {t ∈ [0, 1] : u(t) = x} we have

y(4)(t) =
m∑

i=1

λi (Tui )
(4)(t) =

m∑

i=1

λi g(t) f (ui (t)). (3.14)

On the other hand, for every i ∈ {1, 2, . . . ,m} and every t ∈ J we have

|ui (t) − x | = |ui (t) − u(t)| < ε,

and then the assumptions on x ensure that for a.a. t ∈ J we have

y(4)(t) =
m∑

i=1

λi g(t) f (ui (t)) >

m∑

i=1

λi ψ(t) = ψ(t) = ψ(t) + u(4)(t). (3.15)

Now for t ∈ [t−, t̃−] we compute

y′′′(τ0) − y′′′(t) =
∫ τ0

t
y(4)(s) ds =

∫

[t,τ0]∩J
y(4)(s) ds +

∫

[t,τ0]\J
y(4)(s) ds

>

∫

[t,τ0]∩J
ψ(s) ds +

∫

[t,τ0]∩J
u(4)(s) ds (by (3.15) and (3.14))

=
∫

[t,τ0]∩J
ψ(s) ds + u′′′(τ0) − u′′′(t) −

∫

[t,τ0]\J
u(4)(s) ds

≥
∫

[t,τ0]∩J
ψ(s) ds + u′′′(τ0) − u′′′(t) −

∫

[t,τ0]\J
M(s) ds

> u′′′(τ0) − u′′′(t) + 1

4

∫ τ0

t
ψ(s) ds (by (3.11) and (3.12)),

hence u′′′(t) − y′′′(t) ≥ ρ̃ provided that u′′′(τ0) ≥ y′′′(τ0). Therefore, by integration
we obtain

u′′(t̃−) − y′′(t̃−) = u′′(t−) − y′′(t−) +
∫ t̃−

t−
(u′′′(t) − y′′′(t)) dt

≥ u′′(t−) − y′′(t−) + ρ̃(t̃− − t−).

If u′′(t−) − y′′(t−) ≤ −ρ, then
∥∥y′′ − u′′∥∥∞ ≥ ρ and thus ‖y − u‖ ≥ ρ too. Other-

wise, that is, if u′′(t−) − y′′(t−) > −ρ, then we have u′′(t̃−) − y′′(t̃−) > ρ and hence
‖y − u‖ ≥ ρ too.
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Similar computations in the interval [t̃+, t+] instead of [t−, t̃−] show that if
u′′′(τ0) ≤ y′′′(τ0) then we have y′′′(t) − u′′′(t) ≥ ρ̃ for all t ∈ [t̃+, t+] and this
also implies ‖y − u‖ ≥ ρ. The claim is proven.

Case 3: m({t ∈ [0, 1] : u(t) = xn}) > 0 only for some of those n ∈ N such that
xn is viable. Let us prove that in this case the relation u ∈ Tu implies u = Tu.

Let us consider the subsequence of all viable admissible discontinuity points in the
conditions of Case 3, which we denote again by {xn}n∈N to avoid overloading notation.
We have m(Jn) > 0 for all n ∈ N, where

Jn = {t ∈ [0, 1] : u(t) = xn}.

For each n ∈ N and for a.a. t ∈ Jn , we have

u(4)(t) = 0 = g(t) f (xn) = g(t) f (u(t)),

and therefore u(4)(t) = g(t) f (u(t)) a.e. in J = ∪n∈N Jn .
Nowwe assume that u ∈ Tu andwe prove that it implies that u(4)(t) = g(t) f (u(t))

a.e. in [0, 1] \ J , thus showing that u = Tu.
Since u ∈ Tu then for each k ∈ N, we can guarantee that we can find functions

uk,i ∈ B1/k(u) ∩ K and coefficients λk,i ∈ [0, 1] (i = 1, 2, . . . ,m(k)) such that∑
λk,i = 1 and

∥∥∥∥∥∥
u −

m(k)∑

i=1

λk,iTuk,i

∥∥∥∥∥∥
<

1

k
.

Let us denote yk = ∑m(k)
i=1 λk,iTuk,i , and notice that yk → u in the C2 norm and

‖uk,i − u‖ ≤ 1/k for all k ∈ N and all i ∈ {1, 2, . . . ,m(k)}.
For every k ∈ N, we have yk ∈ Q as defined in (3.6), and therefore Lemma 3.7

guarantees that u ∈ Q and, up to a subsequence, yk → u in the C3 topology.
For a.a. t ∈ [0, 1] \ J , we have that f (·) is continuous at u(t), so for any ε > 0

there is some k0 = k0(t) ∈ N such that for all k ∈ N, k ≥ k0, we have

g(t)| f (uk,i (t)) − f (u(t))| < ε for alli ∈ {1, 2, . . . ,m(k)},

and therefore

|y(4)
k (t) − g(t) f (u(t))| ≤

m(k)∑

i=1

λk,i g(t)| f (uk,i (t)) − f (u(t))| < ε.

Hence, y(4)
k (t) → g(t) f (u(t)) for a.a. t ∈ [0, 1]\ J , and then Corollary 3.6 guarantees

that u(4)(t) = g(t) f (u(t)) for a.a. t ∈ [0, 1] \ J .
Therefore, the conditions of Proposition 2.2 are satisfied and we can ensure that

BVP (1.1) has a positive solution. ��
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Remark 3.9 Observe that the boundary conditions (BCs) do not play an important role
together to the discontinuities of the nonlinearity f in order to guarantee the existence
of positive solutions, so our result may be generalized to other BCs whenever the
Green’s function satisfies suitable sign conditions.

We illustrate our theory with an example inspired by [[4],Example 2].

Example 3.10 Consider the BVP

{
u(4) = �7u3 − 18u2 + 12u�e−u + √

u,

u(0) = u(1) = 0 = u′′(0) = u′′(1),

where �x� denotes the integer part of x .
The mapping f (u) = �7u3 − 18u2 + 12u�e−u + √

u is discontinuous at infinitely
many points and these points are admissible inviable discontinuity points (it suffices
to take ψ ≡ 0.1 and ε = 0.05 in Definition 3.2). In addition, it is not monotone and,
clearly, f0 = +∞ and f∞ = 0.

Therefore, Theorem 3.8 guarantees the existence of a positive solution for this
problem.

4 AMultiplicity Result

We establish the existence of two positive solutions for problem (1.1). Ourmultiplicity
result is based on the following Lemma and a suitable asymptotic behavior of the
function f at zero and at infinity.

Lemma 4.1 Assume that the functions f and g satisfy conditions (H1) and (H2).
If there exist r1 > 0 and ε > 0 such that

max{γ ∗, γ ∗
1 , γ ∗

2 } sup
x∈[0,r1+ε]

f (x) < r1, (4.16)

then ‖y‖ < ‖u‖ for all y ∈ T u and all u ∈ K with ‖u‖ = r1.

Proof Suppose that u ∈ K with ‖u‖ = r1. Then for every finite family ui ∈ Bε(u)∩K
and λi ∈ [0, 1] (i = 1, 2, . . . ,m), with

∑
λi = 1, we have (by condition (4.16))

v(t) =
m∑

i=1

λiTui (t) =
m∑

i=1

λi

∫ 1

0
G(t, s)g(s) f (ui (s)) ds

≤
m∑

i=1

λiγ
∗ f (r1 + ε)

≤ γ ∗ sup
x∈[0,r1+ε]

f (x) < r1 = ‖u‖ .
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In addition,

∣∣v′(t)
∣∣ =

∣∣∣∣∣

m∑

i=1

λi (Tui )
′(t)

∣∣∣∣∣ ≤
m∑

i=1

λi

∫ 1

0

∣∣∣∣
∂G

∂t
(t, s)

∣∣∣∣ g(s) f (ui (s)) ds

≤ γ ∗
1 sup

x∈[0,r1+ε]
f (x) < r1 = ‖u‖ ,

and

∣∣v′′(t)
∣∣ =

∣∣∣∣∣

m∑

i=1

λi (Tui )
′′(t)

∣∣∣∣∣

=
m∑

i=1

λi

∫ 1

0
−∂2G

∂t2
(t, s)g(s) f (ui (s)) ds ≤ γ ∗

2 sup
x∈[0,r1+ε]

f (x) < r1 = ‖u‖ .

Hence, if y ∈ T u, then it is the limit of a sequence of functions v as above, so ‖y‖ < r1.
��

Remark 4.2 Notice that if f is a nondecreasing function, then condition (4.16) can be
simply written as

max{γ ∗, γ ∗
1 , γ ∗

2 } f (r1 + ε) < r1.

Now we present our multiplicity result concerning the existence of a “small” and a
“big” positive solutions for problem (1.1).

Theorem 4.3 Assume that the functions f and g satisfy conditions (H1)--(H3). More-
over,

(1) f0 = ∞ and f∞ = ∞;
(2) there exist r1 > 0 and ε > 0 such that

max{γ ∗, γ ∗
1 , γ ∗

2 } sup
x∈[0,r1+ε]

f (x) < r1.

Then problem (1.1) has two positive solutions u1 and u2 such that ‖u1‖ < r1 and
‖u2‖ > r1.

Proof First, as in Claim 3, Theorem 3.8, condition (H3) guarantees that Fix(T) ⊂
Fix(T ).

On the other hand, f0 = ∞ implies that there exists 0 < r2 < r1 such that y � u for
all y ∈ T u and all u ∈ K with ‖u‖ = r2 (see Claim 2 in Theorem 3.8). Analogously,
since f∞ = ∞, there exists R2 > r1 such that y � u for all y ∈ T u and all u ∈ K
with ‖u‖ = R2.

Therefore, by applying Proposition 2.2 twice, we obtain that the operator T has
two fixed points u1 and u2 such that r2 < ‖u1‖ < r1 and r1 < ‖u2‖ < R2. ��

To finish, we present a simple example which, as far as we are aware, is not covered
by the previous literature.
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Example 4.4 Consider the problem

{
u(4) = u p + �u�q ,
u(0) = u(1) = 0 = u′′(0) = u′′(1), (4.17)

where 0 < p < 1 and q > 1. Here g ≡ 1 and f (u) = u p + �u�q .
Observe that f is discontinuous at xn = n, n ∈ N, and for each n ∈ N,

0 < inf

{
f (x) : x ∈

[
1

2
,∞

)}
≤ inf

{
f (x) : x ∈

[
n − 1

2
, n + 1

2

]}
,

so the points xn are inviable, see Definition 3.2 and Remark 3.3.
Since 0 < p < 1 and q > 1, we have that

f0 = lim
u→0+

1

u1−p
+ �u�q

u
= ∞, f∞ = lim

u→∞
1

u1−p
+ �u�q

u
≥ lim

u→∞
(u − 1)q

u
= ∞.

Moreover, γ ∗ = 1/384, γ ∗
1 ≤ 1/6 and γ ∗

2 = 1/8, so max{γ ∗, γ ∗
1 , γ ∗

2 } ≤ 1/6. By
taking r1 = 1/2 and ε = 1/2, condition (2) in Theorem 4.3 holds since sup{ f (x) :
x ∈ [0, 1]} = 2 and thus

1

6
sup{ f (x) : x ∈ [0, 1]} <

1

2
.

Therefore,Theorem 4.3 ensures that problem (4.17) has two positive solutions u1
and u2 such that ‖u1‖ < 1/2 and ‖u2‖ > 1/2 for any 0 < p < 1 and q > 1.
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