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Abstract
Most important examples of null hypersurfaces in a Lorentzian manifold admit an
integrable screen distribution, which determines a spacelike foliation of the null
hypersurface. In this paper, we obtain conditions for a codimension two spacelike
submanifold contained in a null hypersurface to be a leaf of the (integrable) screen
distribution. For this, we use the rigging technique to endow the null hypersurface
with a Riemannian metric, which allows us to apply the classical Eschenburg max-
imum principle. We apply the obtained results to classical examples as generalized
Robertson–Walker spaces and Kruskal space.
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1 Introduction

If L is a hypersurface of a n-dimensional Lorentzian manifold (M, g), then the dimen-
sion of the radical Rad

(
TpL

) = TpL∩(
TpL

)⊥ is one or zero for each point p ∈ L . If
Rad

(
TpL

)
is one-dimensional for all p ∈ L , then we say that L is a null hypersurface
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and in this case Rad
(
TpL

) = (
TpL

)⊥. It is well-known that the main drawback to
study them is the impossibility of defining a natural projection onto the tangent space.
This is overcomed by making some arbitrary choices, which allows to construct all
geometrical objects in a null hypersurface. Of course, they depend on the choices we
have made, but some fundamental concepts, like being totally geodesic or umbilical,
are independent of any choice, [5, Proposition 2.3.1, pg. 58].

The rigged technique introduced in [9] has shown to be an effective tool to study a
null hypersurface. Briefly, the main idea consists of choosing a vector field ζ such that
ζp /∈ TpL for all p ∈ L , which is called a rigging for L . From this unique arbitrary
choice, we derive all the geometric objects needed to handle a null hypersurface: a
null section of Rad(T L), a screen distribution in T L , a transverse null section, and
all the associated tensors. Moreover, a Riemannian metric, called rigged metric, can
be also constructed on L , which suggests that we can use Riemannian techniques to
obtain some results about null hypersurfaces, see [2,8,9].

In this paper, we follow the same spirit as the above papers: we apply Riemannian
tools to get some results in a null hypersurface. Concretely, using the riggedmetric, we
can consider a codimension two spacelike submanifold contained in a null hypersur-
face as a hypersurface of a Riemannian manifold. The relationship between its mean
curvature as a hypersurface and the mean curvature as a codimension two submanifold
is established in order to apply the Eschenburg maximum principle, which allows us
to obtain conditions to ensure that a codimension two spacelike submanifold through
a null hypersurface is a leaf of the (integrable) screen distribution.

There is quite enough literature about codimension two spacelike submanifolds
through a null hypersurface, but they are mainly focused in null cones and constant
curvature ambient. For example, in [14,15] the authors obtain conditions for a space-
like surfaces through a null cone of the four-dimensional Minkowski space to be a
totally umbilical round sphere. Recently, in [1] the authors have proved that a compact
codimension two spacelike trapped submanifold through the null cone of the De Sitter
space is conformally diffeomorphic to the round sphere. See also [3,11,12] for another
results about this topic.

The interest of these ideas is twofold. Null hypersurface is a concept of Lorentzian
geometry without Riemannian counterpart, so it is important to study them. As far
as we know, the rigging technique is the most promising technique to do that and
the notion of screen distribution is inherent to it. On the other hand, trapped surfaces
are close related with the idea of marginally outer trapped surfaces (MOTS in the
literature) which is a leaf of a screen distribution in a black hole horizon. As it is well-
known, trapped surfaces are a key ingredient in the celebrated Penrose’s singularity
theorem [13].

2 RiggedMetric on a Null Submanifold

We review some important facts about null hypersurfaces and the rigging technique
introduced in [7,9]. A rigging vector field ζ for a null hypersurface L in a Lorentzian
manifold (M, g) is a vector field defined in some open subset containing L such that
ζp /∈ TpL for all p ∈ L . Fixed a rigging vector field for a null hypersurface, it induces
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Codimension Two Spacelike Submanifolds Through a Null… 2255

the rigged vector field ξ , which is the unique (globally defined) null section in L such
that g(ξ, ζ ) = 1 and the null transverse vector field

N = ζ − 1

2
g(ζ, ζ )ξ, (1)

which is a null vector field over L such that g(N , ξ) = 1.
Define the screen distribution S = ζ⊥ ∩ T L . The following decompositions hold

TpM = TpL ⊕ span(Np), (2)

TpL = Sp ⊕orth span(ξp) (3)

for all p ∈ L . Moreover, S is orthogonal to the transverse vector field N .
Given U , V ∈ X(L) and X ∈ S, we can decompose

∇UV = ∇L
UV + B(U , V )N , (4)

∇U ξ = −A∗(U ) − τ(U )ξ, (5)

∇L
U X = ∇∗

U X + C(U , X)ξ, (6)

where ∇L
UV ∈ X(L) and A∗(U ),∇∗

U X ∈ S. The tensor B is called null second
fundamental form of L . B is symmetric, but C is symmetric if and only if S is
integrable. Indeed, we have

C(X ,Y ) − C(Y , X) = g([X ,Y ], N )

for all X ,Y ∈ S. Moreover, the following equations hold

B(U , V ) = −g(∇U ξ, V ),

B(U , ξ) = 0,

C(U , X) = −g(∇U N , X),

τ (U ) = g(∇U N , ξ)

for all X ∈ S and U , V ∈ X(L). On the other hand, it always holds ∇ξ ξ = −τ(ξ)ξ ,
i.e., ξ is a pregeodesic vector field, but if we choose a conformal rigging, then the
associated rigged vector field is geodesic [9, Lemma 3.10].

We say that the rigging vector field is screen conformal if there exists ϕ ∈ C∞(L)

such that C = ϕB. In this case, since B is symmetric, the screen distribution is
integrable. We say that the rigging vector field is distinguished if the one-form τ

vanishes. In [4], some conditions for the existence of a distinguished rigging are given.
There are important examples of null hypersurfaces which admit a screen conformal
and distinguished rigging vector field, for instance in generalized Robertson–Walker
spaces (in particular spaces of constant curvature), plane fronted waves, the Kruskal
space.

The connections ∇L and ∇∗ are called the induced connection on L and S, respec-
tively. If S is integrable, then ∇∗ is the Levi–Civita connection of the leaves induced
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from the ambient. Moreover, in this case, the second fundamental form of the leaves
is

IS(X ,Y ) = C(X ,Y )ξ + B(X ,Y )N (7)

for all X ,Y ∈ S.
We define the null mean curvature H and the screen mean curvature � as

Hp =
n−2∑

i=1

B(ei , ei ),

�p =
n−2∑

i=1

C(ei , ei )

where {e1, . . . , en−2} is an orthonormal basis of Sp. � depends on the fixed rigging
vector field, but the null mean curvature only depends on the rigged vector field. From
Eq. (7), if the screen is integrable, then the mean curvature vector of the leaves (as a
submanifolds of M) is

HS = � · ξ + H · N . (8)

The null hypersurface L is called totally geodesic if B = 0 and totally umbilical
if B = H

n−1g. These definitions do not depend on the chosen rigging vector field. On

the other hand, we say that the screen is totally umbilical if C = �
n−2g. In this case,

C(ξ, X) = 0 for all X ∈ S and the screen distribution is integrable.
The rigged metric is a Riemannian metric on L defined by

g̃ = g + ω ⊗ ω,

where ω ∈ �1(L) is the one-form given by ω(U ) = g(U , ζ ) = g(U , N ) for all
U ∈ X(L).

In [7], it is shown how all theses tensors change when we change the rigging. For
our purpose, we recall the following special case.

Lemma 1 Let L be a null hypersurface of a Lorentzian manifold and ζ a rigging
vector field for it. Take 	 ∈ C∞(L) a never vanishing function and call ζ ′ = 	ζ . If
we denote with a ′ the derived objects from the rigging vector field ζ ′, then

1. ξ ′ = 1
	

ξ and N ′ = 	N.
2. B ′ = 1

	
B and H ′ = 1

	
H.

3. C ′ = 	C and �′ = 	�.
4. τ ′ = τ + 1

	
d	.

5. ω′ = 	ω.

On the other hand, if we denote with a˜ the derived objects from the rigged metric
g̃, then it can be shown the following proposition.
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Codimension Two Spacelike Submanifolds Through a Null… 2257

Proposition 1 [7,9] Let L be a null hypersurface of a Lorentzian manifold and ζ a
rigging vector field for it. Given X ,Y , Z ∈ S and U , V ,W ∈ X(L), it holds.

1. g(D(U , V ),W ) = 1
2

(
ω(W )(Lξ g̃)(U , V )+ω(U )dω(V ,W )+ω(V )dω(U ,W )

)+
ω(W )B(U , V ), where D(U , V ) = ∇̃UV − ∇L

UV .
2. g̃(∇̃XY , Z) = g(∇XY , Z).
3.

(
Lξ g̃

)
(X ,Y ) = −2B(X ,Y ). In particular, H = −̃divξ .

4. τ(U ) = g(∇U ζ, ξ).
5. 2C(U , X) + dω(U , X) + (

Lζ g
)
(U , X) + g(ζ, ζ )B(U , X) = 0.

It easily follows that dω = 0 if and only if the screen distribution is integrable and
ξ is g̃-geodesic.

Proposition 2 [7,9] Let L be a null hypersurface of a Lorentzian manifold and ζ a
rigging vector field for it such that dω = 0. If X ,Y ∈ S and U , V ,W ∈ X(L), then

1. The second fundamental form of the leaves of the screen distribution as a hyper-
surface of (L, g̃) is Ĩ(X ,Y ) = B(X ,Y )ξ.

2. The mean curvature of the leaves respect to ξ as a hypersurface of (L, g̃) is H̃S =
H.

3. C(ξ, X) = −τ(X).
4. g̃(∇̃UV ,W ) = g(∇UV ,W ) + ω(W )U (ω(V )).

Proof We sketch the proof for completeness. The first point follows from point 3 of
the above proposition. The second point is an immediate consequence of the first one.
Using the last point of Proposition 1 and formulas (4), (5) and (6), we have

−2C(ξ, X) = (
Lζ g

)
(ξ, X) = g(∇ξ ζ, X) + g(ξ,∇Xζ )

= g(∇ξ N , X) + g(ξ,∇X N ) = −C(ξ, X) + τ(X)

and we obtain point 3.
From the first point of Proposition 1, we have g̃(∇̃UV , Z) = g(∇UV , Z) for all

U , V ∈ X(L) and Z ∈ S. Using this equation and point 1, it can be checked that
g̃(∇̃UY ,W ) = g(∇UY ,W ) and g̃(∇̃U ξ,W ) = g(∇U ξ,W ) for all U ,W ∈ X(L) and
Y ∈ S.Using thatω is g̃-equivalent to ξ , anyV ∈ X(L) canbewrittenV = ω(V )ξ+Y .
Then,

g̃(∇̃UV ,W ) = U (ω(V ))ω(W ) + ω(V )g̃(∇̃U ξ,W ) + g̃(∇̃UY ,W )

= U (ω(V ))ω(W ) + g(∇UV ,W ).

��
Finally, we prove the following relation between screen conformal and distin-

guished riggings.

Lemma 2 Let L be a null hypersurface and ζ a rigging vector field for it.

1. If ζ is screen conformal and distinguished, then dω = 0.
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2258 M. Gutiérrez, B. Olea

2. It the screen is totally umbilical and ζ is distinguished, then dω = 0.
3. If ζ is a conformal vector field and screen conformal, then it is distinguished.

Moreover, if the conformal factor of ζ never vanishes, then L is totally umbilical

Proof 1. Since ζ is screen conformal, then the screen distribution is integrable, so
dω(X ,Y ) = 0 for all X ,Y ∈ S and it only remains to check that dω(ξ, X) = 0
for all X ∈ S. From the definition of ω and Proposition 1, we have

dω(ξ, X) = g(∇ξ ζ, X) − g(ξ,∇Xζ ) = −g(ζ,∇ξ X) − τ(X)

= −C(ξ, X) = −ϕB(ξ, X) = 0.

2. The same proof as before, using at the final step C = �
n−2g, is valid.

3. Suppose that the rigging vector field is conformal, that is, Lζ g = λg. From point
(4) of Proposition 1, we have

τ(ξ) = g(∇ξ ζ, ξ) = 1

2

(
Lζ g

)
(ξ, ξ) = 0,

τ (X) = g(∇Xζ, ξ) = (
Lζ g

)
(X , ξ) − g(X ,∇ξ ζ ) = −g(X ,∇ξ ζ )

for all X ∈ S. Formula (1) implies

g(∇ξ ζ, X) = g(∇ξ N , X) = C(ξ, X) = 0.

Finally, using point (5) of Proposition 1, we have

λg(X ,Y ) + 2 (ϕ + g(ζ, ζ )) B(X ,Y ) = 0

for all X ,Y ∈ S. If ϕ + g(ζ, ζ ) vanishes, then λ also vanishes, so

B(X ,Y ) = − λ

2(ϕ + g(ζ, ζ ))
g(X ,Y )

and thus L is totally umbilical.
��

3 Codimension Two Spacelike Submanifold Through a Null
Hypersurface

Throughout this section, we suppose that L is a null hypersurface of a Lorentzian
manifold, ζ is a rigging vector field for it and � is a codimension two spacelike
submanifold ofM contained in L . Since (Tx�)⊥ is a Lorentzian plane, we can suppose
that

(T�)⊥ = span{ξ, η},
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Codimension Two Spacelike Submanifolds Through a Null… 2259

where η is the unique null vector field over the inclusion i : � → M , orthogonal to
� with g(ξ, η) = 1. If we use the decompositions (2) and (3), then

η = X0 + αξ + N , (9)

where X0 ∈ S and α = − 1
2g(X0, X0) = g(η, N ). It is easy to check that X0 ∈

(T� ∩ S)⊥ and

T� = (T� ∩ S) ⊕orth(g) span(V0),

where V0 = X0 + 2αξ . Moreover, V0 = −P�(N ) = −P�(ζ ) and X0 = PS(V0),
being

P� : T M |� → T� and PS : T L → S (10)

the canonical projections according to decompositions (2) and (3).
Observe that α ≤ 0 because N and η are in the same cone and given p ∈ �, it

holds X0(p) = V0(p) = 0 if and only if Tp� = Sp.
The following lemma is straightforward.

Lemma 3 The second fundamental form of � in (M, g) is given by

I�(U , V ) = g(Aη(U ), V )ξ + B(U , V )η (11)

for all U , V ∈ X(�), where Aη : X(�) → X(�) is given by Aη(U ) = −(∇Uη)T� .

Therefore, the mean curvature vector field H� of � as a submanifold of M is

H� = tr� Aη · ξ + H · η.

Observe that if� is totally umbilical (geodesic), then L has not to be totally umbil-
ical (geodesic), since Eq. (11) only holds along �. However, the geometric properties
of � and L are related. For example, we have the following.

Proposition 3 Let L be a totally umbilical null hypersurface of a Lorentzian manifold
admitting a rigging vector field ζ , and � a codimension two spacelike submanifold
through L.

1. The scalar curvature τ� of � is

τ� =
n−2∑

i, j=1

g(Rei e j e j , ei ) + n − 3

n − 2
g(H�,H�)

where {e1, . . . , en−2} is an orthonormal basis of T�.
2. If M is four-dimensional, K (�) ≤ 0 for all spacelike plane � and � is compact

and simply connected, then the mean curvature vector fieldH� is spacelike at some
point.
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2260 M. Gutiérrez, B. Olea

Proof 1. Given v ∈ T�, Gauss’s lemma implies

g(Rvei ei , v) = g(R�
vei ei , v) − g(I�(v, v), I�(ei , ei )) + g(I�(ei , v), I�(ei , v)).

Therefore,

n−2∑

i=1

g(Rvei ei , v) = Ric�(v, v) − g(I�(v, v),H�) + 2
n−2∑

i=1

g(Aη(v), ei )B(v, ei )

= Ric�(v, v) − tr� AηB(v, v) − Hg(Aη(v), v)

+ 2B(v, Aη(v)).

Since L is totally umbilical, if we take v = ei and sum the above expression from
i = 1 to n − 2, we get

n−2∑

i, j=1

g(Rei e j e j , ei ) = τ� − 2Htr� Aη + 2H

n − 2
tr� Aη

= τ� − n − 3

n − 2
g(H�,H�).

2. If g(H�,H�) ≤ 0 for all points, then τ� ≤ 0, which is a contradiction because �

is compact and simply connected.
��

If M is time-orientable, it is said that � is future (past) weakly trapped if H� is
causal and future-pointing (past-pointing). The second point of Proposition 3 says that
� is not weakly trapped.

Lemma 4 The vector field E = 1√
1−2α

(X0 + ξ) ∈ X(L) is a g̃-unitary and normal

vector field to � as a hypersurface of (L, g̃).

Proof Given v ∈ T�, we have g(v, X0) = g(v, η − αξ − N ) = −g(v, N ) =
−ω(v) = −g̃(v, ξ). Therefore, g̃(v, X0 + ξ) = 0. ��

It immediately follows that the function α is given by

α = −1

2
tan2 θ, (12)

where θ ∈ [0, π
2 ) is the g̃-angle between Tx� and Sx . Therefore, we have E =

cos θ (X0 + ξ).
Now, we compute the mean curvature H̃� of � as a hypersuperface of (L, g̃).

Proposition 4 Let L be a null hypersurface of a Lorentzian manifold and ζ a rigging
vector field for it such that dω = 0. If � is a spacelike codimension two submanifold
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Codimension Two Spacelike Submanifolds Through a Null… 2261

of M through L, then the mean curvature H̃� of � respect to E holds

H̃�

cos θ
= g(H�, N ) − � − B(X0, X0) + 1

cos2 θ
H

+ cos2 θ (C(X0, X0) − g(I�(V0, V0), N ) − τ(X0 + V0)) ,

where θ is the g̃-angle between Tp� and Sp, and V0 = −P�(ζ ) and X0 = PS(V0),
where P� and PS are the canonical projection given in (10).

Proof We know that T� = (T� ∩ S) ⊕orth(g̃) span(V0), where

V0 = −P�(ζ ) = X0 + 2αξ ∈ T�.

Fix a point p ∈ � and suppose that V0(p) �= 0, that is, � is not tangent to
the leaf of S at p. If {v1, . . . , vn−3} is an orthonormal basis of Tp� ∩ Sp, then
{v1, . . . , vn−3, vn−2 = v0√

g̃(v0,v0)
} is a g̃-orthonormal basis of Tp�, where v0 = V0(p).

From Proposition 2

g̃(∇̃U ξ, V ) = g(∇U ξ, V ) = −B(U , V ),

g̃(∇̃U X , V ) = g(∇U X , V )

for all U , V ∈ X(L) and X ∈ S. Therefore,

√
1 − 2α

n−3∑

i=1

g̃
(∇̃vi E, vi

) =
n−3∑

i=1

g̃
(∇̃vi (X0 + ξ), vi

)

=
n−3∑

i=1

g(∇vi X0, vi ) − B(vi , vi )

=
n−3∑

i=1

g(∇vi η, vi ) − αg(∇vi ξ, vi ) − g(∇vi N , vi )

− B(vi , vi )

=
n−3∑

i=1

g(∇vi η, vi ) + (α − 1)B(vi , vi ) + C(vi , vi ). (13)

Observe that {v1, . . . , vn−3,
v0√

g(v0,v0)
} is a g-orthonormal basis of Tp� and

{v1, . . . , vn−3,
X0√

g(X0,X0)
} is a g-orthonormal basis of Sp, so we have

−tr Aη =
n−3∑

i=1

g(∇vi η, vi ) + 1

g(v0, v0)
g(∇v0η, v0),

� =
n−3∑

i=1

C(vi , vi ) + 1

g(X0, X0)
C(X0, X0),
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H =
n−3∑

i=1

B(vi , vi ) + 1

g(X0, X0)
B(X0, X0).

Since g(v0, v0) = g(X0, X0), we get

√
1 − 2α

n−3∑

i=1

g̃
(∇̃vi E, vi

) = −tr Aη + (α − 1)H + �

− 1

g(X0, X0)

(
g(∇v0η, v0) + (α − 1)B(X0, X0) + C(X0, X0)

)
.

Analogously,

√
1 − 2α

g̃(v0, v0)
g̃

(∇̃v0 E, v0
) = 1

g̃(v0, v0)

(
g(∇v0η, v0) + (α − 1)B(v0, v0) − g(∇v0N , v0)

)

= 1

g̃(v0, v0)

(
g(∇v0η, v0) + (α − 1)B(X0, X0) − 2ατ(v0) + C(v0, X0)

)
.

By Proposition 2, we have that C(ξ, X0) = −τ(X0), so the above expression is

1

g̃(v0, v0)

(
g(∇v0η, v0) + (α − 1)B(X0, X0) + C(X0, X0) − 2ατ(X0 + v0)

)
.

Now,

√
1 − 2α H̃� = tr Aη − (α − 1)H − � + 2α

g̃(v0, v0)
τ (X0 + v0)

+ κ
(
g(∇v0η, v0) + (α − 1)B(X0, X0) + C(X0, X0)

)
,

where κ = 1
g(v0,v0)

− 1
g̃(v0,v0)

= 1
1−2α = cos2 θ . Since 2α

g̃(v0,v0)
= 1

2α−1 = − cos2 θ ,

g(I�(v0, v0), N ) = −g(∇v0η, v0) + αB(X0, X0) and g(H�, N ) = tr Aη + αH , we
get the desired formula.

Finally, if p ∈ � is a point such that V0(p) = 0, then we can take an orthonormal
basis of Tp� = Sp to compute the mean curvature as in formula (13). Since in this
case V0(p) = X0(p) = α(p) = θ(p) = 0, we obtain the same formula as in the
proposition. ��

For the following definition, recall that the rigged vector field ξ is always pre-
geodesic, so the null geodesics with initial velocity given by ξ are contained, at least
locally, in the null hypersurface.

Definition 1 Suppose that ζ is a rigging vector field for a null hypersurface L with
integrable screen distribution and take S a leaf of the screen distribution. The signed
distance function of S respect to ζ is

dζ
S = � ◦ 	−1,
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Codimension Two Spacelike Submanifolds Through a Null… 2263

where	 is the diffeomorphism	 : (−ε, ε)×U → V given by	(t, p) = expp(tξp),
being U ⊂ S and V ⊂ L open neighborhoods, and � is the projection onto the first
factor.

Take p0 ∈ � and S the leaf of the screen distribution through p0. If d
ζ
S ≥ 0 in a

neighborhood of p0 in �, then � is “on one side of S” at least locally. Moreover, �
and S are tangent at the point p0, since p0 is a local minimum of dζ

S . In particular, it
holds Ep0 = ξp0 .

Now, we can combine Propositions 2, 4 and [6, Theorem 1] to get the following.

Proposition 5 Let L be a null hypersurface of a Lorentzian manifold and ζ a rigging
vector field for it such that dω = 0 and� is a spacelike codimension two submanifold
of M through L. Take a point p0 ∈ �, S the leaf of the screen distribution through p0
and suppose that:

1. dζ
S ≥ 0 in a neighborhood of p0 in �.

2. a ≤ H for some a ∈ R in a neighborhood of p0 in S.
3. In a neighborhood of p0 in �, it holds

g(H�, N ) − � − B(X0, X0) + 1

cos2 θ
H

+ cos2 θ (C(X0, X0) − g(I�(V0, V0), N ) − τ(X0 + V0)) ≤ a

cos θ
, (14)

where θ is the g̃-angle between Tp� and Sp and V0 = −P�(ζ ) and X0 = PS(V0)
where P� and PS are defined in (10).

Then, � coincides with the leaf S and H = a in a neighborhood of p0.

This proposition is not directly applicable because to check inequality (14), we
have to know X0 and V0, but recall that X0 = 0 if and only if � is tangent to the
screen distribution and this is just the conclusion that we want to obtain. However,
under some additional hypotheses we can avoid this issue, as in the following theorems
which are the main results of this paper.

Theorem 1 Let L be a null hypersurface of a Lorentzian manifold, ζ a rigging vector
field for it and � a spacelike totally geodesic codimension two submanifold of M
through L. Take a point p0 ∈ � and let S be the leaf of the screen distribution through
p0. Suppose that

1. ζ is distinguished.
2. ζ is screen conformal.
3. dζ

S ≥ 0 in a neighborhood of p0 in �.
4. H(p) ≥ 0 for all p in a neighborhood of p0 in S.

Then, � coincides with the leaf S in a neighborhood of p0.

Proof Being ζ screen conformal and distinguished, we have from Lemma 2 that dω =
0. Since � is totally geodesic, we have from Eq. (11) that B(U , V ) = 0 for all
U , V ∈ X(�) and H(p) = 0 for all p ∈ �. Thus, B(X0, X0) = B(V0, V0) = 0 and
so the left side of inequality (14) is zero. Now, we apply Proposition 5 with a = 0. ��
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Theorem 2 Let L be a null hypersurface of a Lorentzian manifold, ζ a rigging vector
field for it and � a spacelike totally umbilical codimension two submanifold of M
through L. Take a point p0 ∈ � and let S be the leaf of the screen distribution through
p0. Suppose that

1. ζ is distinguished.
2. ζ is screen conformal with conformal factor ϕ.
3. dH = cω for some non-positive function c ∈ C∞(L).
4. dζ

S ≥ 0 in a neighborhood of p0 in �.
5. H(p0) ≤ 0.
6. g(H�, N ) ≤ ϕH in a neighborhood of p0 in �.

Then, � coincides with the leaf S in a neighborhood of p0.

Proof We know that dω = 0 from Lemma 2. Since I� = H�

n−2g and g(V0, V0) =
g(X0, X0) = tan2 θ , then from Eqs. (11) and (13), we get B(X0, X0) = B(V0, V0) =
tan2 θ
n−2 H . Therefore, the left side of inequality (14) is

g(H�, N ) − ϕH − tan2 θ

n − 2
H + 1

cos2 θ
H + ϕ sin2 θ

n − 2
H − sin2 θ

n − 2
g(H�, N )

=
(
1 − sin2 θ

n − 2

)
(g(H�, N ) − ϕH) +

(
1

cos2 θ
− tan2 θ

n − 2

)
H

≤
(
1 + (n − 3) tan2 θ

n − 2

)
H .

Since dH = cω with c ≤ 0, the null mean curvature is constant through the leaves
of the screen distribution and it is decreasing along the integral curves of ξ . Thus,
since dζ

S (p) ≥ 0 for all p in a neighborhood of p0 in �, then it holds H(p) ≤ H(p0)
and the above expression is

≤
(
1 + (n − 3) tan2 θ

n − 2

)
H(p0).

Finally, since H(p0) ≤ 0 and 1
cos θ

≤ 1 + (n−3) tan2 θ
n−2 (to check this last inequality

just observe that 1 − 1
cos θ

+ (n−3) tan2 θ
n−2 is non-decreasing for θ ∈ [0, π

2 ) and it takes
the value zero when θ = 0), we get

(
1 + (n − 3) tan2 θ

n − 2

)
H(p0) ≤ 1

cos θ
H(p0).

Now, apply Proposition 5 with a = H(p0) to obtain the result. ��
Using Lemma 1, it is easy to check that if we change the sign of the rigging vector

field, then conditions 1, 2 and 3 of the above theorem still hold, but the inequalities

123



Codimension Two Spacelike Submanifolds Through a Null… 2265

in conditions 4, 5 and 6 change. On the other hand, recall that if ξ is geodesic, i.e.,
τ(ξ) = 0, using the null Raychaudhuri equation

dH(ξ) = ξ(H) = Ric(ξ, ξ) + tr((A∗)2) ≥ Ric(ξ, ξ).

Thus, if Ric(ξ, ξ) ≥ 0 and H is not constant, condition 3 can not hold. This is why
Theorem 2 cannot be used, for example, in the case of a null cone in a constant
curvature Lorentzian manifold.

Corollary 1 Let L be a null hypersurface with zero null mean curvature of a Lorentzian
time-orientable manifold and ζ a rigging vector field for it such that:

1. ζ is distinguished.
2. ζ is screen conformal.
3. ξ is future-pointing.

Suppose that � is a spacelike totally umbilical codimension two submanifold of M
through L. If dζ

S ≥ 0 in a neighborhood of a point p0 ∈ �, where S is the leaf of the
screen distribution through p0, then � is not past weakly trapped

Proof If H� is causal and past-pointing, then g(H�, N ) ≤ 0 and from Theorem 2,
� coincides with the leaf S in a neighborhood of p0. Using (8) and C = ϕB, we get
H� = 0, which is a contradiction. ��

We can avoid the hypothesis about dζ
S in Theorem 2 as follows.

Corollary 2 Let L be a null hypersurface of a Lorentzian manifold, ζ a rigging vector
field for it and � a spacelike totally umbilical codimension two submanifold of M
through L. Take a point p0 ∈ � and suppose that

1. ζ is distinguished.
2. ζ is screen conformal with conformal factor ϕ.
3. dH = cω for some negative function c ∈ C∞(L).
4. H restricted to � attains a local maximum at p0.
5. H(p0) ≤ 0.
6. g(H�, N ) ≤ ϕH in a neighborhood of p0 in �.

Then, � coincides with a leaf of the screen distribution in a neighborhood of p0.

Proof The null mean curvature H is strictly decreasing along the integral curves of ξ

because the function c is negative. Since H is constant through the leaves of the screen
distribution and H |� attains a local maximum at p0, then d

ζ
S ≥ 0 in a neighborhood of

p0 in�, being S the leaf of the screen distribution through p0. Now, apply Theorem 2.
��

Corollary 3 Let L be a null hypersurface of a Lorentzian manifold and ζ a rigging
vector field for it such that

1. ζ is distinguished.
2. ζ is screen conformal with conformal factor ϕ.
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3. dH = cω for some negative function c ∈ C∞(L).
4. H ≤ 0.

If � is a compact spacelike totally umbilical codimension two submanifold of M
through L such that g(H�, N ) ≤ ϕH for all p ∈ �, then � coincides with a leaf of
the screen distribution.

Theorem 3 Let L be a totally geodesic null hypersurface of a Lorentzian manifold
and ζ a rigging for it such that

1. ζ is distinguished.
2. The screen is totally umbilical.

Suppose that � is a spacelike totally umbilical codimension two submanifold of M
through L and there is a point p0 ∈ � such that dζ

S ≥ 0 in a neighborhood of p0 in
�, where S is the leaf of the screen distribution through p0.

If g(H�, ζ ) ≤ � in a neighborhood of p0, then � coincides with the leaf S of the
screen distribution in a neighborhood of p0.

Proof From Lemma 2, we have that dω = 0. The left side of inequality (14) is

(
1 − sin2 θ

n − 2

)
(g(H�, N ) − �) .

Since L is totally geodesic, g(H�, N ) = g(H�, ζ ) and we can apply Proposition 5
with a = 0. ��

The conditions of being screen conformal and distinguished assumed above are
intended to simplify the geometric objects involved in a null hypersurface. They mean
that the extrinsic geometry of the null hypersurface L and that of the leaves of the
screen distributions as submanifolds of the ambient space M , are codified by the same
tensor B, see Eqs. (4) (5) and (6). On the other hand, conditions 3, 5 and 6 in Theorem 2
are imposed to get the inequality between the mean curvature H̃� and H in order to
apply the Eschenburg maximum principle. If one of them is not fulfilled, then the
inequalities sequence in the proof is broken and we cannot get the conclusion.

An example is the following. Consider L
3 = (

R
3,−dt2 + dx2 + dy2

)
, L =

{(t, x, y) ∈ R
3 : t = x} a totally geodesic null plane and the rigging ζ = −∂t .

The leaf S of the screen distribution through the origin is the z-axis. If we take� some
curve with dζ

S ≥ 0 and tangent to S at the origin, then it is totally umbilic because it
is one-dimensional and all conditions in Theorem 2, except condition 6, are fulfilled,
obtaining a counterexample in this case.

Certainly, we need to assume many conditions in the above results, but there are
examples where we can apply them.

Example 1 Let (F, g0) be a Riemannian manifold with dimension n − 1 and define a
generalized Robertson–Walker space

(M, g) =
(
I × F,−dt2 + φ(t)2g0

)
.
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Suppose that (F, g0) can be decomposed as awarped product with one-dimensional
base, (F, g0) = (J ×K , ds2+μ(s)2h0), where J ⊂ R and (K , h0) are a Riemannian
manifold. The hypersurface L given by

L =
{
(t, s, x) ∈ I × J × K : s =

∫ t

t∗

1

φ(r)
dr

}

for some fixed t∗ ∈ I is a totally umbilical null hypersurface, i.e., B = H
n−2g, [10].

Moreover, if we consider the rigging vector field ζ = φ∂t , then the null mean curvature
is

H(t,s,x) = n − 2

φ(t)2

(
φ′(t) + μ′(s)

μ(s)

)
. (15)

Since ζ is a closed and conformal vector field, then ∇U ζ = 	′U for allU ∈ X(M)

and from Proposition 1 we have that

C =
(

Hφ2

2(n − 2)
− φ′

)
g,

� = Hφ2

2
− (n − 2)φ′,

τ = 0.

Therefore, the rigging vector field ζ is distinguished and if H �= 0, then it is also
screen conformal with factor

ϕ = φ2

2
− (n − 2)φ′

H
.

On the other hand, the leaf of the screen distribution through a point p0 =
(t0, s0, x0) ∈ L is given by S = {(t, s, x) ∈ I × J × K : t = t0, s = s0}, thus
from Eq. (15) we see that H is constant on the leaves and then dH = cω for some
c ∈ C∞(L).

Since ξ = − 1
φ
∂t − 1

φ2 ∂s , if we fix p0 ∈ L and S the leaf through p0, the condition

dζ
S (p) ≥ 0 is equivalent to t(p) ≤ t(p0), where t : M → R is the canonical projection

onto the first factor. Moreover, the transverse vector field is N = 1
2 (φ∂t − ∂s).

Weparticularize the above situation to the case of theLorentzianmanifold (M, g) =(
R × H

n−1,−dt2 + g0
)
. The hyperbolic space H

n−1 can be decomposed as

(
R × R

n−2, ds2 + e−2sh0
)

,

being h0 the Euclidean metric. The null hypersurface L is given in this case by

L = {(t, t, x) : t ∈ R, x ∈ R
n−2}
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and its null mean curvature respect to the rigging vector field ζ = ∂t is H = 2 − n.
Therefore, conditions 1, 2 and 3 in Theorem 2 are fulfilled and we can apply it to get
the following.

Suppose that � is a codimension two totally umbilic spacelike hypersurface in
R × H

n−1 contained in L = {(t, t, x) : t ∈ R, x ∈ R
n−2}. If there is a point

p0 = (t0, t0, x0) ∈ � such that t(p) ≤ t0 and g(H�, ∂t − ∂s) ≤ 2 − n for all p in a
neighborhood of p0 in �, then � is locally contained in {(t0, t0, x) : x ∈ R

n−2}.
Example 2 Let � > 0 be a constant and Q = {(u, v) ∈ R

2 : − 2�
e < uv}. Take

the functions F(r) = 8� 2

r e1− r
2� , f (r) = (r − 2�)e

r
2� −1 for 0 ≤ r and r(u, v) =

f −1(uv) for (u, v) ∈ Q. The Kruskal space is the product Q × S
n−2 endowed with

the metric

2F(r)dudv + r2g0,

where g0 is the standard metric in S
n−2. We call u, v : Q × S

n−2 → R the canonical
projections. The hypersurface

L = {p ∈ Q × S
n−2 : u(p) = 0}

is a null hypersurface, and ζ = ∂u is a rigging vector field for it. The rigged vector
field is ξ = 1

F ∂v and the null transverse vector field is N = ζ . Observe that dω = 0,
although ζ is not closed, and the leaf of the screen distribution through a point p0 =
(0, v0, x0) ∈ L is S = {(0, v0, x) : x ∈ S

n−2}. Therefore, in this case, the condition
dζ
S (p) ≥ 0 is equivalent to v(p0) ≤ v(p).
A direct computation shows that L is totally geodesic.Moreover, using that r = 2�

through L and Proposition 1, we have

τ = 0,

C = − v

2�
g,

� = − (n − 2)v

2�
.

Using Theorem 3, if � is a codimension two spacelike totally umbilical submanifold
contained in L and p0 ∈ � holds v(p0) ≤ v(p) and g(H�, ∂u) ≤ 2−n

2� v for all p in a
neighborhood of p0 in �, then � is locally contained in the sphere {p ∈ Q × S

n−2 :
u(p) = 0, v(p) = v(p0)}.

We can give another result ensuring the coincidence of a codimension two spacelike
submanifold and a leaf of the screen without using the rigged metric, but we have to
suppose that the null hypersurface has zero null mean curvature and that it exists a
rigging vector fieldwhich is a gradient. In this case, the screen distribution is integrable
and the leaves are given by the intersection of the level hypersurfaces of the function
and the null hypersuperface.
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Proposition 6 Let L be a null hypersurface with zero null mean curvature and f ∈
C∞(M) a function such that ζ = ∇ f is a distinguished rigging vector field for L. If
� is a codimension two spacelike submanifold through L and p0 ∈ � is a point such
that

f (p0) ≤ f (p),

g(H�,∇ f ) + � f + ξg(∇ f ,∇ f ) ≤ 0

for all p in a neighborhood of p0 in �, then � coincides with a leaf of the screen
distribution in a neighborhood of p0.

Proof If we call i : � → M the canonical inclusion, then ∇ f = ∇�( f ◦ i) +
g(∇ f , η)ξ + η. Take {e1, . . . , en−2} an orthonormal basis of Tp�. We have

��( f ◦ i) =
n−2∑

i=1

g(∇ei∇�( f ◦ i), ei ) =
n−2∑

i=1

g(∇ei (∇ f − g(∇ f , η)ξ − η) , ei )

=
n−2∑

i=1

g(∇ei∇ f , ei ) − g(∇ f , η)g(∇ei ξ, ei ) − g(∇ei η, ei )

=
n−2∑

i=1

g(∇ei∇ f , ei ) + g(∇ f , η)H + g(H�, η).

Since we are assuming that H = 0, then H� = tr� Aη · ξ and so g(H�, η) =
g(H�,∇ f ). Therefore,

��( f ◦ i) = � f + 2g(∇η∇ f , ξ) + g(H�,∇ f ).

Since τ = 0, using Eqs. (1) and (9) and Proposition 1, we get that

2g(∇η∇ f , ξ) = 2g(∇∇ f ∇ f , ξ) = 2g(∇ξ∇ f ,∇ f ) = ξg(∇ f ,∇ f ).

Therefore, f ◦ i has a minimum at p0 and ��( f ◦ i) ≤ 0, so f ◦ i is constant in a
neighborhood of p0, i.e., � coincides with the leaf of the screen distribution induced
from ∇ f in a neighborhood of p0. ��
Example 3 A plane fronted wave is the Lorentzian manifold M = M0 × R

2 endowed
with the metric

g = g0 + 2dudv + φ(x, u)du2,

where (M0, g0) is a Riemannian manifold and φ : M0 × R → R is some function. It
holds that ∂v is a parallel null vector field in M .

Call u, v : M → R the canonical projections. We have that

Lu0 = {p ∈ M : u(p) = u0}
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is a totally geodesic null hypersurface for all u0 ∈ R. The vector field ζ = ∇v =
∂u − 	∂v is a rigging vector field for Lu0 , and its rigged vector field is ξ = ∂v .
Moreover, τ = 0 and the leaf of the screen distribution through a point p0 ∈ Lu0 is
Sp0 = {p ∈ M : u(p) = u0, v(p) = v(p0)}.

Since �v = 0 and ∂v (g(∇v,∇v)) = 0, from the above proposition, if � is a
codimension two spacelike submanifold contained in Lu0 and there is a point p0 ∈ �

such that v(p0) ≤ v(p) and g(H�, ∂u) ≤ 0 for all p in a neighborhood of p0 in �,
then � is locally contained in Sp0 .

Example 4 Suppose that L is a null hypersurface with zero null mean curvature in a
generalized Robertson–Walker space (M, g) = (

I × F,−dt2 + φ(t)2g0
)
.

We call f : M → R the function given by f (p) = − ∫ t(p)
c φ(s)ds, being c ∈ I a

fixed point and t : M → R the canonical projection. We know that ζ = ∇ f = φ∂t is
a distinguished rigging vector field for L . Since � f + ξ(g(∇ f ,∇ f )) = (n − 2)φ′,
Proposition 6 implies that if � is a codimension two spacelike submanifold through
L and p0 ∈ � holds t(p) ≤ t(p0) and g(H�, ∂t ) ≤ − (n−2)φ′

φ
in a neighborhood of

p0 in �, then � is contained in the slice t = t(p0) in a neighborhood of p0.
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