
Bull. Malays. Math. Sci. Soc. (2021) 44:2005–2019
https://doi.org/10.1007/s40840-020-01045-z

Approximation by Modified Meyer–König and Zeller
Operators via Power Series Summability Method

Naim L. Braha1 · Toufik Mansour2 ·M. Mursaleen3,4

Received: 16 June 2020 / Revised: 7 October 2020 / Accepted: 26 October 2020 /
Published online: 9 November 2020
©Malaysian Mathematical Sciences Society and Penerbit Universiti Sains Malaysia 2020

Abstract
In this paper, we study the Korovkin-type theorem for modified Meyer–König and
Zeller operators via A-statistical convergence and power series summability method.
The rate of convergence for this new summability methods is also obtained with
the help of the modulus of continuity. Further, we establish Voronovskaya-type and
Grüss–Voronovskaya-type theorems for A-statistical convergence.
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1 Introduction

The asymptotic density of A ⊆ N (the set of all natural numbers) is defined by

δ(A) = lim
p

1

p
|{r ≤ p : r ∈ A}|,

where |.| denotes the cardinality of the enclosed set. A sequence ξ = (ξr ) is said to
be statistically convergent (see [15]) to the number L if δ(A(ε)) = 0 for each ε > 0,
where

A(ε) = {r≤p : |ξr−L| > ε}
and we write st- lim ξ= L. Note that every convergent sequence is statistically con-
vergent but not conversely.

Let A = (anj ) be an infinite matrix and x = (x j ) be a sequence. If the series

(Ax)n =
∑

j

anj x j

converge for every n ∈ N, then we say that (Ax)n is the A-transform of the sequence
x = (xn). If the (Ax)n converges to a number L , we say that x is A-summable to L .
The summability matrix A is regular whenever lim

j
x j = L; then, lim

n
(Ax)n = L .

Let A = (anj ) be a nonnegative regular summabilitymatrix. The sequence x = (x j )
is said to be A-statistically convergent (see [16]) to real number L if for any ε > 0,

lim
n

∑

j :|x j−L|≥ε

anj = 0.

In this case, we write stA − lim x = L. The A-statistical convergence is generalization
of the statistical convergence (see [10,30]).

The second summability method which is used in this paper is power summability
method. Let (p j ) be a real sequence with p0 > 0 and p1, p2, . . . ≥ 0, and such that
the corresponding power series p(t) = ∑∞

j=0 p j t j has radius of convergence R with
0 < R ≤ ∞. If, for all t ∈ (0, R),

lim
t→R−

1

p(t)

∞∑

j=0

x j p j t
j = L,

then we say that x = (x j ) is convergent in the sense of power series method (see
[19,33]). Power series method includes many known summability methods such as
Abel and Borel. Both methods have in common that their definitions are based on
power series and they are not matrix methods (see [4,7,36]). Note that the power
series method is more affective than ordinary convergence (see [35]).
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Approximation by Modified Meyer–König and Zeller… 2007

Note that the power series method is regular if and only if limt→R− p j t j

p(t) = 0 holds
for each j ∈ {0, 1, 2, 3, . . .} (see [6]). Throughout the paper, we assume that power
series method is regular.

It is known that A-statistical convergence is generalization of the statistical con-
vergence as it is shown in Example 1.1 of [11]. In this paper, we will prove the
Korovkin-type theorem for the modified Meyer–König and Zeller operators via A-
statistical convergence and power summability method. Then, we present the rate of
the convergence related to the above summability methods. In the last sections, we
give a kind of Voronovskaya-type theorem for A-statistical convergence and Grüss–
Voronovskaya-type theorem.

The modifiedMeyer–König and Zeller operators introduced by Cardenas et al. [13]
are defined by

Rn( f , x) =
∞∑

k=0

f

(√
k(k − 1)

(n + k)(n + k − 1)

) (
n + k

k

)
xk(1 − x)n+1, (1.1)

for x ∈ [0, 1].
The first fewmoments of the modifiedMeyer–König and Zeller operators are given

in the following lemma.

Lemma 1.1 (see [13])We have

(1) Rn(e0, x) = 1,
(2) Rn(e2, x) = x2,

(3) Rn(e4, x) = 4nx3
(n+2)(n+3) + n2(n+1)x4

(n+2)(n+3)(n+4) + 4n3x5
(n+2)(n+3)(n+4)(n+5) + O(n−2).

An estimation related to the Rn(e1, x) is given in [31].

Lemma 1.2 (see [31]) For all n ∈ N and x ∈ [0, 1), we have

x − 1 − x

n
≤ Rn(e1, x) ≤ x + x(1 + x)

n
.

Now, we can prove the estimation for the central moments for the modified Meyer–
König and Zeller operators.

Proposition 1.3 The estimations for the central moments for modified Meyer–König
and Zeller operators are given by

Rn((t − x), x) ≤ x(1 + x)

n
,

Rn((t − x)2, x) ≤ 2x(1 − x)

n
,

Rn((t − x)4, x) ≤ 4n3

(n + 2)(n + 3)(n + 4)(n + 5)
x5 +

(
n2(n + 1)

(n + 2)(n + 3)(n + 4)
− 4

n
+ 3

)
x4

+
(
4

n
+ 4n

(n + 2)(n + 3)

)
x3 − 1

4n2

(
1

n
+ 1

)
x2 + 1

4n3
x + O

(
1

n2

)
,

123



2008 N. L. Braha et al.

Rn((t − x)6, x) ≤
(

60n3
∏5

j=2(n + j)
+ 12n12

(n + 1)
∏7

j=2(n + j)2

)
x7

+
(

15n2(n + 1)
∏4

j=2(n + j)
− 6

n
+ n10(n + 17)

(n + 1)
∏6

j=2(n + j)2
+ 10

)
x6

+
(
6

n
+ 60n

(n + 2)(n + 3)
+ 12n8

(n + 1)
∏5

j=2(n + j)2

)
x5 − 5

( 1
n + 1

)

4n2
x4

+ 5

4n3
x3 − 3

( 1
n + 1

)

8n4
x2 + 3

8n5
x + O

(
1

n2

)
,

for every x ∈ [0, 1).
Proof Let us start from the first central moment. From Lemma 1.2, we get that

Rn((t − x), x) = Rn(t, x) − x Rn(1, x) ≤ x + x(1 + x)

n
− x .

For the second centralmoment, based onLemmas 1.1 and 1.2, we have this estimation:

Rn((t − x)2, x) = Rn(t
2, x) − 2x Rn(t, x) + x2Rn(1, x) ≤ x2 − 2x

[
x − 1 − x

n

]
+ x2

= 2x(1 − x)

n
.

And now we will estimate the third central. Firstly, we will give estimation for
Rn(e3, x):

Rn(e3, x) =
∞∑

k=0

(
k(k − 1)

(n + k)(n + k − 1)

) 3
2
(
n + k

k

)
xk(1 − x)n+1.

By the fact that
(

k(k − 1)

(n + k)(n + k − 1)

) 3
2 ≤ k3

(n + k − 1)3
,

for every k ∈ {0, 1, 2, 3 . . .} and n ∈ N, we have

Rn(e3, x) =
∞∑

k=0

(
k(k − 1)

(n + k)(n + k − 1)

) 3
2
(
n + k

k

)
xk(1 − x)n+1

≤
∞∑

k=1

k3

(n + k − 1)3

(
n + k

k

)
xk(1 − x)n+1

≤
∞∑

k=1

k

(n + k − 1)

(
n + k

k

)
xk(1 − x)n+1 = x + x(1 − x)

n
.
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On the other hand, for k ∈ {0, 1, 2, 3, . . .} and n ∈ N, we have

√
k(k − 1)

(n + k)(n + k − 1)
≥ (k − 1)

(n + k)
,

which implies

Rn(e3, x) =
∞∑

k=0

(
k(k − 1)

(n + k)(n + k − 1)

) 3
2
(
n + k

k

)
xk(1 − x)n+1

≥
∞∑

k=1

k − 1

n + k

(
k − 1

n + k

)2 (
n + k

k

)
xk(1 − x)n+1

For k ≥ 2 and n ≥ 3, the following inequality holds:

(k − 1)2

(n + k)2
≥ 1

16n2
,

from which we obtain

∞∑

k=2

k − 1

n + k

(
k − 1

n + k

)2 (
n + k

k

)
xk(1 − x)n+1 ≥ 1

16n2

[
x − 1 − x

n

]
.

By Corollary 3.3 in [13], we have that Rn(e0, x) = 1, Rn(e2, x) = x2 and

Rn(e4, x) = 4nx3

(n + 2)(n + 3)
+ n2(n + 1)x4

(n + 2)(n + 3)(n + 4)

+ 4n3x5

(n + 2)(n + 3)(n + 4)(n + 5)
+ O(1/n2).

Hence,

Rn((t − x)4, x) = Rn(e4, x) − 4x Rn(e3, x) + 6x2Rn(e2, x) − 4x3Rn(e1, x) + x4

≤ 4n3

(n + 2)(n + 3)(n + 4)(n + 5)
x5 +

(
n2(n + 1)

(n + 2)(n + 3)(n + 4)
− 4

n
+ 3

)
x4

+
(
4

n
+ 4n

(n + 2)(n + 3)

)
x3 − 1

4n2

(
1

n
+ 1

)
x2 + 1

4n3
x + O

(
1

n2

)
,

as required. In similar way, we can get the estimation for the Rn((t − x)6, x). �	
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Corollary 1.4 For the fourth and sixth central moment for modified Meyer–König and
Zeller operators are valid the following relations

Rn((t − x)4, x) = O

(
1

n3

)
and Rn((t − x)6, x) = O

(
1

n5

)
,

for every x ∈ [0, 1).
The theory of Korovkin-type theorems was studied in several function spaces, and

further details reader can find in those papers (see [2,7–9,12,14,19,21,32,35–37]). In
what follows, we define the following power series for sequence of operators Rn

lim
t→R−

1

p(t)

∞∑

n=0

Rn( f , x)pnt
n = L,

and say that sequence of operators (Rn) converges to L in the sense of power series,
for every t ∈ (0, R), if the above series converges.

2 Korovkin-Type Results

In this section we obtain A-statistical convergence of the modified Meyer–König and
Zeller operators to the identity operator. The Korovkin-type theorem for A-statistical
convergence was given as follows. Let B[0, 1) be the space of all bounded functions
on the interval [0, 1) and C[0, 1) be the space of all continuous functions defined in
the interval [0, 1) (similarly, we define B[0, 1] and C[0, 1]).
Theorem 2.1 (see [14]) Let A = (anj ) be a nonnegative regular summability matrix
and let (Bj ) be a sequence of positive linear operators on C[0, 1] such that for i =
0, 1, 2,

stA − lim
n

||Bjei − ei || = 0.

Then for any f ∈ C[0, 1],

stA − lim
n

||Bj f − f || = 0,

where || f || = max
0≤t≤1

| f (t)| for any f ∈ C[0, 1].

Based on the above theorem, we give the following result for the modified Meyer–
König and Zeller operators.

Theorem 2.2 Let A = (anj ) be a nonnegative regular summability matrix and let (Rn)

be a sequence of positive linear operators (1.1) on C[0, 1) such that for i = 1, 2,

stA − lim
n

||Rnei − ei || = 0.
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Then,
stA − lim

n
||Rn f − f || = 0,

for any f ∈ C[0, 1), where || f || = max
0≤t<1

| f (t)| for any f ∈ C[0, 1).

Proof Proof of the theorem follows directly from Lemmas 1.1, 1.2 and Theorem 2.1.
�	

Our theorem is an extension of Theorem 2.2 given in [31].

Example 2.3 Let us define the following type of operators

Pn( f ; x) = (1 + xn)Rn( f ; x),

where sequence (xn) is defined as in Example 1.1 in [11]. Then, the following relations
are fulfilled

Pn(e0; x) = (1 + xn),

(1 + xn)

(
x − 1 − x

n

)
≤ Pn(e1, x) ≤ (1 + xn)

(
x + x(1 + x)

n

)

and
Pn(e2; x) = (1 + xn)x

2.

By Theorem 2.2, we obtain that

stA − lim
n

||Pn f − f || = 0.

But the above-defined operators, Pn( f ; x), do not satisfy Theorem 2.2, in [31].

Now, we give a Korovkin-type theorem for the modified Meyer–König and Zeller
operators, by power seriesmethod. It is known thatKorovkin-type theorems are proved
by Abel summability method (for example, see [32,37]). For more on Korovkin-type
approximation theorems in different settings, we refer to [1,5,20,22–29].

Theorem 2.4 Let (Rn) be a sequence of positive linear operators (1.1) from C[0, 1)
into B[0, 1). Then for any f ∈ C[0, 1), we have

lim
t→R−

1

p(t)

∥∥∥∥∥

∞∑

n=0

Rn(ei , x)pnt
n − ei

∥∥∥∥∥ = 0, i = 0, 1, 2, (2.1)

if and only if

lim
t→R−

1

p(t)

∥∥∥∥∥

∞∑

n=0

Rn( f , x)pnt
n − f

∥∥∥∥∥ = 0. (2.2)

Proof Proof of the theorem is similar to the proof of Theorem 1 of [34], and we omit
it. �	
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3 Rate of Convergence

In this section, we study the rate of A−statistical convergence for the modified
Meyer–König and Zeller operators via power series summability method.We begin by
presenting the following facts. The modulus of continuity for function f (x) ∈ C[0, 1)
is defined as follows:

ω( f , δ) = sup
|h|<δ

| f (x + h) − f (x)|.

It is well known that

| f (x) − f (y)| ≤ ω( f , δ)

( |x − y|
δ

+ 1

)
. (3.1)

So, we have the following result.

Theorem 3.1 Let A = (anj ) be a nonnegative regular summability matrix and f ∈
C[0, 1). If (αn) is a sequence of positive real numbers such that ω( f , δn) = stA −
o (αn) , then

||Rn f − f || = stA − o(αn),

where

δn = sup
0≤x<1
n∈N

{
2x(1 − x)

n

}2

.

Proof Taking into consideration the linearity and positivity of Rn f and relation (3.1),
we have

|Rn( f ; x) − f | ≤ Rn(| f (t) − f (x)|; x) ≤ ω( f , δ)Rn

(
1 + |t − x |

δ

)

Applying Cauchy–Schwarz inequality in the last expression, we get

|Rn( f ; x) − f | ≤ ω( f , δ)

[
1 + 1

δ

(
Rn

(
|t − x |2 ; x

)) 1
2
]

.

On the other hand, by Lemma 1.1, we obtain

Rn

(
|t − x |2 ; x

)

= Rn(t
2; x) − 2x Rn(t; x) + x2Rn(e0; x)

≤ 2x(1 − x)

n
,
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for every x ∈ [0, 1). Taking

δn = sup
0≤x<1
n∈N

{
2x(1 − x)

n

}2

,

we get that ||Rn f − f || ≤ 2 · ω( f , δn). Therefore for every ε > 0, is valid the
following relation

1

αn

∑

||Rn f − f ||≥ε

anj ≤ 1

αn

∑

2·ω( f ,δn)≥ε

anj .

From conditions given in the theorem, we have that ||Rn f − f || = stA − o(αn), as
desired. �	

In what follows, we give the rate of convergence for power series summability
method.

Theorem 3.2 Let f ∈ C[0, 1) and let φ be a positive real function defined on [0, 1).
If ω( f , ψ(t)) = o(φ(t)) as t → R−, then we have

1

p(t)

∥∥∥∥∥

∞∑

n=0

(Rnei − ei )pnt
n

∥∥∥∥∥ = o(φ(t)),

i.e.,

lim
t→R−

1

φ(t)p(t)

∥∥∥∥∥

∞∑

n=0

(Rnei − ei )pnt
n

∥∥∥∥∥ = 0,

where the function ψ : (0, 1) → R is defined by

ψ(t) =

⎧
⎪⎨

⎪⎩
sup

0≤x<1
n∈N

{Rn((t − x)2; x)}

⎫
⎪⎬

⎪⎭

1
2

.

Proof We omit it, because it is similar to proof of Theorem 3.2 of [10]. �	

4 Voronovskaya-Type Theorem

In [3,18], the following Voronovskaya theorem for the Meyer–König and Zeller oper-
ators Mn( f , t) states as:

Theorem 4.1 (see [3,18]) Let f be continuous and have second derivatives on [0,∞).

Then,

lim
n→∞ n[(Mn( f , t) − f (t))] = t(1 − t)2

f ′′(t)
2

.
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2014 N. L. Braha et al.

In [13] is proven the Voronovskaya-type theorem for the modified Meyer–König
and Zeller operators, as follows:

Theorem 4.2 For all f ∈ C[0, 1]and x ∈ (0, 1), whenever f ′′(x) exists,

lim
n→∞ n[Rn( f , x) − f (x)] = − (1 − x)2

2
f ′(x) + x(1 − x)2

s
f ′′(x).

In what follows, we will prove its A-statistically version of it, in the interval [α, 1) ,

where α > 0. First, we prove this.

Lemma 4.3 For every y ∈ [0, 1) , and for every x ∈ [0, 1) , we have

Pn(

4) ∼ K (x)(stA) on [0, 1) ,

where 
x (y) = (y − x) and K depends only from x .

Proof Proof of the Lemma follows directly from Proposition 1.3. �	
Theorem 4.4 Let f ∈ C [α, 1) , such that f ′, f ′′ ∈ C [α, 1) , and x ∈ [α, 1) for any
α = 1

B > 0, for enough big B. Then,

|Pn f − f | ∼
∣∣∣∣[Pn( f , x) − f (x)] − Bx f ′(x) − 2B

x2 · f ′′(x)
2

∣∣∣∣ (stA),

on x ∈ [α, 1).

Proof Let us suppose that f ′, f ′′ ∈ C [α, 1) and x ∈ [α, 1) .Without lose of generality,
we can put α = 1

B > 0, for enough big constant B. By the Taylor’s formula, we have:

f (y) = f (x) + (y − x) f ′(x) + 1

2
(y − x)2 f ′′(x) + (y − x)2ψx (y), (4.1)

where

ψx (y) =
{

f (y)− f (x)−(y−x) f ′(x)− 1
2 (y−x)2 f ′′(x)

(y−x)2
for x �= y

o x = y.

We know that
Pn(1; x) = (1 + xn).

And under conditions given in the theorem, we have that:

(1 + xn)
(
−Bx + x

n

)
≤ Pn((y − x); x) ≤ (1 + xn)

x(x + 1)

n
≤ (1 + xn)

(
Bx + x2

n

)
,

(1 + xn)

(
−2Bx2 − 2x3

n

)
≤ Pn((y − x)2; x) ≤ (1 + xn)

(
2Bx2 − 2x2

n

)
.
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After operating in both sides of the relation (4.1), from the operator Pn, we obtain

Pn( f ) ≤ (1 + xn) f (x) + (1 + xn) f
′(x)

(
Bx + x2

n

)

+ (1 + xn)
f ′′(x)
2

(
2Bx2 − 2x2

n

)
+ (1 + xn)Rn(


2ψx ; x),

which yields

∣∣∣∣[Pn f − f ] − Bx f ′(x) − 2Bx2
f ′′(x)
2

∣∣∣∣

≤ Mxn + M1 · xn
(
Bx + x2

n

)
+ x2

n
M1 + x2

n
M2 + xn

M2

2

∣∣∣∣2Bx
2 − 2x2

n

∣∣∣∣

+|Rn((y − x)2ψx ; x)| + xn|Rn((y − x)2ψx ; x)|, (4.2)

where M = sup | f (x)|, M1 = sup | f ′(x)| and M2 = sup | f ′′(x)|.
After applying the Cauchy–Schwarz inequality in the last term of the relation (4.2),

we find that

∣∣∣Rn((y − x)2ψx ; x)
∣∣∣ ≤

[
Rn(


4; x)
] 1
2 ·

[
Rn(ψ

2
x ; x)

] 1
2
. (4.3)

Also, by putting ηx (y) = (ψx (y))2, we see that ηx (x) = 0 and ηx (·) ∈ C[α, 1)].
Clearly, it follows that

Rn(ηx ) → 0(stA) on [α, 1).

Now from the last relation, relations (4.2), (4.3) and Lemma 4.3, we obtain that

Rn(

2ψx ; x) → 0(stA) on [α, 1). (4.4)

Hence, it is proved theorem. �	

5 Grüss–Voronovskaya-Type Theorems

In this section, we show some kind of Grüss–Voronovskaya-type theorem for the
modified Meyer–König and Zeller operators. This kind of result, for first time, is
shown in [17]. Now, we are ready to prove the following result.

Theorem 5.1 For f , f ′, f ′′ ∈ C[0, 1) and any x ∈ [0, 1). Then,
∣∣∣∣n [Rn( f , x) − f (x)] − n f ′(x)Rn((t − x); x) − n

f ′′(x)
2

Rn((t − x)2; x)
∣∣∣∣

= O(1)ω
(
f ′′, n−1

)
,

as n → ∞.
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Proof Taylor’s theorem shows

f (t) = f (x) + f ′(x)(t − x) + f ′′(x)
2

(t − x)2 + R(t, x),

where R(t, x) = f ′′(θ)− f ′′(x)
2 (t − x)2, for θ ∈ (t, x). Applying in both sides of the

above relation, by operators Rn(·, x), we obtain
∣∣∣∣n [Rn( f , x) − f (x)] − n f ′(x)Rn((t − x); x) − n

f ′′(x)
2

Rn((t − x)2; x)
∣∣∣∣

= nRn(|R(t, x)|, x).

By properties of the modulus of continuity, we have

∣∣∣∣
f ′′(θ) − f ′′(x)

2!
∣∣∣∣ ≤ 1

2!
(
1 + |θ − x |

δ

)
ω( f ′′, δ).

On the other hand,

∣∣∣∣
f ′′(θ) − f ′′(x)

2!
∣∣∣∣ ≤

⎧
⎨

⎩

ω( f ′′, δ) ; |t − x | ≤ δ

(t−x)4

δ4
ω( f ′′, δ) ; |t − x | ≥ δ

For 0 < δ < 1, we obtain that

∣∣∣∣
f ′′(θ) − f ′′(x)

2!
∣∣∣∣ ≤ ω( f ′′, δ)

(
1 + (t − x)4

δ4

)
,

which gives

|R(t, x)| ≤ ω( f ′′, δ)
(
1 + (t − x)4

δ4

)
(t − x)2 = ω( f ′′, δ)

(
(t − x)2 + (t − x)6

δ4

)
.

By the linearity of Rn and the above relation, we obtain

Rn(|R(t, x)|, x) ≤ ω( f ′′, δ)
(
Rn((t − x)2, x) + 1

δ4
Rn((t − x)6, x)

)
.

Taking into consideration Corollary 1.4 and Proposition 1.3, we have

Rn(|R(t, x)|, x) ≤ ω( f ′′, δ)
(
O

(
1

n

)
+ 1

δ4
O

(
1

n5

))
= O

(
1

n

)
ω( f ′′, δ).

For δ = n−1, we complete the proof. �	
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Theorem 5.2 Let f ′, g′, f ′′, g′′, ( f g)′, ( f g)′′ ∈ C[0, 1) and f ′g′ ≥ 0. Then,

−2x2(1 + x) f ′(x)g′(x) ≤ lim
n→∞ n[Rn( f g, x) − Rn( f , x) · Rn(g, x)]

≤ 2x(1 − x) f ′(x)g′(x),

for every x ∈ (0, 1) and for x = 0, we get that

lim
n→∞ n[Rn( f g, x) − Rn( f , x) · Rn(g, x)] = 0.

Proof We know that

n{Rn( f g, x) − Rn( f , x)Rn(g, x)}
= n

{
Rn( f g, x) − ( f g)(x) − ( f g)′(x)Rn((t − x), x) − ( f g)′′(x)

2
Rn((t − x)2, x)

− g(x)

[
Rn( f , x) − f (x) − f ′(x)Rn((t − x), x) − f ′′(x)

2
Rn((t − x)2, x)

]

− Rn( f , x)

[
Rn(g, x) − g(x) − g′(x)Rn((t − x), x) − g′′(x)

2
Rn((t − x)2, x)

]

+ g′′(x)
2

Rn((t − x)2, x)[ f (x) − Rn( f , x)] + f ′(x)g′(x)Rn((t − x)2, x)

− g′(x)Rn((t − x), x)[Rn( f , x) − f (x)]
}
.

From relation

−2x2(1 + x)

n
f ′(x)g′(x) ≤ f ′(x)g′(x)R((t − x)2, x) ≤ 2x(1 − x)

n
f ′(x)g′(x),

and Theorem 5.1, Theorem 2.2 in [31], we get

−2x2(1 + x) f ′(x)g′(x) ≤ lim
n→∞ n[Rn( f g, x) − Rn( f , x) · Rn(g, x)]

≤ 2x(1 − x) f ′(x)g′(x),

for every x ∈ (0, 1). If x = 0, then

lim
n→∞ n[Rn( f g, x) − Rn( f , x) · Rn(g, x)] = 0

as required. �	
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