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Abstract
A set of vertices W of a graph G is a resolving set if every vertex of G is uniquely
determined by its vector of distances to W . In this paper, theMaker–Breaker resolving
game is introduced. The game is played on a graph G by Resolver and Spoiler who
alternately select a vertex of G not yet chosen. Resolver wins if at some point the
vertices chosen by him form a resolving set of G, whereas Spoiler wins if the Resolver
cannot form a resolving set of G. The outcome of the game is denoted by o(G), and
RMB(G) (resp. SMB(G)) denotes the minimum number of moves of Resolver (resp.
Spoiler) to win when Resolver has the first move. The corresponding invariants for
the game when Spoiler has the first move are denoted by R′

MB(G) and S′
MB(G).

Invariants RMB(G), R′
MB(G), SMB(G), and S′

MB(G) are compared among themselves
and with the metric dimension dim(G). A large class of graphs G is constructed for
which RMB(G) > dim(G) holds. The effect of twin equivalence classes and pairing
resolving sets on the Maker–Breaker resolving game is described. As an application,
o(G), as well as RMB(G) and R′

MB(G) (or SMB(G) and S′
MB(G)), is determined for

several graph classes, including trees, complete multi-partite graphs, grid graphs, and
torus grid graphs.

Keywords Resolving set · Metric dimension · Maker–Breaker game ·
Maker–Breaker resolving game · Twin equivalence class , pairing resolving set

Mathematics Subject Classification 05C12 · 05C57 · 05C69
1 Introduction

Let G = (V (G), E(G)) be a finite, simple, undirected, connected graph of order at
least 2. A set W ⊆ V (G) is a resolving set of G if, for every pair of distinct vertices
x and y of G, there exists z ∈ W such that d(x, z) �= d(y, z), where d(u, v) denotes
the shortest-path distance between u and v. The metric dimension dim(G) of G is the
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minimum of the cardinalities over all resolving sets of G. A resolving set of cardinality
dim(G) is called a metric basis for G. These concepts were independently introduced
by Slater [31] and by Harary and Melter [18]. Soon after, it was noted in [13] that
determining themetric dimension of a graph is anNP-hard problem.Metric dimension
has found applications in fields as diverse as robot navigation, network discovery and
verification, chemistry, combinatorial optimization, and strategies for the mastermind
game. See [2,7] for history and surveys and [1,8,25] for some of themore recent results
on metric dimension.

The Maker–Breaker game, introduced in 1973 by Erdős and Selfridge [10], is
played on an arbitrary hypergraph H = (V , E). Two players, named Maker and
Breaker, alternately select a vertex from V not yet chosen in the course of the game.
Maker wins the game if he is able to select all the vertices of one of the hyperedges
from E , while Breaker wins if she is able to prevent Maker from doing so. We refer
to the books of Beck [3] and of Hefetz et al. [19] for more information on this game
as well as to papers [17,27] for recent related developments.

Motivated by the Maker–Breaker game and the domination game [4], Duchêne,
Gledel, Parreau, and Renault introduced the Maker–Breaker domination game [9].
This game is played on a graph G and can be described as the Maker–Breaker game
on the hypergraph with the same vertex set as G and with hyperedges corresponding
to the dominating sets of G. The game was further investigated in [15], while in
[14] its total version was introduced, see also [12]. Inspired by these developments,
we introduce in this paper the Maker–Breaker resolving game (MBRG for short) as
follows.

The MBRG is played on a graph G by two players, Resolver and Spoiler, which
will be denoted throughout the paper by R∗ and S∗, respectively. R∗ and S∗ alternately
select (without missing their turn) a vertex of G that was not yet chosen in the course
of the game. If R∗ is the first to play, we speak of an R-game; otherwise, we have an
S-game. R∗ wins if at some point the vertices R∗ has chosen form a resolving set of G,
whereas S∗ wins if R∗ cannot form a resolving set of G. The outcome of the MBRG
on a graph G is denoted by o(G), and there are four possible outcomes as follows: (1)
o(G) = R, if R∗ has a winning strategy in the R-game and the S-game; (2) o(G) = S,
if S∗ has a winning strategy in the R-game and the S-game; (3) o(G) = N , if the
first player has a winning strategy; (4) o(G) = ˜N , if the second player has a winning
strategy.

Now, suppose a company X tries to secure its network by installing transmitters at
certain locations within the company, so that the robot is aware of its security status
at all times and thus identifying the exact location (or a specific computer with virus
infection) in the network, whereas a rival company Y tries to prevent X from forming
a secure network by occupying or controlling strategic locations or computers within
the network of X . With this application in mind and considering the time constraint
(the longer it takes for a player to win a game, the more it costs for the player), we
introduce the following terminology and notation.

• The Maker–Breaker resolving number RMB(G) of G is the minimum number of
moves of R∗ to win the R-game provided he has a winning strategy. Otherwise,
we set RMB(G) = ∞.

123



Maker–Breaker Resolving Game 2083

• R′
MB(G) is the minimum number of moves of R∗ to win the S-game provided he

has a winning strategy. Otherwise, we set R′
MB(G) = ∞.

• The Maker–Breaker spoiling number SMB(G) of G is the minimum number of
moves of S∗ to win the R-game provided she has a winning strategy. Otherwise,
we set SMB(G) = ∞.

• S′
MB(G) is the minimum number of moves of S∗ to win the S-game provided she

has a winning strategy. Otherwise, we set S′
MB(G) = ∞.

This paper is organized as follows. In the next section we obtain some general results
on the outcome of the MBRG. In Sect. 3 the effect of twin equivalence classes and
pairing resolving sets on the MBRG is described and as an application a large class of
graphs G is constructed for which RMB(G) > dim(G) holds. In Sect. 4 we determine
o(G), as well as RMB(G) and R′

MB(G) or SMB(G) and S′
MB(G), when G is a tree, the

Petersen graph, a bouquet of cycles, a complete multi-partite graph, a grid graph, or a
torus grid graph.

2 Some General Properties of theMBRG

In this section, we compare parameters of the MBRG with the metric dimension,
RMB(G) with R′

MB(G), and SMB(G) with S′
MB(G). Along the way we prove the so-

called No-Skip Lemma for theMaker–Breaker game played on a hypergraph. But first
we comment on the possible outcomes of the MBRG.

Among the four possible outcomes listed in the introduction, the outcome o(G) =
˜N never occurs. This follows from the (No-Skip) Lemma 2.2; note that o(G) = ˜N
implies that the first player gains an advantage by skipping the first move. This also
follows from a result (see [19, Proposition 2.1.6]) on the Maker–Breaker game played
on an arbitrary hypergraph: If Maker has a winning strategy as the second player, then
he also has a winning strategy if he starts the game, and if Breaker has a winning
strategy as the second player, then she also has a winning strategy if she starts the
game. In the case of the Maker–Breaker domination game, this statement and its proof
are given in [9, Proposition 2]. The same argument applies also to the Maker–Breaker
resolving game. The other three possible outcomes in the latter game are realized, as
the reader can verify on the examples given in Fig. 1.

For further examples, note that if n ≥ 2, then o(Pn) = R and RMB(Pn) =
R′
MB(Pn) = dim(Pn) = 1, which is based on the fact that each leaf of the path

Pn forms a metric basis, and thus, R∗ can always select one of them in the first move.
Moreover, since any two vertices ofC3 form ametric basis, it follows that o(C3) = N ,

Fig. 1 Three examples realizing the three outcomes
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and if n ≥ 4, then every pair of adjacent vertices of Cn forms a metric basis for Cn ,
and thus, R∗ can always select one of such bases in the first two steps. This leads to
o(Cn) = R and RMB(Cn) = R′

MB(Cn) = dim(Cn) = 2.
The order of a graph G will be denoted by n(G). We have the following simple

relations between the outcome of the MBRG and the metric dimension.

Proposition 2.1 If G is a connected graph, then the following properties hold.

(i) If o(G) = R, then dim(G) ≤ 
 n(G)
2 �.

(ii) If dim(G) ≥ � n(G)
2 
 + 1, then o(G) = S.

Proof (i) Suppose that o(G) = R and consider the S-game. After the game is
finished, R∗ has clearly selected at most 
 n(G)

2 � vertices. As the set of vertices

selected by R∗ forms a resolving set of G, we conclude that dim(G) ≤ 
 n(G)
2 �.

(ii) Nomatter whether theR-game or the S-game is played, R∗ selects atmost � n(G)
2 


vertices by the end of the game. As dim(G) ≥ � n(G)
2 
 + 1, these vertices do not

form a resolving set of G, hence S∗ wins the R-game as well as the S-game. ��
If n ≥ 4, then dim(Kn) = n−1 ≥ � n

2 
+1; thus, o(Kn) = S by Proposition 2.1(ii).
Similarly, let Bm be the graph obtained fromm ≥ 5 disjoint copies ofC4 by identifying
a vertex from each C4 at a common vertex. Then n(Bm) = 3m + 1 and dim(Bm) =
2m − 1 ≥

⌈

n(Bm )
2

⌉

+ 1; thus, o(Bm) = S by Proposition 2.1(ii).

Next, we compare RMB(G) with R′
MB(G) and SMB(G) with S′

MB(G). To this end,
we consider the possibility that a player is allowed to skip a move; equivalently, a
player allows the other player to select two vertices in one move. The observation that
skipping offers no advantage to a player in the Maker–Breaker domination game was
proved in [15]. We next show that a parallel argument works for the Maker–Breaker
game played on an arbitrary hypergraph.

Lemma 2.2 (No-Skip Lemma) If the Maker–Breaker game is played on a hypergraph
H, then in an optimal strategy of R∗ to win in the minimum number of moves it is
never an advantage for him to skip a move. Moreover, it never disadvantages R∗ for
S∗ to skip a move.

Proof Suppose the R-game or the S-game is played. Let R∗ and S∗ play optimally
until S∗ decides to skip a move. Then R∗ imagines that S∗ played an arbitrary legal
move w, and replies optimally. R∗ continues to use this strategy until the end of the
game. It may happen that in the course of the game S∗ selects a vertex which was
already selected in the imagined game of R∗. In that case, R∗ imagines that some
other legal move has been played by S∗. In this way, the game on G will finish in no
more than the minimum number of moves played in the usual Maker–Breaker game.
With a strategy of S∗ parallel to the above strategy of R∗, it also follows that it is never
an advantage for R∗ to skip a move. ��

No-Skip Lemma quickly implies the announced comparison of RMB(G) with
R′
MB(G) and SMB(G) with S′

MB(G).

Proposition 2.3 If G is a connected graph, then the following properties hold.
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(i) If o(G) = R, then R′
MB(G) ≥ RMB(G) ≥ dim(G).

(ii) If o(G) = S, then SMB(G) ≥ S′
MB(G).

Proof (i) The R-game can be viewed as the S-game in which S∗ has skipped her
first move. Hence the first inequality follows from Lemma 2.2 specialized to the
MBRG. The second inequality follows from the fact that when the MBRG is
finished, the set of vertices selected by R∗ forms a resolving set of G.

(ii) The S-game can be viewed as the R-game in which R∗ has skipped his first
move, and thus, the inequality follows.

��
For the lexicographic product graph G = Cm[K2], where m ≥ 4, we have

dim(G) = RMB(G) = R′
MB(G) = m =

⌊

n(G)
2

⌋

(see [16] for the definition of

the lexicographic product, and [23,30] for studies on the metric dimension in the
lexicographic product of graphs). That is, from [23, Corollary 3.12] for instance, it

follows dim(G) = m =
⌊

n(G)
2

⌋

. Also, from the structure of the graph G, we note

that any set of vertices of cardinality m containing exactly one vertex from each copy
of K2 forms a metric basis for G. This allows to observe that R∗ can always select
such kind of metric basis in the first m moves (independent of the first player), which
proves that dim(G) = RMB(G) = R′

MB(G). This shows the sharpness of the bounds
of Proposition 2.3(i). On the other hand, at the end of Sect. 3 we will construct a large
family of graphs G for which RMB(G) > dim(G) holds.

3 Twin Equivalence Classes and Pairing Resolving Sets

In this section, we consider two concepts that are very useful when dealing with the
MBRG; this fact will be demonstrated in the rest of the paper.

Theopen neighborhood of a vertexv ∈ V (G) is N (v) = {u ∈ V (G) | uv ∈ E(G)}.
Vertices u and v are twins if N (u)\{v} = N (v)\{u}; notice that a vertex is its own
twin. Hernando et al. [20, Lemma 2.7] observed that the twin relation is an equivalence
relation and that an equivalence class under it, hereafter called a twin equivalence class,
induces either a clique or an independent set. We recall the following well-known fact.

Observation 3.1 [20, Corollary 2.4] If W is a resolving set of G and u and v are
distinct members of the same twin equivalence class of G, then W ∩ {u, v} �= ∅.

Here is now a relation of twin equivalence classes with the MBRG.

Proposition 3.2 Let G be a connected graph with n(G) ≥ 4.

(a) If G has a twin equivalence class of cardinality at least 4, then o(G) = S and
SMB(G) = S′

MB(G) = 2.
(b) If G has two distinct twin equivalence classes of cardinality at least 3, then o(G) =

S and SMB(G) = S′
MB(G) = 2.

Proof Let W be a resolving set of G.
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(a) Let Q = {u1, . . . , uk} ⊆ V (G) be a twin equivalence class of G, where k ≥ 4.
Then, |W ∩ Q| ≥ k − 1 by Observation 3.1. Since k ≥ 4, we infer that S∗ can occupy
two vertices of Q after her secondmove, regardless of whether S∗ plays first or second.
So, R∗ can occupy at most k − 2 vertices of Q, and thus, R∗ fails to occupy vertices
that form a resolving set of G. Thus, o(G) = S and SMB(G) = S′

MB(G) = 2.
(b) Let Q′

1 and Q′
2 be different twin equivalence classes of G, each of cardinality at

least 3. Clearly, Q′
1 ∩ Q′

2 = ∅. Let Q1 = {u1, u2, u3} ⊆ Q′
1 and Q2 = {u′

1, u′
2, u′

3} ⊆
Q′

2. Then, |W ∩ Q1| ≥ 2 and |W ∩ Q2| ≥ 2 by Observation 3.1. Note that S∗ can
occupy three vertices of Q1 ∪ Q2 after her third move, regardless of whether S∗ plays
first or second. So, after the thirdmove by S∗, there are the following four possibilities:
(i) S∗ occupies all vertices of Q1; (ii) S∗ occupies two vertices of Q1 and one vertex
of Q2; (iii) S∗ occupies one vertex of Q1 and two vertices of Q2; (iv) S∗ occupies all
three vertices of Q2. In each case, R∗ fails to occupy vertices that form a resolving
set of G. Thus, o(G) = S.

Next, we determine SMB(G) and S′
MB(G). If S∗ plays first, then after her second

move, S∗ can occupy two vertices of Q1. If S∗ plays second, then after her second
move, S∗ can occupy two vertices of Q1 (if R∗ occupies a vertex in Q2 in his first
move) or S∗ can occupy two vertices of Q2 (if R∗ occupies a vertex in Q1 in his first
move). So, SMB(G) = S′

MB(G) = 2. ��
Let [k] denote the set {1, . . . , k}. Let A = {{u1, w1}, . . . , {uk, wk}} be a set of 2-

subsets of V (G) such that | ∪k
i=1 {ui , wi }| = 2k. We say that A is a pairing resolving

set of G if every set {x1, . . . , xk}, where xi ∈ {ui , wi } and i ∈ [k], is a resolving set
of G. We note here that for the Maker–Breaker domination game, a parallel concept
of pairing dominating sets was introduced in [15].

Proposition 3.3 If a graph G admits a pairing resolving set, then o(G) = R.

Proof Let A be a pairing resolving set of G with |A| = k. Regardless of whether
the R-game or the S-game is played, R∗ is guaranteed to select a vertex of each pair
from A after his kth move. Thus, the vertices chosen by R∗, after his kth move, form
a resolving set of G. So, o(G) = R. ��

Despite its simplicity, Proposition 3.3 has fine applications. If dim(G) = k and A is
a pairing resolving set of G with |A| = k, then we say that A is a dim-pairing resolving
set of G; this, together with Proposition 3.3, immediately yields the following

Corollary 3.4 If G admits a dim-pairing resolving set, then RMB(G) = R′
MB(G) =

dim(G).

Proof If G admits a dim-pairing resolving set (which is also a pairing resolving set),
then by Proposition 3.3, o(G) = R, and by Proposition 2.3(i), R′

MB(G) ≥ RMB(G) ≥
dim(G). Moreover, since G admits a dim-pairing resolving set, R∗ can always select
a metric basis in the first dim(G) steps. Thus, dim(G) ≥ R′

MB(G) ≥ RMB(G) ≥
dim(G). ��

For an example, consider the graph G of Fig. 2. The graph G has the following
dim-pairing resolving sets:
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Fig. 2 A graph which admits
three dim-pairing resolving sets

• {{u1, w1}, {u2, w2}, {u3, w3}, {u4, v4}},
• {{u1, w1}, {u2, w2}, {u3, w3}, {u4, w4}}, and
• {{u1, w1}, {u2, w2}, {u3, w3}, {v4, w4}};

hence, Corollary 3.4 implies that RMB(G) = R′
MB(G) = 4.

To conclude the section, we are going to show how pairing resolving sets can be
applied to construct a large family of graphs G for which RMB(G) > dim(G) holds.

Definition 3.5 If k ≥ 3, then let Gk be a graph of order k + 2(2k − 1) with V (Gk) =
A ∪ B ∪ C , where A, B, and C are pairwise disjoint sets with |A| = k and |B| =
2k − 1 = |C |. The edge set of Gk is specified as follows: (i) each of the sets A, B,
and C induces a clique in Gk ; (ii) indexing the elements of B (and separately of C)
by nonempty subsets of A, let bS ∈ B be adjacent to each vertex in S ⊆ A; (iii) let
bS ∈ B be adjacent to cS ∈ C for each nonempty subset S of A; (iv) there are no other
edges.

We will at times subscript a vertex b ∈ B (and a vertex c ∈ C) by an element of Zk
2,

where 1 (resp., 0) in the j th coordinate indicates that b is adjacent (resp., not adjacent)
to the j th vertex in A. See Fig. 3 for G3 and the labeling of its vertices. From now on,
for a given vertex x ∈ V (G) and an ordered set of vertices S ⊆ V (G), by codeS(x)

we denote the vector of distances between x and all the vertices in S.

Theorem 3.6 If k ≥ 3 and Gk is as in Definition 3.5, then the following holds.

(i) dim(Gk) = k.
(ii) The set A is the unique metric basis of Gk.
(iii) The set

⋃

∅�=S⊆A
{{bS, cS}} is a pairing resolving set of Gk.

Proof (i) First, we show that A is a metric basis of Gk . Clearly, A forms a resolving
set of Gk ; thus, dim(Gk) ≤ |A| = k. To show dim(Gk) ≥ k, suppose S
is a metric basis of Gk with S �= A. If S ∩ A = ∅, then, for any distinct
α and β, S ∩ {bα, bβ, cα, cβ} �= ∅; otherwise, codeS(bα) = codeS(bβ) and
codeS(cα) = codeS(cβ); then, |S| ≥ 2k −2 ≥ k +1 for k ≥ 3. Thus, S ∩ A �= ∅.
By relabeling the vertices of A if necessary,we can assume that S∩A = ∪t

i=1{ai },
where 1 ≤ t ≤ k − 1. Then, there are 2k−t vertices of B that are not resolved
by S ∩ A, and there are 2k−t vertices of C that are not resolved by S ∩ A; thus,
|S ∩ (V (Gk) − A)| ≥ 2k−t − 1 ≥ k − t , where the last inequality holds since
2x − x −1 ≥ 0 for x ≥ 1. So, dim(Gk) = |S| = |S ∩ A|+ |S ∩ (V (Gk)− A)| ≥
t + (k − t) = k. Thus, dim(Gk) = k.
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Fig. 3 G3 satisfying o(G3) = R and RMB(G3) > dim(G3) = 3

(ii) Suppose S �= A is a metric basis of Gk ; then, we have S ∩ A �= ∅ from above
argument. If |S∩ A| = t ≤ k −2, then |S∩(V (Gk)− A)| ≥ 2k−t −1 ≥ k − t +1
for k − t ≥ 2, where the last inequality holds since 2x − x − 2 ≥ 0 for x ≥ 2. If
|S ∩ A| = k − 1, then there exist (2k−1 − 1) pairs in B not resolved by S ∩ A.
So, |S ∩ (V (Gk)− A)| ≥ 2k−1 −2 ≥ 2 for k ≥ 3, and thus, |S| ≥ k +1. In both
cases, we find |S| > k, contradicting the assumption of S being a metric basis.

(iii) First, note that B and C are resolving sets of Gk . To see that B resolves Gk ,
set B = {b1, . . . , b2k−1}. Notice that codeB(ci ) has 1 in the i th entry and 2 in
the rest of its entries, while codeB(a j ) has 1 in exactly 2k−1 of its entries and 2
in the rest of its entries. And codeB(ai ) �= codeB(a j ) for i �= j , since there is
b ∈ B such that N (b) ∩ A = {ai }. The set C is seen to be a resolving set by a
very similar argument.

Now, let R = ∪2k−1
α=1 {xα}, where xα ∈ {bα, cα}, and assume that R �= B and R �= C .

We show that R resolves any two vertices of Gk by considering memberships of the
two vertices with respect to the sets A, B, and C ; there are altogether six cases to
consider.

For distinct vertices ai , a j ∈ A, there exists a vertex bγ ∈ B such that d(bγ , ai ) =
2 = 1 + d(bγ , a j ) and d(cγ , ai ) = 3 = 1 + d(cγ , a j ). Since R ∩ {bγ , cγ } �= ∅,
codeR(ai ) �= codeR(a j ).

Let distinct vertices bα, bβ ∈ B be given. If R ∩ {bα, bβ} �= ∅, then codeR(bα) �=
codeR(bβ). If R ∩ {bα, bβ} = ∅, then {cα, cβ} ⊂ R. Then, d(cα, bβ) = 2 = 1 +
d(cα, bα), and thus, codeR(bα) �= codeR(bβ). The case of distinct vertices cα, cβ ∈ C
is handled in the same manner.

If ai ∈ A and bα ∈ B, then codeR(ai ) �= codeR(bα) since R ∩ {bα, cα} �= ∅.
Let ai ∈ A and cβ ∈ C be given. There exists a vertex cγ ∈ R such that d(cγ , cβ) ≤

1 < 2 ≤ d(cγ , ai ), and thus codeR(ai ) �= codeR(cβ).
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Let bα ∈ B and cβ ∈ C be given. If α = β, then |R ∩ {bα, cα}| = 1, and
thus, codeR(bα) �= codeR(bβ). If α �= β and R ∩ {bα, cβ} �= ∅, then codeR(bα) �=
codeR(cβ). If α �= β and R ∩ {bα, cβ} = ∅, then there exists γ /∈ {α, β} such that
|{bγ , cγ } ∩ R| = 1, and this yields codeR(bα) �= codeR(cβ): taking the case cγ ∈ R
for example, we have d(cγ , bα) = 2 = 1 + d(cγ , cβ). ��

From Theorem 3.6, we immediately conclude the following

Corollary 3.7 For each k ≥ 3, we have o(Gk) = R and RMB(Gk) > dim(Gk).

Proof From Theorem 3.6, Gk has a pairing resolving set. Thus, by Proposition 3.3,
o(Gk) = R, and by Proposition 2.3(i), RMB(Gk) ≥ dim(Gk). In addition, there is no
dim-pairing resolving set for Gk . Together with the fact that Gk has a unique metric
basis this implies that R∗ cannot select a resolving set in the first dim(Gk) steps.
Consequently, RMB(Gk) > dim(Gk). ��

4 Some Applications

With the help of the results from the previous section, we now determine o(G) for
some classes of graphs G. We also determine RMB(G) and R′

MB(G) when R∗ has
a winning strategy, and we determine SMB(G) and S′

MB(G) when S∗ has a winning
strategy.

4.1 Trees

Fix a tree T . A support vertex is a vertex that is adjacent to a vertex of degree one,
a major vertex is a vertex of degree at least three. A vertex � of degree 1 is called a
terminal vertex of a major vertex v if d(�, v) < d(�,w) for every other major vertexw

in T . The terminal degree, ter(v), of amajor vertex v is the number of terminal vertices
of v in T , and an exterior major vertex is a major vertex that has positive terminal
degree. We denote by ex(T ) the number of exterior major vertices of T , and σ(T )

the number of leaves of T . Let M(T ) be the set of exterior major vertices of T . Let
M1(T ) = {w ∈ M(T ) : ter(w) = 1} and let M2(T ) = {w ∈ M(T ) : ter(w) ≥ 2};
note that M(T ) = M1(T ) ∪ M2(T ). For each v ∈ M(T ), let Tv be the subtree of T
induced by v and all vertices belonging to the paths joining v with its terminal vertices,
and let Lv be the set of terminal vertices of v in T .

Theorem 4.1 [6,26,28] If T is a tree that is not a path, then dim(T ) = σ(T )− ex(T ).

Theorem 4.2 [28] Let T be a tree with ex(T ) = k ≥ 1, and let v1, . . . , vk be the
exterior major vertices of T . For each i ∈ [k], let �i,1, . . . , �i,σi be the terminal
vertices of vi with ter(vi ) = σi ≥ 1, and let Pi, j be the vi − �i, j path, where j ∈ [σi ].
Let W ⊆ V (T ). Then, W is a metric basis of T if and only if W contains exactly one
vertex from each of the paths Pi, j − vi , where j ∈ [σi ] and i ∈ [k], with exactly one
exception for each i ∈ [k] and W contains no other vertices of T .
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Theorem 4.3 If T is a tree that is not a path, then

o(T ) =

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

S; |N (v) ∩ Lv| ≥ 4 for some v ∈ M2(T ),

or |N (u) ∩ Lu | = 3 = |N (w) ∩ Lw| for distinct u, w ∈ M2(T ),

N ; |N (w) ∩ Lw| = 3 for exactly one w ∈ M2(T )

and |N (v) ∩ Lv| ≤ 2 for each v ∈ M2(T ) − {w},
R; |N (v) ∩ Lv| ≤ 2 for each v ∈ M2(T ).

Moreover, if o(T ) = S, then SMB(T ) = S′
MB(T ) = 2; if o(T ) = R, then RMB(T ) =

R′
MB(T ) = dim(T ) = σ(T ) − ex(T ).

Proof Let T be a tree that is not a path. Hence ex(T ) ≥ 1.
First, suppose that there exists an exterior major vertex x ∈ M2(T ) such that

|N (x) ∩ Lx | ≥ 4. Since N (x) ∩ Lx is a twin equivalence class of cardinality at least
4, by Proposition 3.2(a), o(T ) = S and SMB(T ) = S′

MB(T ) = 2.
Second, suppose that |N (v) ∩ Lv| ≤ 3 for each v ∈ M2(T ). If there exist distinct

x, y ∈ M2(T ) such that |N (x)∩Lx | = |N (y)∩L y | = 3, then N (x)∩Lx and N (y)∩L y

are distinct twin equivalence classes of cardinality 3; thus, by Proposition 3.2(b),
o(T ) = S and SMB(T ) = S′

MB(T ) = 2.
Now, suppose there exists exactly one z ∈ M2(T ) with |N (z) ∩ Lz | = 3, and

|N (v) ∩ Lv| ≤ 2 for each v ∈ M2(T ) − {z}. Let Lz = {�′
1, . . . , �

′
a}, where a ≥ 3

and d(z, �′
i ) = 1 for i ∈ [3]; if a ≥ 4, let s′

j be the support vertex that lies on
the z − �′

j path for each j ∈ [a] − [3]. Note that, for any resolving set W of T ,
Observation 3.1 yields |W ∩{�′

1, �
′
2, �

′
3}| ≥ 2. If there exists a vertex v ∈ M2(T )−{z}

with |N (v) ∩ Lv| ≤ 2, then, for a fixed w ∈ M2(T ) − {z}, let Lw = {�1, . . . , �b}
such that d(w, �1) ≤ · · · ≤ d(w, �b); if b ≥ 3, let si be the support vertex that lies
on the w − �i path for each i ∈ [b] − [2]. Then Rw = {{�1, �2}} ∪ (∪b

i=3{{si , �i }})
is a dim-pairing resolving set of Tw. In the S-game, S∗ can occupy two vertices
of {�′

1, �
′
2, �

′
3} after her second move; thus, R∗ fails to occupy vertices that form a

resolving set of G, and hence S∗ wins. In the R-game, R∗ can occupy two vertices
of {�′

1, �
′
2, �

′
3} after his second move, and occupy exactly one vertex of each pair in

(∪a
i=4{{s′

i , �
′
i }})∪(∪w∈M2(T )−{z} Rw) thereafter until he completes his dim(T )th move;

thus, the set of vertices selected by R∗, after his dim(T )th move, forms a resolving set
of T , and hence R∗ wins. Therefore, o(G) = N .

Third, suppose that |N (v) ∩ Lv| ≤ 2 for each v ∈ M2(T ). For a fixed v ∈ M2(T )

with ter(v) = k ≥ 2, let �1, . . . , �k be the terminal vertices of v such that d(v, �1) ≤
· · · ≤ d(v, �k); if d(v, �i ) ≥ 2, let si be the support vertex that lies on the v − �i

path. Then Wv = {{�1, �2}}∪ (∪k
i=3{{si , �i }}) is a dim-pairing resolving set of Tv , and

∪v∈M2(T )Wv is a dim-pairing resolving set of T . So, o(T ) = R by Proposition 3.3,
and RMB(T ) = R′

MB(T ) = dim(T ) by Corollary 3.4. ��

4.2 The Petersen Graph

For the Petersen graph P (see Fig. 4), we first recall the following results.

Theorem 4.4 [24] For the Petersen graph P , dim(P) = 3.
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Fig. 4 Petersen graph

Porism 4.5 [11] If W is a metric basis of the Petersen graph P , then the subgraph of
P induced by W is an edge-less graph.

Lemma 4.6 Let the vertices of the Petersen graph P be labeled as shown in Fig. 4.
Let W1 = {u1, w2, w3}, W2 = {u1, u4, w2}, W3 = {u1, w4, w5}, W4 = {u1, u3, w5},
W5 = {u1, u4, w3} and W6 = {u1, u3, w4}. Then, W is a metric basis of P with
u1 ∈ W if and only if W = Wi for some i ∈ [6].
Proof (⇐) Let W = W1 = {u1, w2, w3}. Then codeW (u2) = (1, 1, 2), codeW (u3) =
(2, 2, 1), codeW (u4) = (2, 2, 2), codeW (u5) = (1, 2, 2), codeW (w1) = (1, 2, 1),
codeW (w4) = (2, 1, 2) and codeW (w5) = (2, 1, 1). So, W1 is a metric basis of P by
Theorem 4.4. For i ∈ [6] − [1], one can easily check that Wi is a metric basis of P .

(⇒) Let W be a metric basis ofP with u1 ∈ W . By Porism 4.5, W ∩{u2, w1, u5} =
∅; thus, W ∩ {w2, w5} �= ∅ or W ∩ {w3, w4} �= ∅ or W ∩ {u3, u4} �= ∅.

First, let W ∩ {w2, w5} �= ∅. If w2 ∈ W , say X1 = {u1, w2} ⊂ W , then
W ∩ {u2, u5, w1, w4, w5} = ∅ by Porism 4.5 and codeX1(u3) = codeX1(u4) =
codeX1(w3) = (2, 2). Since d(u3, w3) = d(u3, u4), either w3 ∈ W (i.e., W = W1)
or u4 ∈ W (i.e., W = W2). Similarly, if w5 ∈ W , then w4 ∈ W (i.e., W = W3) or
u3 ∈ W (i.e., W = W4).

Second, let W ∩ {w3, w4} �= ∅. If w3 ∈ W , say X2 = {u1, w3} ⊂ W , then
W ∩ {u2, u3, u5, w1, w5} = ∅ by Porism 4.5 and codeX2(u4) = codeX2(w2) =
codeX2(w4) = (2, 2). Since d(w4, w2) = d(w4, u4), either w2 ∈ W (i.e., W = W1)
or u4 ∈ W (i.e., W = W5). Similarly, if w4 ∈ W , then w5 ∈ W (i.e., W = W3) or
u3 ∈ W (i.e., W = W6).

Third, let W ∩ {u3, u4} �= ∅. If u3 ∈ W , say X3 = {u1, u3} ⊂ W , then
W ∩ {u2, u4, u5, w1, w3} = ∅ by Porism 4.5 and codeX3(w2) = codeX3(w4) =
codeX3(w5) = (2, 2). Since d(w2, w4) = d(w2, w5), either w4 ∈ W (i.e., W = W6)
or w5 ∈ W (i.e., W = W4). Similarly, if u4 ∈ W , then w2 ∈ W (i.e., W = W2) or
w3 ∈ W (i.e., W = W5). ��
Theorem 4.7 o(P) = R and RMB(P) = R′

MB(P) = 3 = dim(P).

Proof Let the vertices of P be labeled as shown in Fig. 4, and let A1 = {w2, w5},
A2 = {w3, w4}, and A3 = {u3, u4}. First, we consider the R-game. Since P is vertex-
transitive (see [21]), we may assume that R∗ occupies u1 after his first move. If S∗
selects a vertex in N (u1) on her first move, R∗ can select a vertex of an Ai , i ∈ [3],
on his second move; if S∗ selects a vertex of an A j , j ∈ [3], on her first move, then
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Fig. 5 A bouquet of four cycles
B4

R∗ can select the other vertex of A j on his second move. If R∗ selects a vertex of
A1 = {w2, w5}, say w2, on his second move, he can select a vertex in {u4, w3} on his
thirdmove; if R∗ selects a vertex of A2 = {w3, w4}, sayw3, on his secondmove, he can
select a vertex of {u4, w2} on his third move; if R∗ selects a vertex of A3 = {u3, u4},
say u3, on his second move, he can select a vertex in {w4, w5} on his third move. In
each case, the set of vertices occupied by R∗, after his third move, forms a resolving
set of P by Lemma 4.6.

Second, we consider the S-game. Since P is edge-transitive (see [21]), we may
assume that S∗ selects u5 on her first move and R∗ selects u1 on his first move. If S∗
selects a vertex of an Ai , i ∈ [3], on her second move, then R∗ can select the other
vertex of Ai on his second move; if S∗ selects a vertex of N (u1) − {u5} = {u2, w1}
on her second move, R∗ can select a vertex of an A j , j ∈ [3], on his second move.
By applying the above argument for the R-game, it is easy to see that R∗ can occupy
a resolving set of P after his third move.

Thus, o(P) = R and RMB(P) = R′
MB(P) = 3. ��

4.3 Bouquet of Cycles

Let Bm , m ≥ 2, be a bouquet of m cycles (i.e., the vertex sum of m cycles at one
common vertex), and let w be the cut-vertex of Bm (see Fig. 5). Let C1, . . . , Cm be
the m cycles of Bm . For each i ∈ [m], let Pi = Ci − w.

Theorem 4.8 [22] If Bm is a bouquet of m ≥ 2 cycles of which x cycles are even, then

dim(Bm) =
{

m; x = 0,
m + x − 1; x ≥ 1.

Lemma 4.9 [22] If W is a resolving set of a bouquet of cycles Bm, m ≥ 2, then

(a) for each i ∈ [m], |W ∩ V (Pi )| ≥ 1; and
(b) for any two distinct even cycles Ci and C j of Bm, |W ∩ (V (Pi ) ∪ V (P j ))| ≥ 3.

Theorem 4.10 If Bm is a bouquet of m ≥ 2 cycles of which z are 4-cycles, then

o(Bm) =
⎧

⎨

⎩

R; z ≤ 2,
N ; z = 3,
S; z ≥ 4.
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Moreover, if o(Bm) = R, then RMB(Bm) = R′
MB(Bm) = dim(Bm); if o(Bm) = S,

then SMB(Bm) = S′
MB(Bm) = 4.

Proof Let w be the cut-vertex of Bm , where m ≥ 2. Let C1, . . . , Cz be cycles iso-
morphic to C4, let Cz+1, . . . , Cx be even cycles that are not isomorphic to C4, and let
Cx+1, . . . , Cm be odd cycles of Bm ; notice x ≥ z. IfCi is an odd cycle of length 2ki +1,
let Ci be given by w, ui,1, ui,2, . . . , ui,ki , ui,ki +1, . . . , ui,2ki , w; if C j is an even
cycle of length 2k j , let C j be given by w, u j,1, u j,2, . . . , u j,k j −1, u j,k j , u j,k j +1, . . . ,

u j,2k j −1, w (see Fig. 5 for the labeling of the vertices of a B4). We note that ui,1 and
ui,3 are twins for each i ∈ [z].
Case 1: z ≤ 2.
If z = 0 and x = 0, then ∪m

i=1{{ui,ki , ui,ki +1}} is a dim-pairing resolv-
ing set of Bm . If z = 0 and x ≥ 1, then {{u1,k1−1, u1,k1+1}} ∪ (∪x

i=2{{ui,1,

ui,ki −1}, {ui,ki +1, ui,2ki −1}}) ∪ (∪m
j=x+1{{u j,k j , u j,k j +1}}) is a dim-pairing resolving

set of Bm . If z = 1, then

{{u1,1, u1,3}}∪(∪x
i=2{{ui,1, ui,ki −1}, {ui,ki +1, ui,2ki −1}}) ∪ (∪m

j=x+1{{u j,k j , u j,k j +1}})

is a dim-pairing resolving set of Bm . If z = 2, then

{{u1,1, u1,3}, {u2,1, u2,3}, {u1,2, u2,2}} ∪ (∪x
i=3{{ui,1, ui,ki −1}, {ui,ki +1, ui,2ki −1}})

∪ (∪m
j=x+1{{u j,k j , u j,k j +1}})

is a dim-pairing resolving set of Bm . So, in each case, o(Bm) = R by Proposition 3.3
and RMB(Bm) = R′

MB(Bm) = dim(Bm) by Corollary 3.4.

Case 2: z = 3.
Note that |∪3

i=1V (Pi )| = 9 and, for any resolving set W of Bm , |W ∩(∪3
i=1V (Pi ))| ≥

5 by Lemma 4.9(b). In the S-game, S∗ can occupy five vertices of ∪3
i=1V (Pi ) after

her fifth move. Thus, R∗ fails to occupy vertices that form a resolving set of Bm .
In the R-game, R∗ can occupy one vertex of each pair in (∪3

i=1{{ui,1, ui,3}}) ∪
(∪x

i=4{{ui,1, ui,ki −1}, {ui,ki +1, ui,2ki −1}}) ∪ (∪m
j=x+1{{u j,k j , u j,k j +1}}) and two ver-

tices of ∪3
i=1{ui,2}; thus, R∗ can occupy vertices that form a resolving set of Bm . So,

o(Bm) = N .

Case 3: z ≥ 4.
Note that |∪4

i=1V (Pi )| = 12 and, for any resolving setW of Bm , |W ∩(∪4
i=1V (Pi ))| ≥

7 by Lemma 4.9(b). Regardless of whether S∗ plays first or second, S∗ can occupy
6 vertices of ∪4

i=1V (Pi ) after her sixth move. So, R∗ fails to occupy vertices that
form a resolving set of Bm ; thus o(Bm) = S. In determining SMB(Bm) and S′

MB(Bm),
we note that the optimal strategy for R∗ is to occupy at least a vertex in each pair of
∪z

i=1{{ui,1, ui,3}}, and the optimal strategy for S∗ is to occupy two vertices each in
V (Pi ) and V (P j ) for distinct i, j ∈ [z]. By relabeling the vertices of ∪z

i=1V (Pi ) if
necessary, we may assume that the two players occupy the vertices of Bm in the order
of V (P1), . . . , V (Pz). In the S-game, S∗ can occupy two vertices of V (P1) after her
secondmove, R∗ would have occupied a vertex in {u1,1, u1,3} ⊂ V (P1) and a vertex in
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{u2,1, u2,3} ⊂ V (P2) after his secondmove, and S∗ can occupy two vertices of V (P3)

on her third and fourth move; thus, S∗ wins after her fourth move. In the R-game, R∗
occupies a vertex in {u1,1, u1,3} after his first move, and S∗ can occupy two vertices
of V (P2) after her second move (R∗ would have occupied a vertex in {u2,1, u2,3} on
his second move). If R∗ occupies a vertex in ∪3

i=1V (Pi ) that has not yet been taken
on his third move, S∗ can occupy two vertices of V (P4) on her third and fourth move.
So, in the R-game, S∗ wins after her fourth move. Thus, SMB(Bm) = S′

MB(Bm) = 4.
��

4.4 Complete Multi-Partite Graphs

The metric dimension of complete multi-partite graphs was determined in [29].

Theorem 4.11 [29] If G = Ka1,...,ak , where k ≥ 2, n = ∑k
i=1 ai , and s is the number

of partite sets of G consisting of one element, then

dim(G) =
{

n − k; s = 0,
n + s − k − 1; s �= 0.

For the MBRG, we have the following description.

Theorem 4.12 If G = Ka1,...,ak , where k ≥ 2, and s is the number of partite sets of G
consisting of one element, then

o(G) =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

S; s ≥ 4 or ai ≥ 4 for some i ∈ [k],
or s = ai = 3 for some i ∈ [k],

or ai = a j = 3 for distinct i, j ∈ [k],
N ; s = 3 and ai ≤ 2 for each i ∈ [k],

or s ≤ 2 and ai = 3 for exactly one i ∈ [k],
R; max{s, ai } ≤ 2 for each i ∈ [k].

Moreover, if o(G) = S, then SMB(G) = S′
MB(G) = 2; if o(G) = R, then RMB(G) =

R′
MB(G) = dim(G).

Proof Let V (G) be partitioned into V1, . . . , Vk such that Vi = {ui,1, . . . , ui,ai } with
|Vi | = ai , where i ∈ [k] and k ≥ 2. We may without loss of generality assume that
a1 ≤ · · · ≤ ak .

First, suppose that s ≥ 4 or ai ≥ 4 for some i ∈ [k]. If s ≥ 4, then ∪s
i=1Vi is a

twin equivalence class of cardinality at least 4. If ai ≥ 4 for some i ∈ [k], then Vk is a
twin equivalence class of cardinality at least 4. By Proposition 3.2(a), o(G) = S and
SMB(G) = S′

MB(G) = 2.
Second, suppose that max{s, ai } ≤ 3 for each i ∈ [k]; further, let s = 3 or ai = 3

for some i ∈ [k]. If s = ax = 3 for some x ∈ [k] or ay = az = 3 for distinct
y, z ∈ [k], then G has distinct twin equivalence classes of cardinality three; thus, by
Proposition 3.2(b), o(G) = S and SMB(G) = S′

MB(G) = 2.
So, suppose s = 3 or ai = 3 for exactly one i ∈ [k], but not both. Let W be any

resolving set of G. By Observation 3.1, we have the following: (1) if s = 3, then
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Fig. 6 Labeling of P8 � P4

|W ∩ {u1,1, u2,1, u3,1}| ≥ 2; (2) if ai = 3 for exactly one i ∈ [k], then ak = 3 and
|W ∩ Vk | ≥ 2. In the S-game, S∗ can occupy two vertices of {u1,1, u2,1, u3,1} after her
second move (when s = 3), or S∗ can occupy two vertices of Vk = {uk,1, uk,2, uk,3}
after her second move (when ak = 3); thus, in each case, R∗ fails to occupy vertices
that form a resolving set of G. Now, we consider the R-game. If s = 3 (and thus ai ≤ 2
for each i ∈ [k]), then R∗ can occupy two vertices of {u1,1, u2,1, u3,1} after his second
move, and occupy exactly one vertex of each pair in ∪k

j=4{{u j,1, u j,2}} thereafter

until he completes his (k − 1)th move. If ak = 3 (and thus s ≤ 2 and ai ≤ 2 for each
i ∈ [k−1]), then R∗ can occupy twovertices ofVk = {uk,1, uk,2, uk,3}, after his second
move, and occupy additional vertices (if any) thereafter as follow: (1) if s = 0, then
R∗ can occupy exactly one vertex of each pair in ∪k−1

i=1 {{ui,1, ui,2}}; (2) if s = 1, then
R∗ can occupy exactly one vertex of each pair in ∪k−1

i=2 {{ui,1, ui,2}}; (3) if s = 2, then
R∗ can occupy exactly one vertex of each pair in {{u1,1, u2,1}} ∪ (∪k−1

i=3 {{ui,1, ui,2}}).
So, in each case of the R-game, the vertices chosen by R∗ form a resolving set of G;
thus, R∗ wins. Therefore, o(G) = N .

Third, suppose thatmax{s, ai } ≤ 2 for each i ∈ [k]. If s = 0, then∪k
i=1{{ui,1, ui,2}}

is a dim-pairing resolving set of G. If s = 1, then ∪k
i=2{{ui,1, ui,2}} is a dim-pairing

resolving set of G. If s = 2, then {{u1,1, u2,1}} ∪ (∪k
i=3{{ui,1, ui,2}}) is a dim-pairing

resolving set of G. In each case, o(G) = R by Proposition 3.3 and RMB(G) =
R′
MB(G) = dim(G) by Corollary 3.4. ��

4.5 Some Grid-Like Graphs

The Cartesian product G � H of graphs G and H is the graph with the vertex set
V (G) × V (H) such that (u, v) is adjacent to (u′, v′) if and only if either u = u′ and
vv′ ∈ E(H), or v = v′ and uu′ ∈ E(G). Products Ps � Pt are known as grid graphs.
For the rest of this section we set V (Ps) = {u1, . . . , us} and V (Pt ) = {v1, . . . , vt },
see Fig. 6 for the labeling of P8 � P4.

Recall the following results of grid graphs.

Proposition 4.13 [5] If s, t ≥ 2, then dim(Ps � Pt ) = 2.
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Lemma 4.14 [11] Let s, t ≥ 2, and let W1 = {(u1, v1), (u1, vt )}, W2 =
{(u1, v1), (us, v1)}, W3 = {(u1, vt ), (us, vt )}, and W4 = {(us, v1), (us, vt )}. Then,
W is a metric basis of Ps � Pt if and only if W = Wi for some i ∈ [4].

For the MBRG on grid graphs we have:

Proposition 4.15 If s, t ≥ 2, then o(Ps � Pt ) = R and

RMB(Ps � Pt ) = R′
MB(Ps � Pt ) = dim(Ps � Pt ) = 2.

Proof Since {{(u1, v1), (us, vt )}, {(us, v1), (u1, vt )}} is a dim-pairing resolving set of
Ps � Pt , Proposition 3.3 implies that o(Ps � Pt ) = R. Moreover, RMB(Ps � Pt ) =
R′
MB(Ps � Pt ) = dim(Ps � Pt ) by Corollary 3.4. ��
Continuing with some grid-related graphs, we next study how the MBRG behaves

on the torus grid graphs, that is, the Cartesian product of cycles.We recall the following
results that will be used in proving Proposition 4.19.

Theorem 4.16 [5] If s, t ≥ 3, then

dim(Cs � Ct ) =
{

3; s or t is odd,
4; s and t are even.

Proposition 4.17 [5] Let s, t ≥ 3 be integers.

(a) If s is odd, let W = {x, y, z} ⊆ V (Cs � Ct ) such that x, y are diametral in a
copy of Cs, and z is adjacent to x in a copy of Ct . Then, W is a metric basis for
Cs � Ct .

(b) If s and t are even, let W = {x, y, z, w} ⊆ V (Cs � Ct ) such that x, y are
diametral in a copy of Cs, z is adjacent to x in a copy of Cs, and w is adjacent
to x in a copy of Ct . Then, W is a metric basis for Cs � Ct .

Lemma 4.18 [5] For even integers s, t ≥ 4, let W be a resolving set of Cs � Ct with
u ∈ W . If u and u′ are diametral in Cs � Ct , then (W −{u})∪ {u′} is also a resolving
set of Cs � Ct .

Proposition 4.19 If s, t ≥ 3, then o(Cs � Ct ) = R and

RMB(Cs � Ct ) = R′
MB(Cs � Ct ) = dim(Cs � Ct ).

Proof Let s, t ≥ 3 be integers and consider the following two cases.
Case 1: s and t are even.
Let W = {x, y, z, w} be ametric basis forCs � Ct as described in Proposition 4.17(b);
note that no two vertices in W are diametral inCs � Ct . Let x ′, y′, z′, andw′ be diame-
tral vertices of x, y, z, andw, respectively, in Cs � Ct . Then, Lemma 4.18 implies that
{{x, x ′}, {y, y′}, {z, z′}, {w,w′}} is a dim-pairing resolving set of Cs � Ct , and hence
Proposition 3.3 and Corollary 3.4 yield the conclusion.
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Case 2: s is odd.
First, we consider the R-game. Suppose R∗ selects an arbitrary vertex, say x , in
Cs � Ct on his first move. Note that there are two distinct vertices, say y and y′, that
are diametral to x in the copy ofCs containing x and there are two distinct vertices, say
z and z′, that are adjacent to x in the copy of Ct containing x . By Proposition 4.17(a),
the set {x, y∗, z∗}, where y∗ ∈ {y, y′} and z∗ ∈ {z, z′}, is a metric basis for Cs � Ct .
Since R∗ can select a vertex in {y, y′} and a vertex in {z, z′} in his second and third
move, R∗ wins the R-game.

Second, we consider the S-game. Suppose S∗ selects a vertex, say x ′, in Cs � Ct

on her first move. Then, R∗ can choose a neighbor x of x ′ in the copy of Ct that
contains x ′. Note that there are two distinct vertices, say y and y′, that are diametral
to x in the copy of Cs containing x and there are two distinct vertices, say z1 and z′

1
(z2 and z′

2, respectively), that are adjacent to y (y′, respectively) in the copy of Ct

containing y (y′, respectively). By Proposition 4.17(a), both {x, y, z∗
1} and {x, y′, z∗

2},
where z∗

1 ∈ {z1, z′
1} and z∗

2 ∈ {z2, z′
2}, form metric bases for Cs � Ct . So, R∗ can

select a vertex in {y, y′} on his second move. If R∗ selects y on his second move, he
can select a vertex in {z1, z′

1} in his third move; if R∗ selects y′ on his second move,
he can select a vertex in {z2, z′

2} in his third move. In each case, R∗ wins the S-game.
Therefore, we conclude that o(Cs � Ct ) = R and RMB(Cs � Ct ) = R′

MB(Cs � Ct )

= dim(Cs � Ct ). ��
In concordance with the previous results for the Cartesian product of two paths and

of two cycles, we suspect that a result in the style of Propositions 4.15 and 4.19 can
also be deduced for the Cartesian product of a cycle with a path.

5 Concluding Remarks

Erdős and Selfridge introduced the Maker–Breaker game back in 1973. In this paper,
we initiate the study of this game in the context of the metric dimension of graphs.
Our study raises new and interesting questions; below we indicate a few of them.

Question 5.1 It is known that determining the metric dimension of a general graph is
an NP-hard problem (see [13]). What can we say about the computational complexity
of determining the outcome of MBRG?

Question 5.2 For product graphs G, such as the Cartesian product, the lexicographic
product, the corona product, and the direct product, can we determine o(G), as well
as RMB(G) and R′

MB(G) (or SMB(G) and S′
MB(G))?

Question 5.3 It is easy to see that RMB(G) = 1 (R′
MB(G) = 1, respectively) if and

only if G = Pn for n ≥ 2. For any positive integer k ∈ [
 n(G)
2 �] − {1}, can we

characterize graphs G satisfying RMB(G) = k as well as R′
MB(G) = k?
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