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Abstract
An ideal on N is a family of subsets of N closed under the operations of taking finite
unions and subsets of its elements. The I-open sets of topological spaces, which are
determined by an ideal I on N and the topology of the spaces, are a basic concept
of ideal topological spaces. However, it encounters some difficulties in the study
of certain structures and mappings of topological spaces. In this paper, we discuss
some properties of ideal topological spaces based on Isn-open sets, study the problem
generating new topological spaces from ideals, characterize the mappings preserving
I-convergence and structure special I-quotient spaces. The followingmain results are
obtained.

(i) A mapping f : X → Y preserves I-convergence if and only if provided U is an
Isn-open subset of Y , then f −1(U ) is an Isn-open subset of X .

(ii) A topological space X is an I-neighborhood space if and only if every I-
continuous mapping on the space X preserves I-convergence.

(iii) Suppose that both X ,Y are topological spaces and f : X → Y is a surjective
mapping. Then the topology μ of the space Y is the finest topology that makes
f preserve I-convergence if and only if μ = τ f ,Isn , if and only if f is an
Isn-quotient mapping and μ = μIsn .

(iv) Let X be an I-neighborhood space and f : X → Y be a surjective mapping.
Then the topology μ of the space Y is the finest topology that makes f be I-
continuous if and only if μ = τ f ,I , if and only if f is an I-quotient mapping
and Y is an I-sequential space.

These show the unique role of I-neighborhood spaces in the study of ideal topological
spaces and present a version using the notion of ideals.
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1 Introduction

Convergence of sequences in a topological space is a basic and important concept
in mathematics. In addition to the usual convergence of sequences, statistical conver-
gence, ideal convergence and even the generalG-convergence have attracted extensive
attention [12,16,23].

Let X be a set, s(X) denote the set of all X -valued sequences, i.e., x ∈ s(X) if and
only if x = {xn}n∈N is a sequence with each xn ∈ X . A method on X is a function
G : cG(X) → X defined on a subset cG(X) of s(X) [26, Definition 1.1]. A sequence
x = {xn}n∈N in X is said to be G-convergent to l ∈ X if x ∈ cG(X) and G(x) = l.
Let G be a method on a set X and A ⊂ X . The set A is called a G-closed subset of
X if, whenever x ∈ s(A) ∩ cG(X), then G(x) ∈ A [26, Definition 2.1]; A is called
a G-open subset of X if X\A is G-closed in X ; and A is called a G-neighborhood
of a point x ∈ X if there exists a G-open subset U with x ∈ U ⊂ A [26, Definition
3.1]. In the paper [26], the authors studied G-closures and G-interiors in topological
spaces, discuss G-sequential spaces and G-Fréchet spaces, compare the topology of
a topological space and the family of all G-open subsets on the space, and give the
mutual relationship between continuity andG-continuity. These show thatG-methods
really become a method to study convergence and continuity in general topology.

As the basic relationship between topological spaces and mappings, the follow-
ing four questions are before us. First of all, the G-open sets are generated by
G-convergence, and the family of all G-open subsets of a topological space generally
forms a generalized topology, not a topology [26, part (1) of Example 2.14]. This is
not conducive to further discussion of topological properties defined by G-open sets.

Question 1.1 Which families of subsets related to G-open sets make up a topology?

Secondly, it is well known that mappings are an important tool to study topo-
logical spaces. Generally speaking, every mapping preserving G-convergence is a
G-continuous mapping, but the inverse is not true [26, Example 7.4]. In addition, for
the usual convergence, every sequentially continuous mapping is equivalent to the
mapping which preserves convergent sequences [7, Theorem 3.1].

Question 1.2 How to characterize the spaces with the following property: every G-
continuous mapping on the space preserves G-convergence?

Thirdly, G-continuous mappings are defined by the pre-image of each G-open
subset being a G-open subset, which we have accepted and are familiar with this
definition.

Question 1.3 How to characterize the mappings preserving G-convergence by the
special properties of the pre-image of certain subsets on the range space?
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Finally, the quotient topology is the finest topology of the range that makes the
mapping be surjective and continuous.

Question 1.4 How to characterize the finest topology of the range that makes the map-
ping preserve G-convergence or be G-continuous? In particular, how to characterize
the finest topology of the range so that the mapping is sequentially continuous?

Ideals are a very useful notion in topology, analysis and set theory and have been
studied for along time. A broad perspective of study concerning the analysis of alge-
braic, topological and combinatorial structures by means of an accurate investigation
of the properties of specific set systems arises from them. More in general, such
an analysis may be extended to the interrelations of set operators, binary set rela-
tions and set systems on the same ground set [1–3,6,9–11,15,17,18]. In recent years,
ideal convergence has become one of the hotspots of general topology and set theory
[8,14,20,21].

In this paper, we discuss Questions 1.1–1.4 in ideal topological spaces. Let I be
an ideal on the set N of all natural numbers. We introduce the notion of Isn-open sets
between open sets and I-open sets, show that the family of all Isn-open subsets of a
topological space forms a topology, and then, I-neighborhood spaces and Isn-open
topological spaces are defined. Secondly, we prove that the property that the pre-image
of each Isn-open subset on the range space is an Isn-open subset describes exactly the
mapping preserving I-convergence, and the I-neighborhood space characterizes the
space such that every I-continuous mapping on the space is the mapping preserving
I-convergence. I-neighborhood spaces are general. For example, the spaces with the
usual convergence of sequences and I-sequential spaces are I-neighborhood spaces.
Thirdly, we obtain the necessary and sufficient condition such that the mapping from
a topological space X onto a topological space Y satisfies that the topology of Y
is the finest topology of the range so that the mapping preserves I-convergence.
Fourthly, we introduce I-topological spaces and discuss the relationship between
I-quotient topology and the topology of the range which is the finest topology that
makes themapping be I-continuous. These studies deepen our understanding for ideal
topological spaces and the quotient spaces, present a version using the notion of ideals
and provide a new research path for revealing the mutual relationship of spaces and
mappings.

2 Preliminaries

The main purpose of this section is to introduce the Isn-interior and Isn-closure oper-
ators for an ideal I on N and a topological space, and recall some related concepts and
results to be discussed in this paper. Our topological terminology and notation are as
in the book [19].

Throughout this paper, the set of all natural numbers is denoted by N and ω =
{0}∪N. Let X be a topological space and P ⊂ X . P is called a sequential neighborhood
of a point x ∈ X if every sequence {xn} in X converging to x is eventually in P , i.e.,
{x} ∪ {xn : n ≥ m} ⊂ P for some m ∈ N. P is called a sequentially open set of
X if P is a sequential neighborhood of x for each x ∈ P . The complement set of a
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sequentially open set is called a sequentially closed set. A set P is sequentially closed
in X if and only if the limit point x ∈ P provided a sequence {xn} in P converges to
a point x in X .

Let I be a family of subsets on N. Consider the following conditions.

(i) If A, B ∈ I, then A ∪ B ∈ I.
(ii) If B ⊂ A ∈ I, then B ∈ I.
(iii) I � {∅} and N /∈ I.
(iv) I is a cover of N.

The family I is called an ideal on N if it satisfies the above conditions (i) and (ii); I is
called a non-trivial ideal on N if it satisfies the above conditions (i)–(iii); I is called
an admissible ideal on N if it satisfies the above conditions (i)–(iv). Only admissible
ideals are discussed in this paper.

Let I be an ideal on N and X be a topological space. A sequence {xn} in X is
said to be I-convergent to a point x ∈ X provided for any neighborhood U of x ,
we have the set {n ∈ N : xn /∈ U } ∈ I, which is denoted by xn

I−→ x [23]. Since
ideal convergence is a special kind of G-convergence, the results of G-convergence
are all applicable to ideal convergence [26]. The usual convergence of sequences in
topological spaces can be extended to ideal convergence on N. The family of all finite
subsets of N is denoted by I f in . Then I f in is the smallest non-trivial ideal contained
in every admissible ideal, and the I-convergence on a topological space X is just the
usual convergence of sequences in X .

For the sake of brevity, if not specially mentioned, we always use I to express an
admissible ideal on N, and I f in is called the minimal ideal on N.

Let X be a topological space and P ⊂ X . A sequence {xn} in X is said to be
I-eventually in P if the set {n ∈ N : xn /∈ P} ∈ I [32, Definition 3.15]; the set P is
said to be an I-sequential neighborhood of a point x ∈ X if every sequence which is
I-convergent to x is I-eventually in P [31]; the set P is said to be an Isn-open set of
X if P is an I-sequential neighborhood of x for each x ∈ P; the set P is said to be an
Isn-closed set of X if the complement set X\P is an Isn-open set; the set P is said to
an I-closed set of X if whenever a sequence {xn} in P with xn

I−→ x in X , the I-limit
point x ∈ P; the set P is said to be an I-open set of X if the complement set X\P is
an I-closed set.

We can further improve the concepts of certain neighborhoods of a point in a
topological space. Given a topological space X , P ⊂ X and x ∈ X , the set P is said to
be an I-neighborhood of x if there exists an I-open set V of X such that x ∈ V ⊂ P;
the set P is said to be an Isn-neighborhood of x if there exists an Isn-open set V of
X such that x ∈ V ⊂ P .

The concepts of sequential neighborhoods and sequentially open sets have been
widely used in general topology and have obtained rich results [25]. It is the first time
to introduce Isn-open sets and study their properties in topological spaces. We expect
that it will answer some problems related to ideal topological spaces and promote the
further development for I-convergence. The family of all I-open subsets of a topolog-
ical space forms a generalized topology [13,26].Whether the family is a topologymay
be related to special ideals on N. In this paper, one of the main purposes introducing
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Isn-open sets is to show that the family of all Isn-open sets constitutes a topology,
so we can study some properties of ideal topological spaces more deeply and further
establish the relationship between spaces and mappings from the perspective of ideal
convergence.

Lemma 2.1 Consider the following conditions for a topological space X and a subset
A of X.

(i) A is an open set of X.
(i i) A is an Isn-open set of X.

(i i i) A is an I-open set of X.

(iv) {n ∈ N : xn ∈ A} /∈ I for each sequence {xn} in X with xn
I−→ x.

(v) A is a sequentially open set of X.
Then (i) ⇒ (i i) ⇒ (i i i) ⇔ (iv) ⇒ (v).

Proof (i) ⇒ (ii). Suppose that A is an open set of X . If x ∈ A and a sequence {xn} in
X is I-convergent to x , then {n ∈ N : xn /∈ A} ∈ I in X , i.e., the sequence {xn} is
I-eventually in A; thus, A is an I-sequential neighborhood of x . This shows that the
set A is an Isn-open set of X .

(ii) ⇒ (iii). If the set A is not an I-open set of X , then the complement set X\A
is not an I-closed set, i.e., there exist a sequence {xn} in X\A and a point x ∈ A
with xn

I−→ x ; thus, {n ∈ N : xn /∈ A} = N /∈ I, i.e., the sequence {xn} is not
I-eventually in A. This implies the set A is not an I-sequential neighborhood of the
point x ; therefore, A is not an Isn-open set.

(iii) ⇔ (iv) has been proved in [32, Lemma 3.6].
(iii) ⇒ (v). Since the usual convergence of sequences of the topological space X

is always I-convergence, every I-closed set is sequentially closed and every I-open
set is sequentially open. 
�

In view of Lemma 2.1, given a topological space X , a point x ∈ X and a neigh-
borhood P of x , then P is also an Isn-neighborhood of x . Moreover, if P is an
Isn-neighborhood of x , then P is both an I-neighborhood of x and an I-sequential
neighborhood of x .

Lemma 2.2 [32, Lemma2.4] Let X be a topological space. If a sequence {xn} in X isI-
convergent to a point x ∈ X, and {yn} is a sequence in X with {n ∈ N : xn �= yn} ∈ I,
then the sequence {yn} is I-convergent to x ∈ X.

Lemma 2.3 Let X be a topological space. The following statements hold.

(i) If Y ⊂ X and A is an Isn-open (resp. Isn-closed, I-open, or I-closed) subset of
X, then A ∩ Y is an Isn-open (resp. Isn-closed, I-open, or I-closed) subset of
the subspace Y .

(i i) If Y is an Isn-open subset of X and A is an I-open (resp. Isn-open) subset of the
subspace Y , then A is an I-open (resp. Isn-open) subset of X.

(i i i) If Y is an I-closed subset of X and A is an I-closed subset of the subspace Y ,
then A is an I-closed subset of X.
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Proof (i) We prove the cases for Isn-open and I-open subsets, the cases for Isn-
closed and I-closed subsets can be showed by complement sets. Let Y ⊂ X . If
{xn} is a sequence in Y with xn

I−→ x ∈ Y and U is a neighborhood of x in X ,
then {n ∈ N : xn /∈ U } = {n ∈ N : xn /∈ U ∩ Y } ∈ I. Thus, the sequence
xn

I−→ x in X .
Suppose that A is an Isn-open subset of X . Let {xn} be a sequence in Y with

xn
I−→ x ∈ A ∩ Y . Then the sequence xn

I−→ x in X . Since A is an Isn-open
subset of X , the set {n ∈ N : xn /∈ A ∩ Y } = {n ∈ N : xn /∈ A} ∈ I, i.e., the
sequence {xn} is I-eventually in A∩Y . This shows that A∩Y is an I-sequential
neighborhood of x in Y . Therefore, A ∩ Y is an Isn-open subset of the subspace
Y .
Suppose that A is an I-open subset of X . Let {xn} be a sequence in Y with

xn
I−→ x ∈ A∩Y . Then the sequence xn

I−→ x in X , and {n ∈ N : xn ∈ A∩Y } =
{n ∈ N : xn ∈ A} /∈ I by part (iv) of Lemma 2.1. Thus, A ∩ Y is an I-open
subset of the subspace Y .

(ii) Suppose that Y is an Isn-open subset of X .
Let A be an I-open subset of the subspace Y . If A is not an I-open subset
of X , then X\A is not an I-closed subset of X ; thus, there exist a sequence
{xn} in X\A and a point x ∈ A with xn

I−→ x in X . By A �= Y , take a point
y ∈ Y\A, and define a sequence {yn} in Y as follows: yn = xn , if xn ∈ Y ;
yn = y, if xn /∈ Y . Since Y is an I-sequential neighborhood of x , we have that
{n ∈ N : xn �= yn} = {n ∈ N : xn /∈ Y } ∈ I. By Lemma 2.2, the sequence {yn}
is I-convergent to x in X ; hence, {yn} is also I-convergent to x in the subspace
Y . It follows from part (iv) Lemma 2.1 that ∅ = {n ∈ N : yn ∈ A} /∈ I, which
is a contradiction. This shows that the set A is an I-open subset of X .
Let A be an Isn-open subset of the subspace Y . If x ∈ A and {xn} is a sequence

with xn
I−→ x in X , then Y is an I-sequential neighborhood of x in X , and

{n ∈ N : xn /∈ Y } ∈ I. We can assume that Y �= A and take a point y ∈ Y\A.
Define a sequence {yn} in Y as follows: yn = xn , if xn ∈ Y ; yn = y, if xn /∈ Y .
Then {n ∈ N : xn �= yn} = {n ∈ N : xn /∈ Y } ∈ I. By Lemma 2.2, the
sequence {yn} is I-convergent to x in X ; hence, {yn} is also I-convergent to x
in the subspace Y , thus {n ∈ N : xn /∈ A} = {n ∈ N : yn /∈ A} ∈ I, i.e., the
sequence {xn} is I-eventually in A, and so A is an I-sequential neighborhood of
x in X . Hence, A is an Isn-open subset of X .

(iii) Suppose that Y is an I-closed subset of X and A is an I-closed subset of the
subspace Y . If a sequence {xn} in A is I-convergent to a point x in X , then x ∈ Y ,
thus the sequence {xn} is I-convergent to x in the subspace Y , so x ∈ A. Hence,
the set A is an I-closed subset of X .


�
Definition 2.4 A topological space X is called an I-FU-space if for each A ⊂ X and
x ∈ A, there exists a sequence {xn} in A with xn

I−→ x in X [30]. X is called an
I-sequential space if a subset A of X is open if and only if it is I-open in X [29].

It is well known that every first-countable space is an I-FU-space and every I-FU-
space is an I-sequential space [26,30].
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Let I = I f in . The I-sequential neighborhood of a point, Isn-open set, Isn-closed
set, I-open set, I-closed set and I-sequential space are called a sequential neigh-
borhood of the point, sn-open set, sn-closed set, sequentially open set, sequentially
closed set and sequential space, respectively.

Lemma 2.5 The following statements hold.

(i) Sequentially open subsets and sn-open subsets coincide in a topological space.
(i i) Every sequential space is an I-sequential space.

Proof (i) By Lemma 2.1 every sn-open subset is sequentially open. If a subset A of a
topological space X is not sn-open, then there exist a point x ∈ A and a sequence
{xn} in X converging to the point x ∈ A such that {n ∈ N : xn /∈ A} /∈ I f in . Let
N = {n ∈ N : xn /∈ A}. Then N is infinite and the subsequence {xn}n∈N still
converges to x , thus the set X\A is not sequentially closed in X , and therefore,
A is not sequentially open in X . This implies that sequentially open subsets and
sn-open subsets coincide.

(ii) It follows from Lemma 2.1 that every I-open subset of a topological space is
sequentially open. Thus, every sequential space is an I-sequential space.


�
Let G be a method on a set X and A ⊂ X . The G-hull of the set A is defined as

the set {G(x) : x ∈ s(A) ∩ cG(X)}, which is denoted by [A]G ; the G-kernel of A is
defined as the set {l ∈ X : there is no x ∈ s(X\A) ∩ cG(X) with l = G(x)}, which
is denoted by (A)G [26]. By means of I-convergence, the following operators of a
topological space X have been defined [26]. For each A ⊂ X , put

[A]Is = {x ∈ X : there exists a sequence {xn} in A with xn
I−→ x},

(A)Is = {x ∈ X : there exists no sequence {xn} in X\A with xn
I−→ x},

which are called an Is-hull and Is -kernel of the set A in X , respectively. It is easy to
check that a set A is an I-closed subset in X if and only if A = [A]Is , and a set A is
an I-open subset in X if and only if A = (A)Is [26]. For a topological space X and
each A ⊂ X , the following operations have been discussed [27]:

[A]seq = {x ∈ X : there exists a sequence {xn} in A with xn → x},
(A)seq = {x ∈ X : A is a sequential neighborhood of x}.

Therefore, we obtained some results of pseudo-open mappings and sequentially quo-
tient mappings. The following new operators of a topological space X will be studied
in this paper. For each A ⊂ X , put

[A]Isn = {x ∈ X : if U is an I-sequential neighborhood of x, then U ∩ A �= ∅},
(A)Isn = {x ∈ X : A is an I-sequential neighborhood of x},
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which are called an Isn-closure and an Isn-interior of the set A in X , respectively. It
is easy to check that a set A is an Isn-closed subset in X if and only if A = [A]Isn ,
and a set A is an Isn-open subset in X if and only if A = (A)Isn .

Lemma 2.6 Let X be a topological space. If A, B ⊂ X, then

(i) [A]Is = X\(X \ A)Is [26, Theorem 3.5];
(i i) [A]Isn = X\(X \ A)Isn ;

(i i i) A◦ ⊂ (A)Isn ⊂ (A)Is ⊂ A ⊂ [A]Is ⊂ [A]Isn ⊂ A; and
(iv) (A ∩ B)Isn = (A)Isn ∩ (B)Isn , and [A ∪ B]Isn = [A]Isn ∪ [B]Isn .
Proof (ii) If x ∈ (X\A)Isn , then X\A is an I-sequential neighborhood of x and
(X\A) ∩ A = ∅, and thus, x /∈ [A]Isn . This implies that [A]Isn ⊂ X\(X \ A)Isn . If
x /∈ [A]Isn , then there exists an I-sequential neighborhood U of x with U ∩ A = ∅,
so U ⊂ X\A, therefore x ∈ (X\A)Isn . Hence, X\(X \ A)Isn ⊂ [A]Isn . This shows
that [A]Isn = X\(X \ A)Isn .

(iii) By Lemma 2.1, it results that A◦ ⊂ (A)Isn . If x ∈ (A)Isn\(A)Is , then there

exists a sequence {xn} in X\A with xn
I−→ x , and thus, N = {n ∈ N : xn /∈ A} ∈ I,

which is a contradiction. This implies that (A)Isn ⊂ (A)Is . If x ∈ X\A, since the
constant sequence x, x, · · · is I-convergent to x , x /∈ (A)Is . This shows that (A)Is ⊂
A. By the above (i) and (ii), it results that A ⊂ [A]Is ⊂ [A]Isn ⊂ A.

(iv) We only need prove that (A ∩ B)Isn = (A)Isn ∩ (B)Isn . It is obvious that
(A ∩ B)Isn ⊂ (A)Isn ∩ (B)Isn . On the other hand, suppose that x ∈ (A)Isn ∩ (B)Isn
and a sequence {xn} in X is I-convergent to the point x . Then A, B are all I-sequential
neighborhoods of x , so {n ∈ N : xn /∈ A} ∈ I and {n ∈ N : xn /∈ B} ∈ I. It follows
that {n ∈ N : xn /∈ A ∩ B} = {n ∈ N : xn /∈ A} ∪ {n ∈ N : xn /∈ B} ∈ I. This
implies that the set A ∩ B is an I-sequential neighborhood of x , i.e., x ∈ (A ∩ B)Isn .
Therefore, (A ∩ B)Isn = (A)Isn ∩ (B)Isn . 
�

It is a question whether (A∩ B)Is = (A)Is ∩ (B)Is and [A∪ B]Is = [A]Is ∪[B]Is
for subsets A and B of a topological space X . There is an example showing that the
union of two G-closed subsets in a topological space is not always G-closed [26, part
(1) of Example 2.14], and thus, the intersection of two G-open subsets is not always
G-open.

It is a classical topic in general topology to establish the relationship between spaces
and mappings [4,28].

Definition 2.7 Let X ,Y be topological spaces. Given a mapping f : X → Y ,

(i) f is called an I-continuous provided U is an I-open subset of Y then f −1(U )

is an I-open subset of X [32, Definition 4.1].
(ii) f is called an Isn-continuous providedU is an Isn-open subset of Y then f −1(U )

is an Isn-open subset of X .
(iii) f is called preserving I-convergence provided for each sequence {xn} in X with

xn
I−→ x , the sequence {( f (xn)} in Y is I-convergent to f (x) [24].

I-continuous mappings and mappings preserving I-convergence are most com-
monly used in ideal topological spaces. They have the following relations.
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Lemma 2.8 [32, Theorem 4.2] Every continuous mapping preserves I-convergence,
and every mapping preserving I-convergence is I-continuous.

By I-open subsets and Isn-open subsets in topological spaces, we will define and
study certain topologies on a set and some mappings from a topological space onto
another a set in the following sections. In order to facilitate reading and comparison,
we will list some main terminology and notation to be discussed in this paper.

Remark 2.9 Terminology and notation.
Suppose that I is an ideal on N. Let (X , τ ) be a topological space and f : X → Y

be a surjective mapping.

(i) I-topological space: the family of all I-open subsets is closed under finite inter-
sections, see Definition 5.2.

(ii) τI (I-open topology induced by τ ): the topology of the set X generated by all
I-open subsets as a subbase, see Definition 5.2.

(iii) XI (I-open topological space induced by τ ): (X , τI), see Definition 5.2.
(iv) τIs (Is-open topology induced by τ ): the family of all I-open subsets of (X , τ )

where (X , τ ) is an I-topological space, see Definition 5.2.
(v) XIs (Is-open topological space induced by τ , or Is-coreflection of (X , τ )):

(X , τIs ), see Definition 5.2.
(vi) τ f ,I (I-open topology induced by τ and f ): the topology of the set Y generated

by a family {U ⊂ Y : f −1(U ) ∈ τI} as a subbase, see Lemma 5.7.
(vii) I-neighborhood space: every I-open subset is Isn-open, see Definition 3.1.
(viii) τIsn (Isn-open topology induced by τ ): the family of all Isn-open subsets of

(X , τ ), see Definition 3.1.
(ix) XIsn (Isn-open topological space induced by τ , or Isn-coreflection of (X , τ )):

(X , τIsn ), see Definition 3.1.
(x) τ f ,Isn (Isn-open topology induced by τ and f ): the family

{U ⊂ Y : f −1(U ) is an Isn-open subset of X},

see Remark 4.6 and Lemma 4.4.

3 I-Neighborhood Spaces

In order to answer the question what a family related to I-open subsets of a topolog-
ical space generates a topology, in this section we introduce I-neighborhood spaces,
discuss their basic properties and give the equivalent conditions of the transformations
among various neighborhoods defined by I-convergence.

Any family of Isn-open subsets of a topological space is closed under arbitrary
unions. In fact, let {Aλ}λ∈3 be a family of Isn-open subsets of a topological space
X . Then (

⋃
λ∈3 Aλ)Isn ⊂ ⋃

λ∈3 Aλ = ⋃
λ∈3(Aλ)Isn ⊂ (

⋃
λ∈3 Aλ)Isn . Therefore,⋃

λ∈3 Aλ = (
⋃

λ∈3 Aλ)Isn , i.e., the set
⋃

λ∈3 Aλ is an Isn-open subset of X . Put

τIsn = {A ⊂ X : A = (A)Isn }.
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By part (iv) of Lemma 2.6, τIsn is a topology for the set X .

Definition 3.1 Let (X , τ ) be a topological space.

(i) X is called an I-neighborhood space provided a subset A of X is I-open if and
only if A = (A)Isn .

(ii) The family τIsn is called an Isn-open topology induced by the topology τ (and the
ideal I), and the topological space (X , τIsn ) is called an Isn-open topological
space induced by the space (X , τ ) or an Isn-coreflection of the space (X , τ ),
which is denoted by XIsn .

It is well known that the sequential coreflection sX of a topological space X is the
set X endowed with the topology consisting of sequentially open subsets of X [5]. By
part (i) of Lemma 2.5, if X is a topological space, then the sequential coreflection sX
is exactly the Isn-coreflection XIsn for the ideal I f in on N.

Lemma 3.2 If a topology μ of a set X contains each I-open subset of a topologi-
cal space (X , τ ), then both spaces (X , τ ) and (X , μ) have the same I-convergent
sequences if and only if μ = τIsn , derived from this that (X , μ) is an I-sequential
space.

Proof Let’s first prove the following assertion.
Claim Both topological spaces (X , τ ) and (X , τIsn ) have the same I-convergent

sequences.
In fact, suppose that x ∈ X and {xn} is a sequence in X . It follows from τ ⊂ τIsn

that if xn
I−→ x in τIsn then xn

I−→ x in τ . Conversely, suppose that xn
I−→ x in τ , and

x ∈ A ∈ τIsn . Then A is an I-sequential neighborhood of x ; thus, the sequence {xn}
is I-eventually in A, i.e., {n ∈ N : xn /∈ A} ∈ I. This implies that xn

I−→ x in τIsn .
Claim is proved.

Suppose that both spaces (X , τ ) and (X , μ) have the same I-convergent sequences.
Since the family μ contains each I-open subset of (X , τ ), by Lemma 2.1, τIsn ⊂ μ.
On the other hand, if A ∈ μ, then A is an Isn-open subset of (X , μ). Since both
spaces (X , τ ) and (X , μ) have the same I-convergent sequences, they have the same
Isn-open subsets, and thus, A ∈ τIsn . This shows that μ = τIsn .

Now, suppose that μ = τIsn . Since both spaces (X , τ ) and (X , τIsn ) have the same
I-convergent sequences, both spaces (X , τ ) and (X , μ) have the same I-convergent
sequences. If A is an I-open subset of (X , μ), then A is an I-open subset of (X , τ ).
And since μ contains each I-open subset of (X , τ ), we have that A ∈ μ. This implies
that (X , μ) is an I-sequential space. 
�

Remark 3.3 (i) If (X , μ) is an I-sequential space and the family μ contains each
I-open subset of (X , τ ), then “μ = τIsn” is not necessarily true. For example, let
(X , τ )be a non-discrete first-countable space, and letμbe the discrete topologyof
the set X . Then each I-open subset of (X , τ ) is also open in (X , τ ) and τ = τIsn ,
thusμ contains each I-open subset of (X , τ ) and (X , μ) is an I-sequential space,
but μ �= τIsn .
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(ii) ByClaim of the proof in Lemma 3.2, both topological spaces (X , τ ) and (X , τIsn )
have the same I-closed subsets, I-open subsets, I-sequential neighborhoods of
a point, Isn-closed subsets and Isn-open subsets; in addition, for each A ⊂ X the
operations [A]Isn , (A)Isn , [A]Is and (A)Is are consistent in topological spaces
(X , τ ) and (X , τIsn ), respectively. Since the family of all Isn-open subsets in
(X , τ ) is τIsn and both spaces (X , τ ) and (X , τIsn ) have the same Isn-open
subsets, we have that (τIsn )Isn = τIsn .

Wediscuss the relationship amongvarious neighborhoodsdefinedbyI-convergence
in topological spaces.

Lemma 3.4 Suppose that (X , τ ) is a topological space. The following statements
hold.

(i) X is an I-sequential space if and only if X is an I-neighborhood space and
τ = τIsn .

(i i) X is an I-neighborhood space if and only if any I-neighborhood of each point
is an Isn-neighborhood of the point in X.

(i i i) X is an I-sequential space if and only if any I-neighborhood of each point is a
neighborhood of the point in X.

Proof We only need prove the necessity of part (i), the rest are easy to verify directly.
Let X be an I-sequential space. If A is an I-open subset of X , then A is open in X ,
and by Lemma 2.1, A is Isn-open. Thus, X is an I-neighborhood space. Obviously,
we have that τ ⊂ τIsn . If A ∈ τIsn , then A = (A)Isn , and in view of Lemma 2.1, A
is an I-open subset of X , thus A is open in X , and therefore, A ∈ τ . It follows that
τ = τIsn . 
�
Theorem 3.5 The following are equivalent for a topological space (X , τ ).

(i) Any I-sequential neighborhood of each point is an Isn-neighborhood of the point
in X.

(i i) For each A ⊂ X, clτIsn (A) = [A]Isn , and intτIsn (A) = (A)Isn .
(i i i) For each A ⊂ X, [A]Isn is Isn-closed, and (A)Isn is Isn-open in X.

Proof (i) ⇒ (ii). By part (iii) of Lemma 2.6, [A]Isn ⊂ clτIsn (A). If x ∈ clτIsn (A)

andU is an I-sequential neighborhood of x , by condition (i), then there exists an Isn-
open subset V of X such that x ∈ V ⊂ U , thus V ∈ τIsn , so V ∩ A �= ∅, therefore
U ∩ A �= ∅, and hence, x ∈ [A]Isn . This implies that clτIsn (A) ⊂ [A]Isn . It shows
that clτIsn (A) = [A]Isn . By part (ii) of Lemma 2.6, intτIsn (A) = (A)Isn .

(ii) ⇒ (iii). Since I-sequential neighborhoods of each point in X and XIsn are
same, by part (iii) of Lemma 2.6, we have that [A]Isn ⊂ [[A]Isn ]Isn ⊂ clτIsn (A). It
follows from condition (ii) that [[A]Isn ]Isn = [A]Isn . Thus, [A]Isn is Isn-closed in X .
By part (ii) of Lemma 2.6, (A)Isn is Isn-open in X .

(iii) ⇒ (i). Suppose that x ∈ X and A is an I-sequential neighborhood of x in X .
Then x ∈ (A)Isn ⊂ A and by condition (iii), (A)Isn is Isn-open in X , and thus, A is
an Isn-neighborhood of x . 
�
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Remark 3.6 (i) Since any family of Isn-open subsets of a topological space X is
closed under arbitrary unions, a subset A of X is Isn-open if and only if A is an
Isn-neighborhood of x for each x ∈ A. It is easy to check that the following are
equivalent for a topological space (X , τ ).

(a) τ = τIsn .
(b) Every Isn-open subset of X is open.
(c) Any Isn-neighborhood of each point is a neighborhood of the point in X .
(d) intτIsn (A) = intτ (A), and clτIsn (A) = clτ (A) for each A ⊂ X .

(ii) By Definition 2.4, a topological space X is an I-FU-space if and only if for each
A ⊂ X , we have that [A]Is = A, i.e., (A)Is = A◦. In addition, for each A ⊂ X ,
(A)Isn = (A)Is if and only if provided A is not an I-sequential neighborhood
of x in X then there is a sequence {xn} in X\A with xn

I−→ x .

Corollary 3.7 The following are equivalent for a topological space (X , τ ).

(i) Any I-sequential neighborhood of each point is a neighborhood of the point in
X.

(i i) For each A ⊂ X, A◦ = (A)Isn , and A = [A]Isn .
(i i i) τ = τIsn and for each A ⊂ X, clτIsn (A) = [A]Isn , and intτIsn (A) = (A)Isn .
(iv) For each A ⊂ X, (A)Isn is open, and [A]Isn is closed in X.

Proof It follows frompart (i) ofRemark 3.6 andTheorem3.5 that (i)⇒ (iii).Moreover,
the implications (iii) ⇒ (ii) ⇒ (iv) are obvious. Next, we prove that (iv) ⇒ (i).
Suppose that x ∈ X and A is anI-sequential neighborhood of x . Then x ∈ (A)Isn ⊂ A
and (A)Isn is open in X by part (iv), and thus, A is a neighborhood of x . 
�
Theorem 3.8 I-Neighborhood spaces have the following properties.

(i) Being hereditary with respect to I-open (resp. I-closed) subspaces.
(i i) Being preserved by topological sums.

Proof Let X be an I-neighborhood space.

(i) Suppose that Y is an I-open subset of X and A is an I-open subset of Y . Then
Y is an Isn-open subset in X . By part (ii) of Lemma 2.3, A is an Isn-open subset
in X . By part (i) of Lemma 2.3, A is an Isn-open subset in Y . Hence, Y is an
I-neighborhood space.
Let Y be an I-closed subset of X and F be an I-closed subset of Y . By part
(iii) of Lemma 2.3, F is I-closed in X , thus F is Isn-closed in X , and so F is
Isn-closed in Y . Therefore, Y is an I-neighborhood space.

(ii) Let {Xα}α∈3 be a family of I-neighborhood spaces. Put X = ⊕
α∈3 Xα being the

topological sum of {Xα}α∈3. We will show that the space X is an I-neighborhood
space. LetU be an I-open subset in X . For each α ∈ 3, by part (i) of Lemma 2.3,
we see that U ∩ Xα is I-open in the subspace Xα . By the assumption, we have
that U ∩ Xα is Isn-open in Xα , and by part (ii) of Lemma 2.3, U ∩ Xα is
Isn-open in X . According to the definition of topological sums, we obtain that
U = ⋃

α∈3(U ∩ Xα) is Isn-open in X . Thus, X is an I-neighborhood space. 
�
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Theorem 3.9 The following are equivalent for a topological space (X , τ ).

(i) X is an I-neighborhood space.
(i i) XIsn is an I-sequential space.

(i i i) XIsn is an I-neighborhood space.

Proof (i) ⇒ (ii). Suppose that A is an I-open subset of XIsn . By part (ii) of Remark
3.3, A is an I-open subset of X . Since X is an I-neighborhood space, we have that
A = (A)Isn , and A is an open subset of XIsn . Therefore, XIsn is an I-sequential
space.

It follows frompart (i) of Lemma3.4 that (ii) ⇒ (iii).Next,we prove that (iii) ⇒ (i).
Let A be an I-open subset of X . Then A is an I-open subset of XIsn . Since XIsn is an
I-neighborhood space, we have that A = (A)Isn ; therefore, X is an I-neighborhood
space. 
�

By part (i) of Lemma 3.4 and Theorem 3.9 we have the following corollary.

Corollary 3.10 A topological space (X , τ ) is an I-sequential space if and only if XIsn
is an I-sequential space and τ = τIsn .

Example 3.11 If I is the minimal or a maximal ideal onN, then each topological space
is an I-neighborhood space.

Proof It follows from part (i) of Lemma 2.5 that if I is the minimal ideal on N then
each topological space is an I-neighborhood space. Now, suppose that I is a maximal
ideal onN and A is an I-open subset of a topological space X . If x ∈ A and a sequence
{xn} in X is I-convergent to x , put E = {n ∈ N : xn /∈ A}. By part (iv) of Lemma 2.1,
N\E /∈ I. Since I is a maximal ideal on N, we have that E ∈ I. Therefore, the
sequence {xn} is I-eventually in A. Hence, A is an Isn-open subset of X . So X is an
I-neighborhood space. 
�

We have not found an ideal I on N and a topological space X such that X is not an
I-neighborhood space.

Theorem 3.12 Suppose that both X ,Y are topological spaces. If f : X → Y is a
mapping, then the following are equivalent.

(i) f preserves I-convergence.
(i i) f is an Isn-continuous mapping.

(i i i) If F is an Isn-closed subset of Y , then f −1(F) is an Isn-closed subset of X.
(iv) f ([A]Isn ) ⊂ [ f (A)]Isn for each A ⊂ X.
(v) If U is an I-sequential neighborhood of a point y in Y and x ∈ f −1(y), then

f −1(U ) is an I-sequential neighborhood of x in X.

Proof (i) ⇒ (v). Let U be an I-sequential neighborhood of a point y in Y and x ∈
f −1(y). Suppose that a sequence {xn} in X is I-convergent to the point x ∈ X . Since
the mapping f preserves I-convergence, the sequence { f (xn)} in Y is I-convergent
to f (x). Thus, the set {n ∈ N : xn /∈ f −1(U )} = {n ∈ N : f (xn) /∈ U } ∈ I,

123



1992 S. Lin

so the sequence {xn} is I-eventually in f −1(U ). Hence, f −1(U ) is an I-sequential
neighborhood of x .

(v) ⇒ (iv). Let A ⊂ X . Suppose that x ∈ [A]Isn ⊂ X . If U is an I-sequential
neighborhood of f (x) in Y , by condition (v), then f −1(U ) is an I-sequential neigh-
borhood of x in X , thus f −1(U ) ∩ A �= ∅, i.e., U ∩ f (A) �= ∅, and hence,
f (x) ∈ [ f (A)]Isn . This implies that f ([A]Isn ) ⊂ [ f (A)]Isn .
(iv) ⇒ (iii). Let F be an Isn-closed subset of Y . It follows from condition (iv) that

f ([ f −1(F)]Isn ) ⊂ [ f ( f −1(F))]Isn ⊂ [F]Isn = F , i.e., [ f −1(F)]Isn ⊂ f −1(F).
This shows that f −1(F) is an Isn-closed subset of X .

(iii) ⇒ (ii). Let U be an Isn-open subset of Y . Then Y\U is an Isn-closed subset
of Y . By condition (iii), f −1(Y\U ) = X \ f −1(U ) is an Isn-closed subset of X ,
and thus, f −1(U ) is an Isn-open subset of X . By part (ii) of Definition 2.7, f is an
Isn-continuous mapping.

(ii) ⇒ (i). Suppose that a sequence xn
I−→ x in X and U is an open subset in Y

with f (x) ∈ U . Since U is an Isn-open subset of Y , it follows from condition (ii)
that f −1(U ) is an Isn-open subset of X and x ∈ f −1(U ). Thus, the sequence {xn}
is I-eventually in f −1(U ), and therefore, {n ∈ N : f (xn) /∈ U } = {n ∈ N : xn /∈
f −1(U )} ∈ I. It implies that the sequence f (xn)

I−→ f (x) in Y . Hence, f preserves
I-convergence. 
�

By (i) ⇔ (ii) in Theorem3.12, we can rename amapping preserving I-convergence
as an Isn-continuous mapping. Thus, if (X , τ ) and (Y , μ) are topological spaces,
then a mapping f : (X , τ ) → (Y , μ) is Isn-continuous if and only if the mapping
f : (X , τIsn ) → (Y , μIsn ) is continuous. Recall the concept of sequential continuity.
By Lemma 2.8, continuous mappings ⇒ Isn-continuous mappings ⇒ I-continuous
mappings. Suppose that both X ,Y are topological spaces and f : X → Y is amapping.
The mapping f is said to be sequentially continuous provided U is sequentially open
in Y then f −1(U ) is sequentially open in X [7]; the mapping f is said to be preserving
convergence of sequences if for each sequence {xn} with xn → x in X , the sequence
f (xn) → f (x) in Y . We have the following corollary by part (i) of Lemma 2.5 and
Theorem 3.12.

Corollary 3.13 [7, Theorem 3.1] Sequential continuous mappings and the mappings
preserving convergence of sequences coincide.

Theorem 3.14 A topological space X is an I-neighborhood space if and only if every
I-continuous mapping on the space X is an Isn-continuous mapping.
Proof Suppose that X is an I-neighborhood space and a mapping f : X → Y is
I-continuous. Let U be an Isn-open subset of Y . Since U is an I-open subset of Y
and f is I-continuous, f −1(U ) is an I-open subset of X . It follows from that X is
an I-neighborhood space that f −1(U ) is an Isn-open subset of X . Therefore, f is an
Isn-continuous mapping.

Conversely, suppose that X is not an I-neighborhood space. Then there exists an
I-open subset O of X such that it is not Isn-open. Let Y = {0, 1} and the set Y be
endowed with the following topology: the sets ∅, {0} and Y are open in Y , and the set
{1} is open in Y if and only if the set O is I-closed in X . Define a mapping f : X → Y
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as f (x) = 0, if x ∈ O; and f (x) = 1, if x ∈ X\O . First, we prove that the mapping f
isI-continuous. LetU be anI-open subset ofY .We can assume thatU = {1}, because
O is an I-open subset of X . If {1} is not an open subset of Y , we define a sequence
{yn} in Y with each yn = 0, then the sequence yn → 1, and thus, yn

I−→ 1. Since U is
an I-open subset, by part (iv) of Lemma 2.1, ∅ = {n ∈ N : yn ∈ U } /∈ I, which is
a contradiction. Therefore, {1} is open in Y , and O is I-closed in X , i.e., f −1(U ) is
I-open in X . This shows that f is an I-continuous mapping. Since {0} is open in Y
and f −1({0}) = O is not Isn-open in X , the mapping f is not Isn-continuous. 
�

Another form of Theorem 3.14 is described in part (iii) of Remark 4.2.

Example 3.15 There exists an I-sequential space (X , τ ) such that property “τ = τIsn”
is not hereditary.

Let I be the minimal ideal on N, and let (X , τ ) be Arens’s space S2 [28, Example
1.8.6]. Then X is a sequential space. Thus, X is an I-sequential space, and by part
(i) of Lemma 3.4, τ = τIsn . Denote X = {an : n ∈ ω} ∪ {an,m : n,m ∈ N},
where the sequence an → a0 and the sequence an,m → an for each n ∈ N. Put
Y = X\{an : n ∈ N}. Then there exists no non-trivial convergent sequence in Y
[28], and hence, each subset of Y is an Isn-open subset in Y . Since Y is not a discrete
subspace of X , the topology μ = τ |Y of Y is not of property “μ = μIsn”.

Let A = {an : n ∈ ω}. Then (A)Isn = {a0} and ((A)Isn )Isn = ∅. Thus, the set
(A)Isn is not always an Isn-open subset. Similarly, the set [A]Isn is not always an
Isn-closed subset for each A ⊂ X .

Question 3.16 Is the property of I-neighborhood spaces hereditary with respect to
subspaces?

Example 3.17 Define a topology τ on the set N ∪ {∞}, ∞ /∈ N, as follows.

(a) Each point n ∈ N is isolated.
(b) Each open neighborhood U of ∞ is of the form (N\I ) ∪ {∞}, for each I ∈ I.

We denote the set N ∪ {∞} equipped with this topology by �(I). Since {n ∈ N :
n /∈ (N\I ) ∪ {∞}} = I ∈ I for each I ∈ I, the sequence n I−→ ∞ in �(I).

Proof It is showed that the space �(I) is a compact space if and only if I is the
minimal ideal on N [32, Example 2.7], where the I-convergence is exactly the usual
convergence. In [22, Exercise 4M], it was mentioned that for a maximal ideal I
on N, the space �(I) is extremally disconnected, and hence, there is no non-trivial
convergent sequence in it.

(i) τ = τIsn . It is obvious that τ ⊂ τIsn . Let A ∈ τIsn , and we can assume ∞ ∈ A.

Then A is anI-sequential neighborhood of the point∞. By the sequence n I−→ ∞,
we have that {n ∈ N : n /∈ A} ∈ I. Put I = {n ∈ N : n /∈ A}, then I ∈ I and
A = (N\I ) ∪ {∞} ∈ τ . This shows that τ = τIsn .

(ii) �(I) is an I-neighborhood space if and only if �(I) is an I-FU-space.
It is obvious that every I-FU-space is an I-neighborhood space. Suppose that
�(I) is an I-neighborhood space. It follows from part (i) of Lemma 3.4 that
�(I) is an I-sequential space. Since the point ∞ is a unique accumulation point
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of �(I), each subset of �(I) is open or closed. By part (i) of Theorem 3.8, each
subspace of�(I) is an I-sequential space, and therefore,�(I) is an I-FU-space
by [32, Example 6.5].
By Example 3.11, �(I) is an I-FU-space if I is a maximal ideal on N. 
�

4 Isn-Quotient Spaces

With regard to Question 1.4, in this section we will answer the following question:
How to characterize the finest topology of the range that makes the mapping from a
topological space onto a set preserve I-convergence (be Isn-continuous)? We intro-
duce Isn-quotient mappings and discuss some topological properties of Isn-quotient
spaces.

Definition 4.1 Suppose that both X ,Y are topological spaces and amapping f : X →
Y is surjective.

(i) f is called a quotient (resp. anI-quotient)mapping [32, Definition 5.1] if for each
U ⊂ Y , the set f −1(U ) is open (resp. I-open) in X if and only ifU is open (resp.
I-open) in Y , where the space Y is called a quotient (resp. an I-quotient) space
induced by the mapping f (and the ideal I).

(ii) f is called an Isn-quotient mapping if for each U ⊂ Y , the set f −1(U ) is Isn-
open in X if and only if U is Isn-open in Y , where the space Y is called an
Isn-quotient space induced by the mapping f and the ideal I.

(iii) f is called an I-covering mapping [32, Definition 5.1] if whenever L is an I-
convergent sequence in Y , there exists an I-convergent sequence S in X with
f (S) = L .

Remark 4.2 (i) It is obvious that every quotient (resp. I-quotient) mapping is a
continuous (resp. an I-continuous) mapping, and by Theorem 3.12, every Isn-
quotient mapping is an Isn-continuous mapping.

(ii) A mapping f : (X , τ ) → (Y , μ) is an Isn-quotient mapping if and only if the
mapping f : (X , τIsn ) → (Y , μIsn ) is a quotient mapping.

(iii) Since the mapping f : X → Y in the proof of the sufficiency of Theorem 3.14 is
an I-quotient mapping, we may restate Theorem 3.14 in the following form: A
topological space X is an I-neighborhood space if and only if every I-quotient
mapping on the space X is an Isn-continuous mapping.

(iv) Let I be the minimal ideal on N. The I-quotient mapping is called a sequentially
quotient mapping [7], and the Isn-quotient mapping is called an sn-quotient
mapping. By part (i) of Lemma 2.5, sequentially quotient mappings and sn-
quotient mappings coincide in topological spaces.

Lemma 4.3 The following are hold.

(i) For each topological space X, the identity id : XIsn → X is a continuous and
I-covering mapping.

(i i) Every I-covering mapping is an I-quotient (resp. Isn-quotient) mapping if and
only if it is an I-continuous (resp. Isn-continuous) mapping.
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Proof Part (i) and the necessity of part (ii) follow by Lemma 3.2 and part (i) of Remark
4.2, respectively. Next, we prove that the sufficiency of part (ii) holds. Suppose that
f : X → Y is an I-covering and I-continuous (resp. Isn-continuous) mapping. If
U ⊂ Y , {yn} is a sequence in Y with yn

I−→ y ∈ U and f −1(U ) is an I-open (resp.
Isn-open) subset of X , then there exists a sequence {xn} in X with xn

I−→ x such that
each f (xn) = yn and f (x) = y, thus x ∈ f −1(U ) and {n ∈ N : xn ∈ f −1(U )} /∈
I (resp. {n ∈ N : xn /∈ f −1(U )} ∈ I), therefore {n ∈ N : yn ∈ U } /∈ I (resp.
{n ∈ N : yn /∈ U } ∈ I), and hence, U is an I-open (resp. Isn-open) subset of Y . This
shows that f is an I-quotient (resp. Isn-quotient) mapping. 
�
Lemma 4.4 Suppose that (X , τ ) is a topological space, Y is a set and f : X → Y is
a surjective mapping. Put τ f ,Isn = {U ⊂ Y : f −1(U ) is an Isn-open subset of X}.
Then

(i) τ f ,Isn is a topology of Y .
(i i) τ f ,Isn is the topology of Y which is the finest topology that makes f preserve

I-convergence.
(i i i) τ f ,Isn = (τ f ,Isn )Isn .
(iv) f : (X , τ ) → (Y , τ f ,Isn ) is an Isn-quotient mapping.
Proof For the convenience of narration, let μ = τ f ,Isn .
(i) Since any family of Isn-open subsets of a topological space is closed under

arbitrary unions or finite intersections, it is easy to see that the family μ is a
topology of the set Y .

(ii) First, we prove that the mapping f : (X , τ ) → (Y , μ) preserves I-convergence.
Suppose that a sequence {xn} in X is I-convergent to a point x ∈ X and f (x) ∈
U ∈ μ. Then f −1(U ) is an Isn-open subset of X and x ∈ f −1(U ). We have that
{n ∈ N : f (xn) /∈ U } = {n ∈ N : xn /∈ f −1(U )} ∈ I, and thus, the sequence
f (xn)

I−→ f (x) in (Y , μ). This implies that the mapping f : (X , τ ) → (Y , μ)

preserves I-convergence. On the other hand, suppose that ν is a topology of Y
and f : (X , τ ) → (Y , ν) preserves I-convergence. If V ∈ ν, i.e., V is an open
subset of (Y , ν), then V is an Isn-open subset of (Y , ν). It follows from Theorem
3.12 that f −1(V ) is an Isn-open subset of X . Hence, V ∈ μ. Therefore ν ⊂ μ.
The proof of (ii) is completed.

(iii) It is obvious that μ ⊂ μIsn . Suppose that U ∈ μIsn . Then U is an Isn-open
subset of the space (Y , μ). By Theorem 3.12 and the above-mentioned part (ii),
f −1(U ) is an Isn-open subset of X , so U ∈ μ. Hence, μ = μIsn .

(iv) By the above-mentioned condition (ii), f : (X , τ ) → (Y , τ f ,Isn ) preserves I-
convergence. Suppose thatU ⊂ Y and f −1(U ) is an Isn-open subset of X . Then
U ∈ μ, and thus, U is an Isn-open subset of Y . Therefore, the mapping f is an
Isn-quotient mapping.


�
The following is the main result in this section.

Theorem 4.5 Suppose that both X ,Y are topological spaces and f : (X , τ ) → (Y , μ)

is a surjective mapping. Then the following are equivalent.
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(i) The topology μ of the space Y is the finest topology that makes f preserve
I-convergence.

(i i) μ = τ f ,Isn .
(i i i) The mapping f is an Isn-quotient mapping and μ = μIsn .

Proof By Lemma 4.4, (i) ⇔ (ii) ⇒ (iii).
(iii) ⇒ (ii). Suppose that f : X → (Y , μ) is an Isn-quotient mapping and μ =

μIsn . LetU ∈ μ. Since f preserves I-convergence, f −1(U ) is an Isn-open subset of
X . On the other hand, if V ⊂ Y and f −1(V ) is an Isn-open subset of X , since f is an
Isn-quotient mapping, V is an Isn-open subset of Y , therefore V ∈ μIsn = μ. This
shows that μ = {U ⊂ Y : f −1(U ) is an Isn-open subset of X} = τ f ,Isn . 
�
Remark 4.6 The topology τ f ,Isn of Y in Lemma 4.4 is called an Isn-open topology
induced by the topology τ and the mapping f . Theorem 4.5 shows that the Isn-open
topology induced by the topology τ and the mapping f is exactly the finest topology
of Y that makes f preserve I-convergence (be Isn-continuous).

The following example will show that two conditions “Isn-quotient mapping” and
“μ = μIsn” in part (iii) of Theorem 4.5 are independent. Thus, the topology of an Isn-
quotient space induced by a mapping f is not always an Isn-open topology induced
by the topology τ and the mapping f .

Example 4.7 (i) There exist an ideal I on N and an Isn-quotient (resp. I-quotient)
mapping f : X → Y such that the topology μ of Y is not the finest topology of Y that
makes f preserve I-convergence (resp. be I-continuous).

In fact, take Y = N ∪ {p}, where p ∈ βN\N, and the set Y is endowed with the
subspace topologyμ of the Čech-Stone compactification βN. Since the space Y has no
non-trivial convergent sequence [19, Corollary 3.6.15], every subset of Y is sn-open
in Y . Let X be the set Y endowed with the discrete topology and let f : X → Y
be the identity. Then f is continuous. Let I be the minimal ideal on N. Then f
is an Isn-quotient (resp. I-quotient) mapping. Since each I-convergent sequence of
X is trivial (resp. X is a discrete space), the mapping f : X → (Y , ν) preserves
I-convergence (resp. is I-continuous) for any topology ν of Y , and thus, the finest
topology of Y that makes f preserve I-convergence (resp. be I-continuous) is the
discrete topology, which is different with μ.

(i i) There exist an ideal I on N and a continuous and non-Isn-quotient (resp.
non-I-quotient) mapping f : X → (Y , μ) with μ = μIsn .

Let I be the minimal ideal on N, and let (Y , μ) be Arens’s space S2, see Example
3.15. Then Y is an I-sequential space, and thus,μ = μIsn . Let X be the set Y endowed
with the discrete topology and let f : X → Y be the identity. Then f is continuous.
Since X is a discrete space and Y is not a discrete space, the mapping f is neither
an Isn-quotient mapping nor an I-quotient mapping. By Theorems 4.5 and 3.14, the
topology μ of Y is not the finest topology of Y that makes f preserve I-convergence
or be I-continuous.
Lemma 4.8 Suppose that both X and Y are topological spaces and f : X → Y is a
mapping. Then the following are hold.
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(i) Let X be an I-neighborhood space. If f is an Isn-quotient mapping, then f is an
I-quotient mapping and Y is an I-neighborhood space.

(i i) Let Y be an I-neighborhood space. If f is an Isn-continuous and I-quotient
mapping, then f is an Isn-quotient mapping.

Proof (i) Let X be an I-neighborhood space. Suppose that f : X → Y is an
Isn-quotient mapping. Then f is an Isn-continuous mapping, and thus, f is an
I-continuous mapping. If U ⊂ Y and f −1(U ) is an I-open subset of X , since
X is an I-neighborhood space, f −1(U ) is an Isn-open subset of X , thusU is an
Isn-open subset of Y , and therefore,U is an I-open subset of Y . This shows that
f is an I-quotient mapping. Let V be an I-open subset of Y . Then f −1(V ) is
an I-open subset of X , thus f −1(V ) is an Isn-open subset of X , and hence, V is
an Isn-open subset of Y . This implies that Y is an I-neighborhood space.

(ii) LetY be anI-neighborhood space. Suppose that f : X → Y is anIsn-continuous
and I-quotient mapping. If f −1(U ) is an Isn-open subset of X , then f −1(U ) is
an I-open subset of X , thus U is an I-open subset of Y , and therefore, U is an
Isn-open subset of Y . It implies that the mapping f is an Isn-quotient mapping.


�
Lemma 4.9 Suppose that (X , τ ) is a topological space. Then every continuous Isn-
quotient mapping onto the space X is a quotient mapping if and only if τ = τIsn .

Proof Suppose that every continuous Isn-quotient mapping onto the space X is a
quotient mapping. It is obvious that τ ⊂ τIsn . Let id : XIsn → X be the identity. Then
id is a continuous and Isn-quotient mapping, and thus, id is a quotient mapping. This
shows that the mapping id is a homeomorphism, and τ = τIsn .

Conversely, suppose that τ = τIsn and f : Z → X is a continuous Isn-quotient
mapping. If U ⊂ X and f −1(U ) is open in Z , then f −1(U ) is an Isn-open subset of
Z , thus U is an Isn-open subset of X , and therefore, U is an open subset of X . This
shows that the mapping f is quotient. 
�
Theorem 4.10 The following are equivalent for a topological space X.

(i) X is an I-sequential space.
(i i) Every quotient mapping on the space X is I-quotient.

(i i i) X is an I-neighborhood space and every continuous I-covering (resp. I-
quotient, or Isn-quotient) mapping onto the space X is quotient.

Proof (i) ⇔ (ii) has been proved in [32, Theorem 5.8].
(i) ⇒ (iii). Suppose that (X , τ ) is an I-sequential space. By part (i) of Lemma 3.4,

X is an I-neighborhood space and τ = τIsn . By parts (ii) of Lemma 4.3 and (ii) of
Lemma 4.8, we can assume the mapping f : Z → X is continuous and Isn-quotient.
It follows from Lemma 4.9 that the mapping f is quotient.

(iii) ⇒ (i). Suppose that (X , τ ) is an I-neighborhood space and every continuous
I-covering (resp. I-quotient, or Isn-quotient) mapping onto X is quotient. By Lemma
4.3, the identity id : XIsn → X is a continuous I-covering (resp. I-quotient, or Isn-
quotient) mapping, thus it is a quotient mapping, and hence, τIsn = τ . It follows from
part (i) of Lemma 3.4 that X is an I-sequential space. 
�
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By Theorem 4.10 and Example 3.11, we have the following corollary [32, Theorem
5.6]: Let I be a maximal ideal on N and X be a topological space. Then X is an I-
sequential space if and only if every I-quotient mapping onto the space X is quotient.

Example 4.11 Let I be an ideal on N. The set X = [0, ω1] is endowed with the
following topology: the only non-isolated point ω1 has the neighborhoods of the usual
ordered topology. Then

(i) There is not any non-trivial convergent sequence in X .

(i i) A sequence xn
I−→ x ∈ X if and only if the set {n ∈ N : xn �= x} ∈ I.

(i i i) Each subset X is an Isn-subset.
(i) and (ii) were showed in [32, Example 2.2]. Next, we show that (iii) holds. If

x ∈ A ⊂ X , then A is an I-sequential neighborhood of x . In fact, suppose that a
sequence {xn} is I-convergent to the point x in X . Then {n ∈ N : xn /∈ A} ⊂ {n ∈ N :
xn �= x} ∈ I. Thus, each subset of X is an Isn-open subset.

This implies that X is an I-neighborhood space, τIsn is the discrete topology of the
set X and τ �= τIsn . This also shows that (X , τIsn ) is an I-FU-space, but X is even not
an I-sequential space. Since the identity id : XIsn → X is an I-covering mapping,
an I-covering mapping does not preserve an I-sequential space.
Question 4.12 Is a space X satisfying one of the following conditions an I-
neighborhood space?

(i) Every Isn-continuous and I-quotient mapping onto the space X is an Isn-
quotient mapping.

(i i) Every Isn-quotient mapping on the space X is an I-quotient mapping.

5 I-Topological Spaces and I-Quotient Spaces
Quotient, sequentially quotient and sequence-covering mappings are one of the most
powerful tools in studying sequential spaces [28]. We introduced and studied I-
quotient mappings and I-covering mappings [32]. When we discuss I-continuous
mappings and I-quotient mappings, we will encounter the following natural question,
see Question 1.4.

Question 5.1 Suppose that (X , τ ) is a topological space and f : X → Y is a surjective
mapping.How to characterize a topologyμ of the set Y such that it is the finest topology
that makes f : (X , τ ) → (Y , μ) be I-continuous?

We answer the above question to the Isn-continuous mapping f in Theorem 4.5.
From the angle of I-convergence, I-open sets are more simpler and more natural than
Isn-open sets in ideal topological spaces. In comparisonwith Lemma 4.4 and Theorem
4.5, this question involves the topology generated by all I-open sets in topological
spaces. We introduce the following concepts.

Definition 5.2 Let (X , τ ) be a topological space.
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(i) The topology of the set X generated by all I-open subsets as a subbase is called
an I-open topology induced by the topology τ (and the ideal I), which is denoted
by τI .

(ii) The topological space (X , τI) is called an I-open topological space induced by
the topological space (X , τ ), which is denoted by XI .

(iii) (X , τ ) is called an I-topological space if the family of all I-open subsets of X
is closed under finite intersections. Therefore, the I-open topology

τI = {A ⊂ X : A = (A)Is }

is called an Is-open topology induced by the topology τ (and the ideal I) [26,
Definition 6.1], which is denoted by τIs ; and the I-open topological space XI is
called an Is-open topological space induced by the topological space (X , τ ), or
an Is -coreflection of the topological space (X , τ ), which is denoted by XIs .

By Lemma 2.1, we have that τ ⊂ τIsn ⊂ τI . Obviously, a topological space (X , τ )

is an I-sequential space if and only if τ = τI , and X is an I-neighborhood space if and
only if τIsn = τI . Thus, each I-neighborhood space is an I-topological space. Around
Question 5.1, in this section we will discuss the relationship among I-continuous
mappings, I-quotient mappings and Isn-quotient mappings in I-topological spaces.
Lemma 5.3 I-topological spaces are preserved by I-quotient mappings.
Proof Suppose that f : X → Y is anI-quotientmapping, where X is anI-topological
space. If U and V are I-open subsets of the space Y , then f −1(U ) and f −1(V ) are
I-open subsets of X . Since X is an I-topological space, we obtain that f −1(U ) ∩
f −1(V ) = f −1(U ∩ V ) is an I-open subset of X . And since f is I-quotient, the
intersection U ∩ V is an I-open subset of Y . Hence, Y is an I-topological space. 
�

The following lemma is a continuation of Lemma 3.2 and part (ii) of Remark 3.3.

Lemma 5.4 The following are equivalent for a topological space X.

(i) Both spaces X and XI have the same I-convergent sequences.
(i i) The identity id : XI → X is a continuous and I-covering mapping.

(i i i) The identity id : XI → X is an Isn-quotient mapping.
(iv) The identity id : X → XI is an Isn-continuous mapping.
(v) X is an I-neighborhood space.

Proof (i) ⇔ (v). By Lemma 3.2, both spaces (X , τ ) and (X , τI) have the same I-
convergent sequences if and only if τIsn = τI , i.e., (X , τ ) is an I-neighborhood
space.

(i) ⇒ (ii) is obvious. By part (ii) of Lemma 4.3 we have that (ii) ⇒ (iii). And
(iii) ⇒ (iv) is obvious.

(iv) ⇒ (v). If A is an I-open subset of the space (X , τ ), then A is open in the
space XI , and thus, A is Isn-open in XI . Since the mapping id : X → XI is an
Isn-continuous mapping, the set A is Isn-open in X . This implies that X is an I-
neighborhood space. 
�
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By Lemma 3.2, τIsn is the finest topology of the set X which contains each I-open
subset of the space (X , τ ) and has the same I-convergent sequences as the space
(X , τ ). Next, we discuss the following question involved in I-open subsets: How to
determine the finest topology of the set X which contains each I-open subsets of the
space (X , τ ) and has the same I-open subsets as the space (X , τ )?

Lemma 5.5 The following are equivalent for a topological space X.

(i) Both spaces X and XI have the same I-open subsets.
(i i) The identity id : XI → X is an I-quotient mapping.

(i i i) The identity id : X → XI is an I-continuous mapping.
(iv) X is an I-topological space and XI is an I-sequential space.
Proof The implications (i) ⇒ (ii) ⇒ (iii) are obvious.

(iii) ⇒ (iv). Suppose that the mapping id : X → XI is an I-continuous mapping.
If A and B are I-open subsets of X , then A and B are open in the space XI , thus
A∩ B is open in XI , and therefore, A∩ B is I-open in XI . Since id : X → XI is I-
continuous, the set A∩B is I-open in the space X . Hence, the family of I-open subsets
of X is closed under finite intersections, and it implies that X is an I-topological space.
If V is an I-open subset of the space XI , then V is I-open in X , and thus, V ∈ τI ,
i.e., V is open in XI . This shows that XI is an I-sequential space.

(iv) ⇒ (i). Suppose that X is an I-topological space and XI is an I-sequential
space. Obviously, every I-open subset of X is an I-open subset of XI . If U is an
I-open subset of XI , then U is open in XI , and thus, U ∈ τI , i.e., U is I-open in
XI . Therefore, both spaces X and XI have the same I-open subsets. 
�
Theorem 5.6 Let (X , τ ) be a topological space. If a topology μ of the set X contains
each I-open subset of (X , τ ), then both spaces (X , τ ) and (X , μ) have the same I-
open subsets if and only if μ = τI , (X , τ ) is an I-topological space and (X , μ) is an
I-sequential space.
Proof The sufficiency is true byLemma5.5.Next,wewill show the necessary. Suppose
that both spaces (X , τ ) and (X , μ) have the same I-open subsets. Since the family
μ contains each I-open subset of (X , τ ), we have that τI ⊂ μ. O the other hand, if
A ∈ μ, then A is I-open in the space (X , μ), and thus, A ∈ τI . This implies that
μ = τI . By Lemma 5.5, the space (X , τ ) is an I-topological space and the space
(X , μ) is an I-sequential space. 
�

Next, we will further consider extending the identity in Lemma 5.5 to a mapping
from a topological space onto another topological space. Suppose that (X , τ ) is a
topological space and f : X → Y is a surjective mapping. The topology of the
set Y generated by a family {U ⊂ Y : f −1(U ) ∈ τI} as a subbase is called an
I-open topology induced by the topology τ and the mapping f , which is denoted
by τ f ,I . Obviously, if (X , τ ) is an I-topological space, then τ f ,I = {U ⊂ Y :
f −1(U ) is I-open in X}; if (X , τ ) is an I-neighborhood space, then τ f ,I = τ f ,Isn .

Lemma 5.7 Suppose that f : X → Y is a surjective mapping. The following state-
ments hold.
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(i) If (X , τ ) is an I-topological space and (Y , τ f ,I) is an I-sequential space, then
f : (X , τ ) → (Y , τ f ,I) is I-continuous.

(i i) If f : (X , τ ) → (Y , τ f ,I) is I-continuous, then
(a) (Y , τ f ,I) is an I-sequential space and f is an I-quotient mapping; and
(b) a topologyμ of the set Y is the finest topology that makes f : (X , τ ) → (Y , μ)

be I-continuous if and only if μ = τ f ,I .

Proof (i) Suppose that (X , τ ) is an I-topological space and (Y , τ f ,I) is an I-
sequential space. Let U be an I-open subset of the space Y . By the property
of I-sequential spaces of Y , the set U is open in Y , i.e., U ∈ τ f ,I . Since X is an
I-topological space, we have that f −1(U ) is I-open in the space X . Hence, f is
I-continuous.

(ii) Suppose that f : (X , τ ) → (Y , τ f ,I) is an I-continuous mapping.
(a) If V is an I-open subset of the space (Y , τ f ,I), then f −1(V ) is an I-open subset

of the space (X , τ ), and thus, V ∈ τ f ,I , i.e., V is open in Y . Therefore, Y is
an I-sequential space. Let U be a subset of Y such that f −1(U ) is I-open in
X . Then U ∈ τ f ,I , and thus, U is I-open in Y . Therefore, f is an I-quotient
mapping.

(b) Suppose that a topology μ of the set Y is the finest topology that makes f :
(X , τ ) → (Y , μ) be I-continuous. Since the mapping f : (X , τ ) → (Y , τ f ,I)

is I-continuous, we have that τ f ,I ⊂ μ. Let U ∈ μ. Since the mapping f :
(X , τ ) → (Y , μ) is I-continuous, we have that U ∈ τ f ,I , and thus, μ ⊂ τ f ,I .
Therefore, μ = τ f ,I .
Conversely, suppose that μ = τ f ,I . Then the mapping f : (X , τ ) → (Y , μ) is
I-continuous. Let ν be a topology of the set Y such that f : (X , τ ) → (Y , ν) is
an I-continuous mapping. Then ν ⊂ τ f ,I = μ, and thus,μ is the finest topology
that makes f : (X , τ ) → (Y , μ) be I-continuous.


�
The following is the main result in this section.

Theorem 5.8 Let (X , τ ) be an I-topological space, f : X → Y be a surjective
mapping and (Y , τ f ,I) be an I-sequential space. Then the following are equivalent.

(i) A topology μ of the set Y is the finest topology that makes f : (X , τ ) → (Y , μ)

be I-continuous.
(i i) μ = τ f ,I .

(i i i) f : (X , τ ) → (Y , μ) is an I-quotient mapping and (Y , μ) is an I-sequential
space.

Proof By Lemma 5.7, we have that (i) ⇔ (ii) ⇒ (iii). Next, we will show that (iii) ⇒
(i). Suppose that f : (X , τ ) → (Y , μ) is an I-quotient mapping and (Y , μ) is an I-
sequential space.And suppose that ν is a topology of the setY and f : (X , τ ) → (Y , ν)

is I-continuous. If V ∈ ν, then V is I-open in the space (Y , ν), and thus, f −1(V )

is I-open in the space (X , τ ). Since f : (X , τ ) → (Y , μ) is an I-quotient mapping,
we have that the set V is I-open in (Y , μ). And since (Y , μ) is an I-sequential space,
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we obtain that V ∈ μ. This implies that ν ⊂ μ. It follows from that the mapping
f : (X , τ ) → (Y , μ) is I-continuous that the family μ is the finest topology that
makes f : (X , τ ) → (Y , μ) be I-continuous. 
�

Part (i) of Example 4.7 shows that the condition “I-sequential space” in part (iii)
of Theorem 5.8 cannot be omitted. Part (ii) of Example 4.7 shows that the condition
“(Y , τ f ,I) be an I-sequential space” cannot be replaced by “(Y , μ) be an I-sequence
space” in Theorem 5.8.

Corollary 5.9 Let X be an I-neighborhood space. Then the following are equivalent
for a surjective mapping f : X → (Y , μ).

(i) μ is the finest topology that makes f be I-continuous.
(i i) μ = τ f ,I .

(i i i) f is an I-quotient mapping and Y is an I-sequential space.
(iv) f is an Isn-quotient mapping and μ = μIsn .

Proof Since X is an I-neighborhood space, it follows from Lemmas 4.4 and part
(ii) of 5.7 that (Y , τ f ,I) is an I-sequential space. By Theorem 5.8, we have that
(i) ⇔ (ii) ⇔ (iii). By Theorems 3.14 and 4.5, we have that (i) ⇔ (iv). 
�

Applying Corollary 5.9 and Example 3.11 to the usual convergence of sequences
in topological spaces, we have the following corollary, which is a partial answer to
Question 1.4, and a new and interesting result for sequentially quotient mappings.

Corollary 5.10 Suppose that both X ,Y are topological spaces and f : X → Y is a
surjective mapping. Then the following are equivalent.

(i) The topology of Y is the finest topology that makes f be sequentially continuous.
(i i) A subset U of Y is open in Y if and only if f −1(U ) is sequentially open in X.

(i i i) The mapping f is a sequentially quotient mapping and Y is a sequential space.
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