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Abstract
The present work is intended to investigate optimal control for time-dependent
variational–hemivariational inequalities in which the constraint set depends on time.
Based on the existence, uniqueness and boundedness of the solution to the inequality,
we deliver two continuous dependence results with respect to the time, and then, an
existence result for an optimal control problem is presented. Finally, a semiperme-
ability problem and a quasistatic frictional contact problem are given to illustrate our
main results.
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1 Introduction

Let X be a reflexive Banach space and for every t ∈ R+ := [0,+∞) K (t) be a
nonempty, closed and convex subset of X . Let A : R+ × X → X∗ and ϕ : X × X → R

be given maps to be specified later, j : X → R be a locally Lipschitz function and
f : R+ → X∗ be fixed. The problem we will study in this paper is the following
time-dependent variational–hemivariational inequality.
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Problem 1 Find u : R+ → X such that, for all t ∈ R+, u(t) ∈ K (t) and

〈A(t, u(t)) − f (t), v − u(t)〉X + ϕ(u(t), v) − ϕ(u(t), u(t))

+ j0(u(t); v − u(t)) ≥ 0, ∀v ∈ K (t). (1)

Hemivariational inequalities were introduced by Panagiotopoulos (see [14,16,17])
in the 1980s involvingClarke’s generalized directional derivative of a locally Lipschitz
function. Variational–hemivariational inequalities are the important generalization
of variational inequalities and hemivariational inequalities which can be seen as a
very effective mathematical tool which brings variational inequalities and hemivari-
ational inequalities together since it involves both convex and nonconvex functions.
They appear in a variety of mechanical problems, for example the unilateral contact
problems in nonlinear elasticity, the problems describing the adhesive and friction
effects, the nonconvex semipermeability problems, the masonry structures and the
delamination problems in multilayered composites (see, e.g., [9,15]). For more about
the existence, continuous dependence and convergence of solutions to several vari-
ational and hemivariational inequalities and related optimal control, we refer to
[1,8,10,11,18,19,21–23] and the references therein.

The goal of this paper is to study the optimal control for time-dependent variational–
hemivariational inequalities. Based on the existence, uniqueness and boundedness of
the solution to the inequality (see [10,18]), we deliver some dependence results with
respect to the time when the constraints have different forms in which the Mosco
convergence is involved. Moreover, an existence result for an optimal control problem
is presented. It is worth pointing out that there are several novelties of the present paper.
On the one hand,we consider the constraint sets depending on the time in the inequality
problem, which is first investigated, and this study develops the theory of variational–
hemivariational inequalities. On the other hand, we obtain that if tn → t in R+, then
u(tn) → u(t) in X , when the constraint set K (t) has different forms. Finally, we
illustrate the abstract result to a semipermeability problem and a quasistatic frictional
contact problem.

The rest of this paper is organized as follows: In Sect. 2, we review some of the
standard facts which are used in the theory of variational and hemivariational inequal-
ities. An existence and uniqueness result is given at the end of the section. Section 3
is first devoted to the proofs of continuous dependence results for the time-dependent
variational–hemivariational inequality. An optimal control problem is then considered.
In the last section, we apply the main results in Sect. 3 to a semipermeability problem
and a quasistatic frictional contact problem.

2 Preliminaries

Let (X , ‖ · ‖X ) be a Banach space. We denote by X∗ its dual space and by 〈·, ·〉X the
duality pairing between X∗ and X . LetC(R+; X) be the space of continuous functions
defined on R+ with values in X .
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Definition 2 A function f : X → R is said to be lower semicontinuous (l.s.c.) at u,
if for any sequence {un}n≥1 ⊂ X with un → u, we have f (u) ≤ lim inf f (un). A
function f is said to be l.s.c. on X , if f is l.s.c. at every u ∈ X .

Definition 3 [2,4] Let ϕ : X → R∪{+∞} be a proper, convex and l.s.c. function. The
mapping ∂ϕ : X → 2X

∗
defined by

∂ϕ(u) = { u∗ ∈ X∗ | 〈u∗, v − u〉X ≤ ϕ(v) − ϕ(u) for all v ∈ X }

for u ∈ X is called the subdifferential of ϕ. An element u∗ ∈ ∂ϕ(u) is called a
subgradient of ϕ in u.

Definition 4 [2,4] Given a locally Lipschitz function ϕ : X → R, we denote by
ϕ0(u; v) the (Clarke) generalized directional derivative of ϕ at the point u ∈ X in
the direction v ∈ X defined by

ϕ0(u; v) = lim sup
λ→0+, ζ→u

ϕ(ζ + λv) − ϕ(ζ )

λ
.

The generalized gradient of ϕ at u ∈ X , denoted by ∂ϕ(u), is a subset of X∗ given by

∂ϕ(u) = { u∗ ∈ X∗ | ϕ0(u; v) ≥ 〈u∗, v〉X for all v ∈ X }.

Definition 5 [4,12] Let K , Kn(n ∈ N) ⊂ X be nonempty subsets. We say that Kn

converge to K in the Mosco sense, as n → ∞, denoted by Kn
M−→ K if and only if

the two conditions hold:

(m1) for each u ∈ K , there exists {un}n∈N such that un ∈ Kn and un → u in X as
n → ∞,

(m2) for each subsequence {un}n∈N such that un ∈ Kn and un⇀u in X , we have u ∈ K .

At the end of this section, we provide a result on existence, uniqueness and bound-
edness of solution to the variational–hemivariational inequality.

Problem 6 Find u ∈ K such that

〈Au, v − u〉X + ϕ(u, v) − ϕ(u, u) + j0(u; v − u)

≥ 〈 f , v − u〉X , ∀v ∈ K .

X is a reflexive Banach space. (2)

K is a nonempty, closed, convex subset of X . (3)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : X → X∗ is such that
(a) there exists αA > 0 such that

〈Au1 − Au2, u1 − u2〉X ≥ αA ‖u1 − u2‖2X
for all u1, u2 ∈ X .

(b) there exists LA > 0 such that
‖Au1 − Au2‖X∗ ≤ L A ‖u1 − u2‖X

for all u1, u2 ∈ X .

(4)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ : X × X → R is such that
(a) ϕ(u, ·) : X → R is convex and l.s.c. on X , for all u ∈ X .

(b) there exists αϕ > 0 such that
ϕ(u1, v2) − ϕ(u1, v1) + ϕ(u2, v1) − ϕ(u2, v2)

≤ αϕ ‖u1 − u2‖X‖v1 − v2‖X
for all u1, u2, v1, v2 ∈ X .

(c) ϕ(u, λv) = λϕ(u, v), ϕ(v, v) ≥ 0 for all u, v ∈ X , λ > 0.

(5)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

j : X → R is such that
(a) j is locally Lipschitz.
(b) there exist c0, c1 ≥ 0 such that

‖∂ j(u)‖X∗ ≤ c0 + c1‖u‖X
for all u ∈ X .

(c) there exists α j > 0 such that
j0(u1; u2 − u1) + j0(u2; u1 − u2) ≤ α j ‖u1 − u2‖2X

for all u1, u2 ∈ X .

(6)

Theorem 7 [10,18] Assume that (2), (3), (4), (5), (6) hold and the following smallness
condition is satisfied:

αϕ + α j < αA. (7)

Then for any f ∈ X∗, Problem 6 has a unique solution u ∈ K. Moreover, u satisfies
the following estimate:

‖u‖X ≤ 1

αA − α j
(‖A0X‖X∗ + ‖ f ‖X∗ + c0). (8)

3 Optimal Control

In this section we study the dependence of the solution to Problem 1 with respect
to the time t and an optimal control problem. In the following, we will provide two
dependence results.

At first, we consider the following hypotheses on the data of Problem 6:

K (t) is a nonempty, closed, convex subset of X for every t ∈ R+. (9)

f ∈ C(R+; X∗). (10)
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⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : R+ × X → X∗ is such that
(a) there exists αA1 > 0 such that

〈A(t, u1) − A(t, u2), u1 − u2〉X ≥ αA1 ‖u1 − u2‖2X
for all t ∈ R+, u1, u2 ∈ X .

(b) there exists LA1 > 0 such that
‖A(t1, u1) − A(t2, u2)‖X ≤ L A1(|t1 − t2| + ‖u1 − u2‖X )

for all t1, t2 ∈ R+, u1, u2 ∈ X .

(11)

K (tn)
M−→ K (t) as tn → t . (12)

{
For any {un} ⊂ X with un⇀u in X , and all v ∈ X , we have

lim sup(ϕ(un, v) − ϕ(un, un)) ≤ ϕ(u, v) − ϕ(u, u).
(13)

{
For any {un} ⊂ X with un⇀u in X , and all v ∈ X , we have

lim sup j0(un; v − un) ≤ j0(u; v − u).
(14)

The following result concerns the first dependence result to Problem 1.

Theorem 8 Assume that (2), (5), (6), (9), (10), (11) hold and the following smallness
condition is satisfied:

αϕ + α j < αA1. (15)

Then, for every t ∈ R+, Problem 1 has a unique solution u(t) ∈ K (t) and

‖u(t)‖X ≤ 1

αA − α j
(‖A(t, 0X )‖X∗ + ‖ f (t)‖X∗ + c0). (16)

Moreover, suppose also that (12), (13), (14) hold. If tn → t in R+, then u(tn) → u(t)
in X.

Proof The existence and boundedness of solutions to Problem 1 can be deduced from
Theorem 7.

Now, we prove the dependence result.
Let tn, t ∈ R+ and tn → t as n → +∞. Let un = u(tn) ∈ K (tn) be the unique

solution to Problem 1 corresponding to tn , i.e.,

〈A(tn, un) − f (tn), v − un〉X + ϕ(un, v) − ϕ(un, un)

+ j0(un; v − un) ≥ 0, ∀v ∈ K (tn). (17)

It follows from (16) that {un} is a bounded sequence in X . Therefore, by the reflexivity
of X , passing to a subsequence if necessary, un⇀u in X as n → ∞ for some u ∈ X .
We will show that u = u(t) is the solution to Problem 1.

As un ∈ K (tn) and K (tn)
M−→ K (t), we have u ∈ K (t). Moreover, we can find a

sequence {u′
n} such that u′

n ∈ K (tn) and un → u in X , as n → ∞. We set v = u′
n in

(17), and obtain

lim sup〈A(t, un), un − u〉X
≤ lim sup〈A(t, un) − A(tn, un), un − u〉X + lim sup〈A(tn, un), un − u〉X
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≤ lim sup LA1|tn − t |‖un‖X‖un − u‖X + lim sup〈A(tn, un), un − u′
n〉X

+ lim sup〈A(tn, un), u
′
n − u〉X

≤ lim sup〈 f (tn), un − u′
n〉X + lim sup(ϕ(un, u

′
n) − ϕ(un, un))

+ lim sup j0(un; u′
n − un).

Using hypotheses (13), (14), we have

lim sup〈A(t, un), un − u〉X ≤ 0.

It is well known that a monotone Lipschitz continuous operator is pseudomonotone,
and hence, (11) implies that A(t, ·) is pseudomonotone for all t ∈ R+. Therefore, we
infer

lim inf〈A(t, un), un − v〉X ≥ 〈A(t, u), u − v〉X , ∀v ∈ X .

Subsequently, we will pass to the limit in (17). Let w ∈ K (t). From (m1) in
Definition 5, we find a sequence {wn} such that wn ∈ K (tn) and wn → w in X , as
n → ∞. Setting v = wn in (1) we obtain

〈A(tn, un) − f (tn), wn − un〉X + ϕ(un, wn) − ϕ(un, un) + j0(un;wn − un) ≥ 0.

Then, we have

〈A(t, u), u − w〉X ≤ lim sup 〈A(t, un), un − w〉X
≤ lim sup 〈A(t, un), un − wn〉X + lim sup 〈A(t, un), wn − w〉X
≤ lim sup 〈A(t, un) − A(tn, un), un − wn〉X + lim sup 〈A(tn, un), un − wn〉X
≤ lim sup LA1|tn − t |‖un‖X‖un − wn‖X

+ lim sup

(

〈 fn, un − wn〉 + ϕ(un, wn) − ϕ(un, un) + j0(un;wn − un)

)

≤ 〈 f (t), u − w〉X + ϕ(u, w) − ϕ(u, u) + j0(u;w − u).

Since w ∈ K (t) is arbitrary, we obtain that

〈A(t, u) − f (t), w − u〉X + ϕ(u, w) − ϕ(u, u) + j0(u;w − u) ≥ 0, ∀w ∈ K (t),

which implies that u ∈ K (t) solves Problem 1. Since the solution of Problem 1 is
unique, every subsequence {un} converges weakly to the same limit, and hence, the
whole original sequence {un} converges weakly to u = u(t) ∈ K (t).

Finally, we show that un → u, as n → ∞. Since K (tn)
M−→ K (t) as n → ∞, we

can find a sequence {ũn}, ũn ∈ K (tn) such that ũn → u, as ρ → 0. Choosing v = ũn
in (17), we have

αA1‖un − ũn‖2X ≤ 〈A(tn, un) − A(tn, ũn), un − ũn〉X
= 〈Aun, un − ũn〉X + 〈A(tn, u) − A(tn, ũn), un − ũn〉X + 〈−A(tn, u), un − ũn〉X
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≤ ϕ(un, ũn) − ϕ(un, un) + j0(un; ũn − un) + 〈 f (tn) − A(tn, u), un − ũn〉X
+L A1‖ũn − u‖X‖un − ũn‖X .

Passing to the upper limit in the last inequality, as n → ∞, and exploiting (11),
(13), (14), we deduce lim sup ‖un − ũn‖2X ≤ 0. Hence, we obtain ‖un − ũn‖X → 0.
Therefore, we have

0 ≤ lim ‖un − u‖X ≤ lim ‖un − ũn‖X + lim ‖ũn − u‖X = 0,

which implies that un → u in X , as ρ → 0. This completes the proof. ��
Next, we consider the constraint sets K (t) and function ϕ which satisfy the follow-

ing hypotheses:

⎧
⎪⎪⎨

⎪⎪⎩

K (t) = c(t)K + d(t)θ is such that
(a) K is a nonempty, closed and convex subset of X .

(b) 0X ∈ K (t) and θ is a given element of X .

(c) c, d : R+ → R+ are continuous.

(18)

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ϕ : X × X → R is such that
there exists function cϕ : R+ → R+ and a constant Nk > 0
such that cϕ(r) ≤ Nk for all r ∈ [0, k], and

ϕ(u, v1) − ϕ(u, v2) ≤ cϕ(‖u‖X )‖v1 − v2‖X ,

for all u, v1, v2 ∈ V .

(19)

Remark 9 We observe that if K (t), for t > 0, is defined by (18), then K (tn) → K (t)
in the sense of Mosco, as tn → t , see [12].

Next, we give the second dependence result to Problem 1.

Theorem 10 Assume that (2), (5), (6), (10), (11), (15), (18), (19) are satisfied. If tn → t
in R+, then u(tn) → u(t) in X.

Proof Let t, tn ∈ R+ and tn → t as n → +∞. We have

〈A(t, u(t)) − f (t), v − u(t)〉X + ϕ(u(t), v) − ϕ(u(t), u(t))

+ j0(u(t); v − u(t)) ≥ 0, ∀v ∈ K (t), (20)

〈A(tn, u(tn)) − f (tn), vn − u(tn)〉X + ϕ(u(tn), vn) − ϕ(u(tn), u(tn))

+ j0(u(tn); vn − u(tn)) ≥ 0, ∀vn ∈ K (tn). (21)

By the definition of K (tn), we get u(tn)−d(tn)θ
c(tn)

∈ K . Let cn = c(t)
c(tn)

. Taking v =
cn(u(tn) − d(tn)θ) + d(t)θ ∈ K (t) in (20) we obtain

〈A(t, u(t)) − f (t), cn(u(tn) − d(tn)θ) + d(t)θ − u(t)〉X
+ϕ(u(t), cn(u(tn) − d(tn)θ) + d(t)θ) − ϕ(u(t), u(t))

+ j0(u(t); cn(u(tn) − d(tn)θ) + d(t)θ − u(t)) ≥ 0.
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Taking vn = 1
cn

(u(t) − d(t)θ) + d(tn)θ ∈ K (tn) in (21) and multiplying by cn , we
obtain

〈A(tn, u(tn)) − f (tn), u(t) − d(t)θ − cn(u(tn) − d(tn)θ)〉X
+ϕ(u(tn), u(t) − d(t)θ + cnd(tn)θ) − ϕ(u(tn), cnu(tn))

+ j0(u(tn); u(t) − d(t)θ − cn(u(tn) − d(tn)θ)) ≥ 0.

Adding the above two inequalities, we deduce that

〈A(t, u(t)) − A(t, u(tn)), u(t) − u(tn)〉X
≤ 〈A(t, u(tn)) − A(t, u(t)),−d(t)θ − (cn − 1)u(tn) + cnd(tn)θ〉X

+〈A(tn, u(tn)) − A(t, u(tn)), u(t) − d(t)θ − cn(u(tn) − d(tn)θ)〉X
+ϕ(u(t), cn(u(tn) − d(tn)θ) + d(t)θ) − ϕ(u(t), u(t))

+ϕ(u(tn), u(t) − d(t)θ + cnd(tn)θ) − ϕ(u(tn), cnu(tn))

+ j0(u(t); cn(u(tn) − d(tn)θ) + d(t)θ − u(t))

+ j0(u(tn); u(t) − d(t)θ − cn(u(tn) − d(tn)θ))

+〈 f (tn) − f (t), u(t) − d(t)θ − cn(u(tn) − d(tn)θ)〉X .

From (5)(c) and (d), we have

ϕ(u(t), cn(u(tn) − d(tn)θ) + d(t)θ) − ϕ(u(t), u(t))

+ϕ(u(tn), u(t) − d(t)θ + cnd(tn)θ) − ϕ(u(tn), cnu(tn))

= ϕ(u(t), cn(u(tn) − d(tn)θ) + d(t)θ) − ϕ(u(t), u(t) − d(t)θ + cnd(tn)θ)

+ϕ(u(tn), u(t) − d(t)θ + cnd(tn)θ) − ϕ(u(tn), cn(u(tn) − d(tn)θ) + d(t)θ)

+ϕ(u(t), u(t) − d(t)θ − cnd(tn)θ) − ϕ(u(t), u(t))

+ϕ(u(tn), cn(u(tn) − d(tn)θ) + d(t)θ) − ϕ(u(tn), cnu(tn))

≤ αϕ‖u(tn) − u(t)‖X‖cnu(tn) − u(t) + 2d(t)θ − 2cnd(tn)θ‖X
+‖cnd(tn)θ − d(t)θ‖(cϕ(‖u(tn)‖X ) + cϕ(‖u(t)‖X )).

By using the identity

cnu(tn) − u(t) = u(tn) − u(t) + (cn − 1)u(tn),

we obtain

ϕ(u(t), cn(u(tn) − d(tn)θ) + d(t)θ) − ϕ(u(t), u(t))

+ϕ(u(tn), u(t) − d(t)θ − cnd(tn)θ) − ϕ(u(tn), cnu(tn))

≤ αϕ‖u(tn) − u(t)‖X‖cnu(tn) − u(t) + 2d(t)θ − 2cnd(tn)θ‖X
+‖cnd(tn)θ − d(t)θ‖X (cϕ(‖u(tn)‖X ) + cϕ(‖u(t)‖X ))

≤ αϕ‖u(tn) − u(t)‖2X + αϕ‖u(tn) − u(t)‖X‖(cn − 1)u(tn) + 2d(t)θ − 2cnd(tn)θ‖X
+‖cnd(tn)θ − d(t)θ‖X (cϕ(‖u(tn)‖X ) + cϕ(‖u(t)‖X )).
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Moreover, it follows from (6)(b) that

j0(u(t); cn(u(tn) − d(tn)θ) + d(t)θ − u(t))

+ j0(u(tn); u(t) − d(t)θ − cn(u(tn) − d(tn)θ))

≤ α j‖u(tn) − u(t)‖X‖cn(u(tn) − d(tn)θ) + d(t)θ − u(t)‖X
≤ α j‖u(tn) − u(t)‖X‖u(tn) − u(t) + (cn − 1)u(tn) − cnd(tn)θ + d(t)θ‖X
≤ α j‖u(tn) − u(t)‖2X + α j‖u(tn) − u(t)‖X‖cn − 1)u(tn) − cnd(tn)θ + d(t)θ‖X .

Hence,

(αA1 − αϕ − α j )‖u(tn) − u(t)‖2X
≤ L A1‖ − d(t)θ − (cn − 1)u(tn) + cnd(tn)θ‖X‖u(t) − u(t)‖X

+L A1|tn − t |‖u(t) − d(t)θ − cn(u(tn) − d(tn)θ)‖X
+αϕ‖u(tn) − u(t)‖X‖(cn − 1)u(tn) + 2d(t)θ − 2cnd(tn)θ‖X
+‖cnd(tn)θ − d(t)θ‖X (cϕ(‖u(tn)‖X ) + cϕ(‖u(t)‖X ))

+α j‖u(tn) − u(t)‖X‖(cn − 1)u(tn) − cnd(tn)θ + d(t)θ‖X
+‖ f (tn) − f (t)‖X∗‖u(tn) − u(t)‖X
+‖ f (tn) − f (t)‖X∗‖ − d(t)θ − (cn − 1)u(tn) + cnd(tn)θ)‖X

≤
(

L A1(|cn − 1|‖u(tn)‖X + |cnd(tn)θ − d(t)|‖θ‖X )

+αϕ(|cn − 1|‖u(tn)‖X + |2d(t) − 2cnd(tn)|‖θ‖X )

+α j (|cn − 1|‖u(tn)‖X + |cnd(tn) − d(t)|‖θ‖X )

+‖ f (tn) − f (t)‖X∗
)

‖u(tn) − u(t)‖X
+L A1|tn − t |(‖u(t)‖X + |d(t)|‖θ‖X + |cn|(‖u(tn)‖X + |d(tn)|‖θ‖X ))

+|cnd(tn) − d(t)|‖θ‖X (cϕ(‖u(tn)‖X ) + cϕ(‖u(t)‖X ))

+‖ f (tn) − f (t)‖X∗(|cn − 1|‖u(tn)‖X + |cnd(tn)θ − d(t)|‖θ‖X ).

From (16), it follows that there exists a constant k > 0 such that ‖u(tn)‖X ≤ k and
‖u(t)‖X ≤ k for sufficiently large n. Then, there exists a constant Nk > 0 such that

cϕ(‖u(tn)‖X ) ≤ Nk, cϕ(‖u(t)‖X ) ≤ Nk . (22)

Then, we have

(αA1 − αϕ − α j )‖u(tn) − u(t)‖2X
≤

(

LA1(|cn − 1|k + |cnd(tn)θ − d(t)|‖θ‖X )

+αϕ(|cn − 1|k + |2d(t) − 2cnd(tn)|‖θ‖X ) + ‖ f (tn) − f (t)‖X∗
)

‖u(tn) − u(t)‖X
+LA1|tn − t |(k + |d(t)|‖θ‖X + |cn |(k + |d(tn)|‖θ‖X )) + 2Nk |cnd(tn) − d(t)|‖θ‖X
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+‖ f (tn) − f (t)‖X∗ (|cn − 1|k + |cnd(tn)θ − d(t)|‖θ‖X ).

From the following fact

x, a, b ≥ 0 and x2 ≤ ax + b ⇒ x ≤ a + √
b,

it follows that

‖u(tn) − u(t)‖X
≤ 1

αA1 − αϕ − α j

(

L A1(|cn − 1|k + |cnd(tn)θ − d(t)|‖θ‖X )

+αϕ(|cn − 1|k + |2d(t) − 2cnd(tn)|‖θ‖X )

+α j (|cn − 1|k + |cnd(tn) − d(t)|‖θ‖X ) + ‖ f (tn) − f (t)‖X∗
)

+
√

1

αA1 − αϕ − α j

(

L A1|tn − t |(k + |d(t)|‖θ‖X + |cn|(k + |d(tn)|‖θ‖X ))

+2Nk |cnd(tn) − d(t)|‖θ‖X
+‖ f (tn) − f (t)‖X∗(cn − 1|k + |cnd(tn)θ − d(t)|‖θ‖X )

)

.

Since c(tn) → c(t), d(tn) → d(t) and f (tn) → f (t) as n → +∞, we deduce that the
right hand of the above inequality tends to 0 as n → +∞, and hence, u(tn) → u(t)
as n → +∞. Therefore, we obtain that u ∈ C(R+; X). ��
Remark 11 We observe that if d(t) = 0 for all t ∈ R+ in (18), then from the proof of
the above theorem, we can omit the condition (13).

We consider the following special case.

Problem 12 Find u : R+ = [0,+∞) → X such that, for all t ∈ R+, u(t) ∈ K and

〈A(t, u(t)) − f (t), v − u(t)〉X + ϕ(u(t), v) − ϕ(u(t), u(t))

+ j0(u(t); v − u(t)) ≥ 0, ∀v ∈ K .

The following result is a consequence of Theorem 10.

Theorem 13 Assume that (2), (5), (6), (10), (11), (15), (19) are satisfied. If tn → t in
R+, then u(tn) → u(t) in K .

Finally, we provide an existence result for an optimal control problem governed by
Problem 1.

Consider a closed interval [a, b] ⊂ R+ and a cost functional F : [a, b] × X → R,
and find a solution t∗ ∈ [a, b] to the following problem:

F(t∗, u(t∗)) = min
t∈[a,b] F(t, u(t)), (23)
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where u = u(t) ∈ K (t) denotes the unique solution of Problem 1 corresponding to
the time t .

We are now in a position to state the main result on the existence of solutions to
problem (23). We admit the following hypothesis:

F is l.s.c. on [a, b] × X . (24)

Theorem 14 Assume all the hypotheses of Theorem 8 or Theorem 10 are satisfied. If
(24) holds, then the problem (23) has at least one solution.

Proof Let {(tn, un)} ⊂ [a, b]× X be a minimizing sequence of the functional F , i.e.,

lim F(tn, un) = inf
t∈[a,b] F(t, u(t)),

where tn ∈ [a, b] and un ∈ K (tn) is the unique solution of Problem 1 that corresponds
to tn , i.e., un = u(tn). It is clear that {tn} is bounded. Then, there is a subsequence of
{tn}, denoted in the same way, such that tn → t for some t ∈ [a, b]. From Theorem 8
or Theorem 10, we infer that the sequence {un} ⊂ K (tn) converges weakly in X to
the unique solution u(t) ∈ K (t) of Problem 1. Finally, from (24), we have

F(t, u(t)) ≤ lim inf F(tn, un) = inf
t∈[a,b] F(t, u(t)),

which shows that t is a solution of the problem (23). This completes the proof. ��

4 Applications

4.1 Semipermeability Problem

In this part we consider a semipermeability problem (see [3,14–16]) to illustrate our
main results of Sect. 3.

Let 
 be a bounded domain of Rd with Lipschitz continuous boundary ∂
 = �

which consists of two disjoint measurable parts �1 and �2 such that m(�1) > 0.
Consider the following semipermeability problem.

Problem 15 Find a temperature u : 
 × R+ → R such that

− diva(x,∇u) = f̃ (t, u) in 
 × R+, (25)

f̃ (t, u) = f1(t) + f2(u), − f2(u) ∈ ∂h(x, u) in 
 × R+, (26)

u(t) ∈ U (t) for t ∈ R+, (27)

u = 0 on �1 × R+, (28)

− ∂u

∂νa
∈ k(u)∂gc(x, u) on �2 × R+. (29)
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The description of Problem 15 can be found in [23] when U is independent of t .
We introduce the following spaces:

V = { v ∈ H1(
) | v = 0 on �1 }, H = L2(
). (30)

Since m(�1) > 0, on V we can consider the norm ‖v‖V = ‖∇v‖L2(
)d for v ∈ V
which is equivalent on V to the H1(
) norm. By γ : V → L2(�) we denote the trace
operator which is known to be linear, bounded and compact. Moreover, by γ v we
denote the trace of an element v ∈ H1(
).

We need the following hypotheses study Problem 15:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

a : 
 × R
d → R

d is such that
(a) a(·, ξ) is measurable on 
 for all ξ ∈ R

d ,

and a(x, 0) = 0 for a.e. x ∈ 
.

(b) a(x, ·) is continuous on R
d for a.e. x ∈ 
.

(c) ‖a(x, ξ)‖ ≤ ma (1 + ‖ξ‖) for all ξ ∈ R
d , a.e. x ∈ 


with ma > 0.
(d) (a(x, ξ1) − a(x, ξ2)) · (ξ1 − ξ2) ≥ αa ‖ξ1 − ξ2‖2

for all ξ1, ξ2 ∈ R
d , a.e. x ∈ 
 with αa > 0.

(31)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

h : 
 × R → R is such that
(a) h(·, r) is measurable on 
 for all r ∈ R and there

exists e ∈ L2(
) such that h(·, e(·)) ∈ L1(
).

(b) h(x, ·) is locally Lipschitz on R, a.e. x ∈ 
.

(c) there exist c0, c1 ≥ 0 such that
|∂h(x, r)| ≤ c0 + c1|r | for all r ∈ R, a.e. x ∈ 
.

(d) there exists αh ≥ 0 such that
h0(x, r1; r2 − r1) + h0(x, r2; r1 − r2) ≤ αh |r1 − r2|2

for all r1, r2 ∈ R, a.e. x ∈ 
.

(32)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

g : �2 × R → R is such that
(a) g(·, r) is measurable on �2 for all r ∈ R.

(b) g(x, ·) is convex on �2, a.e. x ∈ 
.

(c) there exists Lg > 0 such that
|g(x, r1) − g(x, r2)| ≤ Lg|r1 − r2|
for all r1, r2 ∈ R, a.e. x ∈ �2.

(33)

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k : �2 × R → R+ is such that
(a) k(·, r) is measurable on �2 for all r ∈ R.

(b) there exists Lk > 0 such that
|k(x, r1) − k(x, r2)| ≤ Lk |r1 − r2|
for all r1, r2 ∈ R, a.e. x ∈ �2.

(c) k(x, 0) = 0 for a.e. x ∈ 
.

(34)

For everyt ∈ R+ U (t) is a closed, convex subset of V , f1 ∈ C(R+; H).(35)

By standard procedure, we obtain the variational formulation of Problem 15 with
the following form.
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Problem 16 Find u : R+ → V such that for all t ∈ R+, u(t) ∈ U (t) and

∫




a(x,∇u(t)) · ∇(v − u(t)) dx +
∫

�2

(
k(u(t))g(x, v) − k(u(t))g(x, u(t))

)
d�

+
∫




h0(x, u(t); v − u(t)) dx ≥
∫




f1(t)(v − u(t)) dx

for all v ∈ U (t).

Theorem 17 Assume that (31)–(35) hold and the following smallness condition is
satisfied:

Lk Lg‖γ ‖2 + αh < αa . (36)

Then, Problem 16 has a unique solution u ∈ C(R+; V ).

Proof We can apply Theorem 7 in the following functional framework: X = V ,
K = U , f (t) = f1(t) for all t ∈ R+ and

A : V → V ∗, 〈Au, v〉V =
∫




a(x,∇u) · ∇v dx for u, v ∈ V , (37)

ϕ : V × V → R, ϕ(u, v) =
∫

�2

k(u)g(v) d� for u, v ∈ V , (38)

j : V → R, j(v) =
∫




h(v) dx for v ∈ V . (39)

From the proof of [23, Theorem 32], the operator A and functions ϕ and j satisfy
hypotheses (11), (5) and (6) with αA1 = αa , αϕ = Lk Lg‖γ ‖2 and α j = αh , respec-
tively. ��

We conclude this part with the following example.

Example 18 Hypothesis (12) is satisfied for the following constraint sets for a bilateral
obstacle problem:

U (t) = U (ψ1(t), ψ2(t)) = { v ∈ V | ψ1(t) ≤ v ≤ ψ2(t) a.e. in 
 },

where ψ1, ψ2 ∈ C(R+; V ). It is clear that for every t ∈ R+, U (t) is closed convex
subset of V . We will show that

U (tn)
M−→ U (t) as tn → t . (40)

In fact, let vn ∈ U (tn) be such that vn⇀v in V , as n → ∞. Since

U (tn) = { z ∈ V | z ≥ ψ1(tn) a.e. in 
 } ∩ { z ∈ V | z ≤ ψ2(tn) a.e. in 
 },

we obtain vn − ψ1(tn) ∈ { z ∈ V | z ≥ 0 a.e. in 
 } and vn − ψ2(tn) ∈ { z ∈
V | z ≤ 0 a.e. in 
 }. Moreover, since the sets { z ∈ V | z ≥ 0 a.e. in 
 } and
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{ z ∈ V | z ≤ 0 a.e. in 
 } are weakly closed by Mazur’s theorem, we deduce that
v − ψ1(t) ∈ { z ∈ V | z ≥ 0 a.e. in 
 } and v − ψ2(t) ∈ { z ∈ V | z ≤ 0 a.e. in 
 },
and hence, v ∈ U (t).

On the other hand, for any v ∈ U (t), there exist v1 ∈ { z ∈ V | z ≥ 0 a.e. in 
 }
and v2 ∈ { z ∈ V | z ≤ 0 a.e. in 
 } such that v = v1 + ψ1(t) = v2 + ψ2(t).

Since ψ1, ψ2 ∈ C(R+; V ), it is clear that (ψ1(tn), ψ2(tn)) → (ψ1(t), ψ2(t)) in
V × V . Put vn = v1 + ψ1(tn). Then, for n large enough, we get vn ∈ U (tn). Hence,
vn = v1 + ψ1(tn) → v1 + ψ1(t) = v2 + ψ2(t) = v in V . Therefore, the convergence
(40) holds.

4.2 Quasistatic Frictional Contact Problem

In this part, we consider a quasistatic frictional contact problem which variational
formulation is a time-dependent variational–hemivariational inequality. For more fric-
tional contact problems, we refer to [5–7,13].

An elastic body occupies an open, bounded and connected set 
 ⊂ R
d , d = 1,

2, 3. The boundary of 
 is denoted by � = ∂
 and it is assumed to be Lipschitz
continuous. We also suppose that � consists of three mutually disjoint and measurable
parts �1, �2 and �3 such that meas (�1) > 0. Let ν = (νi ) be the outward unit normal
at � and let Sd be the space of second order symmetric tensors on R

d . For a vector
field, notation uν and uτ represent the normal and tangential components of u on �

given by uν = u · ν and uτ = u − uνν. Also, σν and σ τ represent the normal and
tangential components of the stress field σ on the boundary, i.e., σν = (σν) · ν and
σ τ = σν − σνν.

The classical model for the quasistatic frictional contact problem is as follows:

Problem 19 Find a displacement field u : 
×R+ → R
d , a stress field σ : 
×R+ →

S
d and an interface force η : �3 × R+ → R such that

σ = A(ε(u)) in 
 × R+, (41)
Divσ + f 0 = 0 in 
 × R+, (42)

u = 0 on �1 × R+, (43)
σν = f 2 on �2 × R+, (44)

uν ≤ g, σν + η ≤ 0, (uν − g)(σν + η) = 0, η ∈ ∂ jν(uν) on �3 × R+, (45)

‖σ τ ‖ ≤ Fb(uν), − σ τ = Fb(uν)
uτ

‖uτ ‖ if ‖uτ ‖ �= 0 on �3 × R+.

(46)

The description of Problem 19 can be found in [9,10,20] for fixed t ∈ R+.
We will use the spaces V and H defined by

V = { v ∈ H1(
;Rd) | v = 0 on �1 }, H = L2(
;Sd).
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The spaceH will be endowed with the Hilbertian structure given by the inner product

(σ , τ )H =
∫




σi j (x)τi j (x) dx,

and the associated norm ‖ · ‖H. On the space V we consider the inner product and the
corresponding norm given by

(u, v)V = (ε(u), ε(v))H, ‖v‖V = ‖ε(v)‖H for all u, v ∈ V .

Let γ : V → L2(�;Rd) be the trace operator. By the Sobolev trace theorem, we have

‖v‖L2(�;Rd ) ≤ ‖γ ‖‖v‖V for all v ∈ V . (47)

We need the following hypotheses on the data of Problem 19:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A : 
 × R+ × S
d → S

d is such that
(a) A(·, t, ε) is measurable on 
 for all t ∈ R+, ε ∈ S

d .

(b) there exists LA > 0 such that
‖A(x, t1, ε1) − A(x, t2, ε2)‖ ≤ LA(|t1 − t2| + ‖ε1 − ε2‖)

for all t1, t2 ∈ R+, ε1, ε2 ∈ S
d , a.e. x ∈ 
.

(c) there exists αA > 0 such that
(A(x, t, ε1) − A(x, t, ε2)) · (ε1 − ε2) ≥ αA‖ε1 − ε2‖2

for all t ∈ R+, ε1, ε2 ∈ S
d , a.e. x ∈ 
.

(d) A(x, t, 0) = 0 for all t ∈ R+, a.e. x ∈ 
.

(48)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

Fb : �3 × R → R is such that
(a) Fb(·, r) is measurable on �3 for all r ∈ R.

(b) there exists LFb > 0 such that
|Fb(x, r1) − Fb(x, r2)| ≤ LFb |r1 − r2|

for all r1, r2 ∈ R, a.e. x ∈ �3.

(c) Fb(x, r) = 0 for all r ≤ 0, Fb(x, r) ≥ 0 for all r ≥ 0
a.e. x ∈ �3.

(49)

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

jν : �3 × R → R is such that
(a) jν(·, r) is measurable on �3 for all r ∈ R and there

exists e ∈ L2(�3) such that jν(·, e(·)) ∈ L1(�3).

(b) jν(x, ·) is locally Lipschitz on R a.e. x ∈ �3.

(c) there exist c0 ≥ 0 and c1 ≥ 0 such that
|∂ jν(x, r)| ≤ c0 + c1|r | for all r ∈ R, a.e. x ∈ �3.

(d) there exist α jν > 0 such that
j0ν (x, r1; r2 − r1) + j0ν (x, r2; r1 − r2) ≤ α jν |r1 − r2|2
for all r1, r2 ∈ R, a.e. x ∈ �3.

(50)

We also assume that the densities of body forces and surface tractions satisfy

f 0 ∈ C(R+; L2(
;Rd)), f 2 ∈ C(R+; L2(�2;Rd)) and g ∈ C(R+;R+).
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We introduce the set of admissible displacement fields U (t) for t ∈ R+ defined by

U (t) = { v ∈ V | vν ≤ g(t) on �3 }

and define an element f : R+ → V ∗ by

〈 f (t), v〉V = 〈 f 0(t), v〉L2(
;Rd ) + 〈 f 2(t), v〉L2(�2;Rd ) (51)

for all v ∈ V , t ∈ R+.
The variational formulation of Problem 19 has the following form.

Problem 20 Find u : R+ → V such that, for all t ∈ R+, u(t) ∈ U (t) and

〈A(t, ε(u(t))), ε(v) − ε(u(t))〉H +
∫

�3

Fb(uν(t))(‖vτ‖ − ‖uτ (t)‖) d�

+
∫

�3

j0ν (uν(t); vν − uν(t)) d� ≥ 〈 f (t), v − u(t)〉V , ∀v ∈ U (t).

Theorem 21 Assume that (48), (49), (50) hold and the following smallness condition
is satisfied:

(LFb + α jν )‖γ ‖2 < αA. (52)

Then, Problem 20 has a unique solution u ∈ C(R+; V ).

Proof We apply Theorem 10 in the following functional framework: X = V , K (t) =
U (t) and

A : R+ × V → V ∗, 〈A(t, u), v〉 = 〈A(t, ε(u)), ε(v)〉H for u, v ∈ V , (53)

ϕ : V × V → R, ϕ(u, v) =
∫

�3

Fb(uν)‖vτ‖ d� for u, v ∈ V , (54)

j : V → R, j(v) =
∫

�3

jν(vν) d� for v ∈ V . (55)

For any g0 > 0, let
K = { v ∈ V | vν ≤ g0 on �3 }.

Then, K = g0
g(t)K (t) and (18) is obvious with c1(t) = c2(t) = g0

g(t) and d1(t) =
d2(t) = 0.

From the proof of [10, Theorem 32], the operator A and functions ϕ and j satisfy
hypotheses (11), (5) and (6) with αA1 = αA, αϕ = LFb‖γ ‖2 and α j = α jν ‖γ ‖2,
respectively. From Remark 11, we complete the proof. ��
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