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Abstract
Let A and B be Banach algebras with σ(B) �= ∅. Let θ, φ, γ ∈ σ(B) and Der(A×φ,γ

θ

B) be the set of all linear mappings d : A×B → A×B satisfying d((a, b)·θ (x, y)) =
d(a, b) ·φ (x, y) + (a, b) ·γ d(x, y) for all a, x ∈ A and b, y ∈ B. In this paper, we

characterize elements of Der(A ×φ,γ
θ B) in the case where A has a right identity.

We then investigate the concept of centralizing for elements of Der(A ×φ,γ
θ B) and

determine dependent elements of Der(A×φ,γ
θ B). We also apply some results to group

algebras.

Keywords Derivations · θ -Lau products · Centralizing mappings · Dependent
elements · Locally compact groups

Mathematics Subject Classification 47B47 · 43A15 · 43A20
1 Introduction

Throughout the paper, A is a Banach algebra with Jacobson radical rad(A), A is a
Banach algebra with a right identity u and right annihilator

ran(A) = {z ∈ A : az = 0 forall a ∈ A}

and B is a Banach algebra with nonempty spectrum σ(B). Let also θ, φ and γ be
elements of σ(B). In this paper, we endowed A∗∗, the second dual of A, with the first
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Arens product “�” defined by

〈m�n, τ 〉 = 〈m, nτ 〉,

where

〈nτ, a〉 = 〈n, τa〉 and 〈τa, x〉 = 〈τ, ax〉

for all m, n ∈ A∗∗, τ ∈ A∗ and a, x ∈ A. Let us recall that the topological center of
A∗∗ is denoted by Zt (A

∗∗) and is defined by

Zt (A
∗∗) = {m ∈ A∗∗ : themapping n 	→ m�n isweak∗ − weak∗ continuouson A∗∗}.

Following [25], the θ -Lau product A and B is denoted by A ×θ B and it is the direct
product A × B together with the component wise addition and the multiplication

(a, b) ·θ (x, y) = (ax + θ(y)a + θ(b)x, by).

We note that in the case where B = C and θ is the identity map on C, the unitization
Awill be obtained. We also note that if we permit θ = 0, the θ -Lau product A×θ B is
the usual direct product of Banach algebras. Hence, we disregard the possibility that
θ = 0.

A linear mapping D : A → A is called centralizing if for every a ∈ A

[D(a), a] ∈ Z(A),

where for each a, x ∈ A

[a, x] = ax − xa

and Z(A) denotes the center of A. Also,D is called a derivation if for every a, x ∈ A

D(ax) = D(a)x + aD(x).

The set of all derivations on A is denoted by Der(A). For any x ∈ A, the derivation
a 	→ [a, x] on A is called an inner derivation and it is denoted by adx . Similarly, one
can define derivations on rings.

The θ -Lau productsA×θ B were first introduced by Lau [17], for Banach algebras
that are pre-duals of von Neumann algebras, and for which the identity of the dual
is a multiplicative linear functional. Sanjani Monfared [25] extended this product to
arbitrary Banach algebras A and B. The θ -Lau products have significance and utility
due to the following reasons. First, the products can be regarded as a strongly splitting
Banach algebra extension of B byA; for the study of extensions ofBanach algebras, see
[1,9]. Second,many properties are not shared by arbitrary strongly splitting extensions,
while the θ -Lau products exhibit them; see [25]. Third, the θ -Lau products can be used
as a source of examples or counterexamples; see, for instance, [26]. These reasons
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Derivations on Banach algebras of connected multiplicative… 1729

caused that several authors studied various aspects of the products [7,15,26,27]. In
this paper, we continue these investigations and study derivation-like maps of them.
We also apply the results to Banach algebras that are important and useful in harmonic
analysis on locally compact groups.

Derivations on rings were studied by several authors [4,6,11,14,24]. For example,
Posner [24] showed that the product of two nonzero derivations on prime rings with
characteristic different from two is not a derivation. He also proved that the zero map
is the only centralizing derivation on a noncommutative prime ring. These results are
known as the Posner’s first and second theorems, respectively. Some authors studied
the results obtained on derivations of prime rings for Banach algebras [5,8,22,23]. In
the study of derivations on Banach algebras, we may assume that the algebra is unital,
because otherwise we can replace the algebra A by its unitization; i.e., A×C. On the
hand, we know that the θ -Lau products A×θ B are a generalization of the unitization
of A. Therefore, it is natural to ask whether results concerning derivations on prime
rings and Banach algebras hold for the θ -Lau products A ×θ B? The other question
comes to mind immediately: What happens to θ in these investigations? To answer
these questions, we consider linear mappings d : A × B → A × B satisfying

d((a, b) ·θ (x, y)) = d(a, b) ·φ (x, y) + (a, b) ·γ d(x, y)

for all a, x ∈ A, b, y ∈ B. We denote the set of all these mappings by Der(A×φ,γ
θ B).

In this paper, we investigate the questions concerning derivations for elements of
Der(A ×φ,γ

θ B) and attention to group algebras.
This paper is organized as follows. In Sect. 2, we give a characterization of elements

of Der(A ×φ,γ
θ B) in the case where A has a right identity or a bounded approxi-

mate identity. In Sect. 3, we investigate the concept of centralizing for elements of
Der(A×φ,γ

θ B). In Sect. 4, we study dependent elements of Der(A×φ,γ
θ B) and show

that if (a, b) is dependent element on d ∈ Der(A ×φ,γ
θ B), then a = 0 and η(b) = 0

for all η ∈ σ(B). In Sect. 5, we give applications of results to group algebras. We
show that if A is M(G) or L1(G) and B is M(G), L1(G) or C, then elements of
Der(A×φ,γ

θ B) are (η, η)-inner for all η ∈ σ(B). We also prove that if d is a nonzero

(η1, η2)-centralizing elements of Der(L∞(G)∗ ×φ,γ
θ B), the θ = φ = γ and η1 = η2.

Finally, we prove that zero is the only dependent element on derivations of A(G),
when G is a locally compact group.

2 The Characterization of Elements in Der(A×�,�
� B)

In the following, let A and B be arbitrary Banach algebras and A be a Banach algebra
with a right identity u. Let also θ , φ and γ be elements of the spectrum of B. The main
result of this section is the following theorem.
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1730 M. Ghasemi, M. J. Mehdipour

Theorem 2.1 Let d ∈ Der(A ×φ,γ
θ B). Then, there exist unique derivations dA ∈

Der(A) and dB ∈ Der(B) such that

d(a, b) = (dA(a) + (θ − γ )(b)dA(u) − φ(dB(b))u, dB(b))

for all a ∈ A and b ∈ B. Furthermore, either θ = φ = γ or d maps A into rad(A).

Proof Let a ∈ A and d(a, 0) = (x0, y0) for some x0 ∈ A and y0 ∈ B. We have

(a, 0) ·θ (u, 0) = (a, 0).

Thus,

(x0, y0) = d(a, 0) = d(a, 0) ·φ (u, 0) + (a, 0) ·γ d(u, 0)

= (x0, y0) ·φ (u, 0) + (a, 0) ·γ (z0, w0)

= (x0 + φ(y0)u + az0 + γ (w0)a, 0), (1)

where d(u, 0) = (z0, w0) for some z0 ∈ A and w0 ∈ B. Hence, y0 = 0 and so

d(a, 0) = (x0, 0). (2)

This implies that w0 = 0. From this and (1), we infer that az0 = 0 for all a ∈ A.
Therefore,

z0 ∈ ran(A).

Let b ∈ B and d(0, b) = (x1, y1) for some x1 ∈ A and y1 ∈ B. Then,

(θ(b)z0, 0) = d(θ(b)u, 0) = d((0, b) ·θ (u, 0))

= d(0, b) ·φ (u, 0) + (0, b) ·γ d(u, 0)

= (x1, y1) ·φ (u, 0) + (0, b) ·γ (z0, 0)

= (x1 + φ(y1)u + γ (b)z0, 0).

It follows that

x1 = (θ − γ )(b)z0 − φ(y1)u.

Hence,

d(0, b) = ((θ − γ )(b)z0 − φ(y1)u, y1).

From this and (2), one obtains that

d(a, b) = d(a, 0) + d(0, b) = (x0 + (θ − γ )(b)z0 − φ(y1)u, y1).
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Derivations on Banach algebras of connected multiplicative… 1731

Now, let πA : A × B → A and πB : A × B → B be the canonical projections. We
define the functions dA : A → A and dB : B → B by the formulas

dA(a) = πA(d(a, 0)) and dB(b) = πB(d(0, b)).

It is easy to see that these functions are derivations and

d(a, b) = (dA(a) + (θ − γ )(b)dA(u) − φ(dB(b))u, dB(b))

for all a ∈ A and b ∈ B. Since for every a, x ∈ A and b, y ∈ B

d((a, b) ·θ (x, y)) = d(a, b) ·φ (x, y) + (a, b) ·γ d(x, y),

we deduce that

θ(b)dA(x) + θ(y)dA(a) + (θ − γ )(by)dA(u) − φ(dB(by))u

= (θ − γ )(b)dA(u)x + φ(dB(b))(x − ux) + φ(y)dA(a)

+ φ(y)(θ − γ )(b)dA(u) − φ(y)φ(dB(b))u + (γ − φ)(dB(y))a

+ γ (b)dA(x) + γ (b)(θ − γ )(y)dA(u) − γ (b)φ(dB(y))u (3)

for all a, x ∈ A and b, y ∈ B. Taking a = x = 0 in (3), we have

(θ − γ )(by)dA(u) − φ(dB(by))u

= φ(y)(θ − γ )(b)dA(u) − φ(y)φ(dB(b))u

+ γ (b)(θ − γ )(y)dA(u) − γ (b)φ(dB(y))u (4)

for all b, y ∈ B. Subtracting (4) from (3), we arrive at

θ(b)dA(x) + θ(y)dA(a)

= (θ − γ )(b)dA(u)x + φ(dB(b))(x − ux)

+ φ(y)dA(a) + (γ − φ)(dB(y))a + γ (b)dA(x). (5)

Substituting x = 0 in (5), we obtain

(θ − φ)(y)dA(a) = (γ − φ)(dB(y))a.

Hence,

(γ − φ)(dB(y))u = (γ − φ)(dB(y))uu

= (θ − φ)(y)udA(u)

= 0.
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Thus,

(γ − φ)(dB(y))a = 0

and so

(θ − φ)(y)dA(a) = 0 (6)

for all a ∈ A and y ∈ B. Hence, (5) reduces to

(θ − γ )(b)(dA(x) − dA(u)x) = φ(dB(b))(x − ux) (7)

for all x ∈ A and b ∈ B. Now left multiplication of relation (4) by u gives

(φ − γ )(b)φ(dB(y))u = 0

for all b, y ∈ B. Note that if φdB �= 0, then φ = γ . Thus, by (6) and (7), we have

(θ − γ )(b)dA(x − ux) = φ(dB(b))(x − ux) = 0.

This together with (6) shows that θ = φ = γ or d maps A into rad(A). ��
In the sequel, we list some consequences of the proof of Theorem 2.1, which we

will frequently apply. Henceforth, we also suppose that dA and dB are derivations as
in Theorem 2.1.

(i) dA(u) ∈ ran(A).
(ii) For every a ∈ A and b ∈ B,

(θ − φ)(b)dA(a) = (θ − γ )(b)(dA(a) − dA(u)a)

= φ(dB(b))(a − ua)

= 0.

By (ii), the following statements hold.
(iii) If dA(u) = 0, then θ = φ = γ or dA is zero on A.
(iv) If A has the identity, then θ = φ = γ or dA is zero on A.
(v) If A is a Banach algebra without identity, then φdB = 0.

For amapping T , we denote the range of T by Im(T ).We now give some corollaries
of Theorem 2.1.

Corollary 2.2 Let d ∈ Der(A ×φ,γ
θ B) and θ �= φ. Then, the additive group Im(d) is

isomorphic to additive group Im(dB).

Proof Let θ �= φ. Then, dA = 0 on A. So

Im(d) = {(−φ(dB(b))u, dB(b)) : b ∈ B}.
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Define the function 	 : B → Im(d) by

	(b) = (−φ(dB(b))u, dB(b)).

It is obvious that 	 is a group epimorphism and ker(	) = ker(dB). Therefore, the
additive group Im(d) is isomorphic to the additive group

B/ker(	) = B/ker(dB),

which is isomorphic to Im(dB). ��
For η1, η2 ∈ σ(B), an element d ∈ Der(A×φ,γ

θ B) is called (η1, η2)-inner if there
exist a0 ∈ A and b0 ∈ B such that for all a ∈ A and b ∈ B

d(a, b) = (a, b) ·η1 (a0, b0) − (a0, b0) ·η2 (a, b).

Let us also recall that a Banach algebra A is called contractible if, for every Banach
A-bimodule E , every bounded derivation d : A → E is inner.

Corollary 2.3 Let A and B be contractible Banach algebras. If d is a bounded element
of Der(A ×φ,γ

θ B), then d is (η, η)-inner for all η ∈ σ(B).

Proof Let d ∈ Der(A ×φ,γ
θ B) be bounded. Then, dA and dB are bounded. If A and

B are contractible, then dA = adx and dB = ady for some x ∈ A and y ∈ B. Hence,
φdB = 0. Since A is contractible, u is the identity of A. Thus, dA(u) = 0. It follows
from Theorem 2.1 that

d(a, b) = (adx (a), ady(b))

for all a ∈ A and b ∈ B. ��
The following lemma is needed to prove our results.

Lemma 2.4 Let A be any Banach algebra. IfD ∈ Der(A), then D∗∗ ∈ Der(A∗∗).

Proof Let A be a Banach algebra and D ∈ Der(A). Then,

D∗(τ )a = τD(a) + D∗(τa)

and so

nD∗(τ ) = D∗(nτ) + D∗∗(n)τ

for all n ∈ A∗∗, τ ∈ A∗ and a ∈ A. Hence,

〈D∗∗(m�n), τ 〉 = 〈m,D∗(nτ) + D∗∗(n)τ 〉
= 〈D∗∗(m), nτ 〉 + 〈m�D∗∗(n), τ 〉
= 〈D∗∗(m)�n + m�D∗∗(n), τ 〉

123



1734 M. Ghasemi, M. J. Mehdipour

for all m, n ∈ A∗∗ and τ ∈ A∗. That is, D∗∗ is a derivation on A∗∗. ��
Now, we investigate Theorem 2.1 in the case where A has a bounded approximate

identity instead of right identity.

Proposition 2.5 Let A be a Banach algebra with a bounded approximate identity
and d be bounded element of Der(A ×θ,θ

θ B). Then, there exist unique derivations
d1 : A → Zt (A

∗∗) and d2 : B → Zt (B∗∗) such that for every a ∈ A and b ∈ B

d(a, b) = (d1(a) − θ(d2(b))u, d2(b)),

where u is a right identity of A∗∗.
Proof Let d ∈ Der(A ×θ,θ

θ B) be bounded. By [25], (A ×θ B)∗∗ is isometrically

isomorphic withA∗∗ ×θ B∗∗. Thus, d∗∗ ∈ Der(A∗∗ ×θ,θ
θ B∗∗). SinceA has a bounded

approximate identity, A∗∗ has a right identity, say u. So there exist d∗∗
A∗∗ ∈ Der(A∗∗)

and d∗∗
B∗∗ ∈ Der(B∗∗) such that

d∗∗(m, n) = (d∗∗
A∗∗(m) − θ(d∗∗

B∗∗(n))u, d∗∗
B∗∗(n))

for all m ∈ A∗∗ and n ∈ B∗∗. By weak∗–weak∗ continuity of d∗∗, we have d∗∗
A∗∗ is

weak∗–weak∗ continuous on A∗∗. Hence, for every a ∈ A, the mapping

n 	−→ d∗∗
A∗∗(a)�n

is weak∗–weak∗ continuous on A∗∗. Thus, d∗∗
A∗∗(a) ∈ Zt (A

∗∗). That is, d∗∗
A∗∗ is a

derivation from A into Zt (A
∗∗). Similarly, d∗∗

B∗∗ is a derivation from B into Zt (B∗∗).
The proof will be complete, if we only note that d∗∗ agree with d on A. ��

Let us recall that a Banach algebra A is called amenable if every bounded derivation
from A into every dual Banach A-bimodule E is inner.

Corollary 2.6 Let A and B be amenable Banach algebras. If d is a bounded element
of Der(A ×θ,θ

θ B), then there exist m ∈ A∗∗ and n ∈ B∗∗ such that

d(a, b) = (adm(a), adn(b))

for all a ∈ A and b ∈ B.

Proof LetA and B be amenable Banach algebras. Then,A and B both have a bounded
approximate identity. By Proposition 2.5, there exist derivations d1 : A → A∗∗ and
d2 : B → B∗∗ with

d(a, b) = (d1(a) − θ(d2(b))u, d2(b))

for all a ∈ A and b ∈ B. Since A and B are amenable, d1 and d2 are inner. Hence,
d1 = adm and d2 = adn for some m ∈ A∗∗ and n ∈ B∗∗. This shows that θd2 = 0.
Thus,

d(a, b) = (adm(a), adn(b)),
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as desired. ��

3 Analogues of Posner’s First and Second Theorems

We commence this section with an analogue of Posner’s first theorem [24]; see also
[8].

Theorem 3.1 Let B be prime, d1 ∈ Der(A ×φ,φ
θ B) and d2 ∈ Der(A ×θ,θ

γ B). If d1d2

is a nonzero element of Der(A ×φ,φ
γ B), then θ = φ = γ and d1d2 maps A × B into

rad(A).

Proof By Theorem 2.1, there exist d1A, d2A ∈ Der(A) and d1B, d2B ∈ Der(B) such
that

d1(a, b) = (d1A(a) − φ(d1B(b))u, d1B(b)) and d2(a, b) = (d2A(a) − θ(d2B(b))u, d2B(b))

for all a ∈ A and b ∈ B. Hence,

d1d2(a, b) = d1(d2A(a) − θ(d2B(b))u, d2B(b))

= (d1Ad2A(a) − θ(d2B(b))d1A(u) − φ(d1Bd2B(b))u, d1Bd2B(b))

for all a ∈ A and b ∈ B. If d1d2 ∈ Der(A ×φ,φ
γ B), then there exist dA ∈ Der(A) and

dB ∈ Der(B) such that

d1d2(a, b) = (dA(a) − φ(dB(b))u, dB(b))

for all a ∈ A and b ∈ B. This shows that dB(b) = d1Bd2B(b) for all b ∈ B. Thus,
d1Bd2B ∈ Der(B). It follows from [24] that dB = d1Bd2B = 0 on B. Whence

d1d2(a, b) = (dA(a), 0) = (d1Ad2A(a) − θ(d2B(b))d1A(u), 0)

and hence dA(a) = d1Ad2A(a) for all a ∈ A and b ∈ B. Hence,

d1d2(a, b) = (dA(a), 0) = (d1Ad2A(a), 0) (8)

for all a ∈ A and b ∈ B. Now, if θ �= φ or θ �= γ , then d1A = 0 or d2A = 0. In
either case, d1d2 = 0 by (8). To complete the proof, note that the last assertion of the
theorem follows from (8) and Theorem 2 in [8]. ��

Let η1, η2 ∈ σ(B). A mapping T : A× B → A× B is called (η1, η2)-centralizing
if for every a ∈ A and b ∈ B,

[T (a, b), (a, b)]η1,η2 := T (a, b) ·η1 (a, b) − (a, b) ·η2 T (a, b) ∈ Z(A) × Z(B).
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1736 M. Ghasemi, M. J. Mehdipour

In a special case when

[T (a, b), (a, b)]η1,η2 = 0,

d is called (η1, η2)-commuting. In the following, we present some analogues of Pos-
ner’s second theorem.

Theorem 3.2 Letη1, η2 ∈ σ(B), A be analgebrawithout identity andd ∈ Der(A×φ,γ
θ

B). Then, the following statements hold.

(i) If the mapping (a, b) 	→ [d(a, b), (a, b)]η1,η2 is (η1, η2)-centralizing, then either
η1 = η2 and θ = φ = γ or dA maps A into Z(A).

(ii) If the mapping (a, b) 	→ [d(a, b), (a, b)]η1,η2 is (η1, η2)-commuting, then either
η1 = η2 and θ = φ = γ or dA is zero on A

Proof Let the mapping (a, b) 	→ [d(a, b), (a, b)]η1,η2 be (η1, η2)-centralizing. Then,
the mapping a 	→ [dA(a), a] is centralizing. Thus,

dA(u) = [[dA(u), u], u] ∈ Z(A).

This implies that

dA(u) = dA(u)u = udA(u) = 0.

Hence, θ = φ = γ or dA = 0 on A.
Since A is an algebra without identity, φdB = 0 on B. So our hypothesis gives

2(η1 − η2)(b)[dA(a), a] + (η1 − η2)(b)(η1 − η2)(dB(b))a

+ (η1 − η2)(b)
2dA(a) ∈ Z(A). (9)

Let us substitute a = u in (9). Then,

(η1 − η2)(b)(η1 − η2)(dB(b))u ∈ Z(A),

which implies that

(η1 − η2)(b)(η1 − η2)(dB(b)) = 0.

The substitution −b for b in (9) leads to

− 2(η1 − η2)(b)[dA(a), a] + (η1 − η2)(b)
2dA(a) ∈ Z(A). (10)

Subtracting (9) from (10), we arrive at

2(η1 − η2)(b)[dA(a), a] ∈ Z(A).
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This together with (10) shows that

(η1 − η2)(b)
2dA(a) ∈ Z(A).

So either η1 = η2 or dA maps A into Z(A). Therefore, (i) holds. A similar argument
proves (ii). ��

As an immediate consequence of Theorem 3.2, we have the following result.

Corollary 3.3 Let η1, η2 ∈ σ(B), A be a Banach algebra without identity and d ∈
Der(A ×φ,γ

θ B). Then, the following statements hold.

(i) If d is (η1, η2)-centralizing, then either η1 = η2 and θ = φ = γ or dA maps A
into Z(A).

(ii) If d is (η1, η2)-commuting, then either η1 = η2 and θ = φ = γ or dA is zero on
A.

Theorem 3.4 Let η1, η2 ∈ σ(B) and A be a Banach algebra without identity. If d1 and
d2 are elements of Der(A×φ,γ

θ B) satisfying d1(a, b) ·η1 (a, b) − (a, b) ·η2 d2(a, b) ∈
Z(A) × Z(B) for every a ∈ A and b ∈ B, then either η1 = η2 and θ = φ = γ or d1
and d2 map A into Z(A).

Proof In view of Theorem 2.1, there exist d1A, d2A ∈ Der(A) and d1B, d2B ∈ Der(B)

such that

d1(a, b) = (d1A(a) + (θ − γ )(b)d1A(u) − φ(d1B(b))u, d1B(b))

and

d2(a, b) = (d2A(a) + (θ − γ )(b)d2A(u) − φ(d2B(b))u, d2B(b))

for all a ∈ A and b ∈ B. Hence,

d1A(a)a − ad2A(a) + (θ − γ )(b)d1A(u)a − φ(d1B(b))ua

+ φ(d2B(b))a + η1(d1B(b))a − η2(d2B(b))a + η1(b)d1A(a)

− η2(b)d2A(a) + η1(b)(θ − γ )(b)d1A(u) − η1(b)φ(d1B(b))u

− η2(b)(θ − γ )(b)d2A(u) + η2(b)φ(d2B(b))u

∈ Z(A). (11)

From this, we infer that

d1A(a)a − ad2A(a) ∈ Z(A). (12)

So

d1A(u) = 0.
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Hence, θ = φ = γ or d1A is zero on A. Setting a = 0 in (11), the following relation
obtains.

− φ(d1B(b))ua + φ(d2B(b))a + η1(d1B(b))a

− η2(d2B(b))a + η1(b)d1A(a)

− η2(b)d2A(a)

∈ Z(A). (13)

Substituting a = u in (13), we get

− φ(d1B(b))u + φ(d2B(b))u + η1(d1B(b))u

− η2(d2B(b))u − η2(b)d2A(u)

∈ Z(A).

It follows that

− φ(d1B(b))u + φ(d2B(b))u + η1(d1B(b))u

− η2(d2B(b))u − η2(b)d2A(u)

= −φ(d1B(b))u + φ(d2B(b))u

+ η1(d1B(b))u − η2(d2B(b))u

− η2(b)ud2A(u).

This shows that

d2A(u) = 0.

Thus,

− φ(d1B(b))u + φ(d2B(b))u

+ η1(d1B(b))u − η2(d2B(b))u

∈ Z(A).

Hence,

φ(d1B(b)) − φ(d2B(b)) = η1(d1B(b)) − η2(d2B(b)).

So relation (13) becomes

η1(b)d1A(a) − η2(b)d2A(a) ∈ Z(A). (14)

If we replace a by a + u in (12), then

d1A(a) − ud2A(a) ∈ Z(A).
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It follows that

− η1(b)d1A(a) + η1(b)ud2A(a) ∈ Z(A) (15)

and

η2(b)d1A(a) − η2(b)ud2A(a) ∈ Z(A). (16)

From (14) and (15), we have

η1(b)ud2A(a) − η2(b)d2A(a) ∈ Z(A). (17)

This implies that

η2(b)d2A(a) = η2(b)ud2A(a).

Hence,

d2A(a) = ud2A(a). (18)

This together with (17) shows that

(η1 − η2)(b)d2A(a) ∈ Z(A).

So, η1 = η2 or d2A(a) ∈ Z(A). On the hand, from (16) and (18), we obtain

η2(b)d1A(a) − η2(b)d2A(a) ∈ Z(A). (19)

Regarding (14) and (19), we have

(η1 − η2)(b)d1A(a) ∈ Z(A)

for all a ∈ A and b ∈ B. So η1 = η2 or d1A(a) ∈ Z(A). Therefore, the proof is
complete. ��

For a ring R, a map T : R → R is called strong commutativity preserving if

[T (r), T (s)] = [r , s]

for all r , s ∈ R. Derivation as well as strong commutativity preserving mappings
have been studied by several authors; see, for example, [3,4]. In the next result, we
investigate this concept for elements of Der(A ×φ,γ

θ B).

Theorem 3.5 Let ηi , ρi ∈ σ(B) for i = 1, 2 and A be a Banach algebra without
identity. If d is an element of Der(A ×φ,γ

θ B) satisfying [d(a, b), d(x, y)]η1,η2 =
[(a, b), (x, y)]ρ1,ρ2 for all a, x ∈ A and b, y ∈ B, then θ = φ, ρ1 = ρ2 and
η1dB = η2dB.
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Proof By hypothesis, we have

[dA(a), dA(x)] − (θ − γ )(y)dA(u)dA(a) + (θ − γ )(b)dA(u)dA(x)

+ (η1 − η2)(dB(b))dA(x) + (η1 − η2)(dB(y))dA(a)

+ (η1 − η2)(dB(b))(θ − γ )(y)dA(u)

+ (η1 − η2)(dB(y))(θ − γ )(b)dA(u)

= [a, x] + (ρ1 − ρ2)(b)x + (ρ1 − ρ2)(y)a.

Substitute a = x = 0 in the above relation. Then, it reduces to

[dA(a), dA(x)] + (η1 − η2)(dB(b))dA(x) + (η1 − η2)(dB(y))dA(a)

= [a, x] + (ρ1 − ρ2)(b)x + (ρ1 − ρ2)(y)a. (20)

If we set a = x = u in (20), then

(η1 − η2)(dB(b))dA(u) + (η1 − η2)(dB(y))dA(u) = (ρ1 − ρ2)(b)u + (ρ1 − ρ2)(y)u.

Since dA(u) ∈ ran(A), we obtain ρ1 = ρ2. Hence, (20) becomes

[dA(a), dA(x)] + (η1 − η2)(dB(b))dA(x)

+ (η1 − η2)(dB(y))dA(a)

= [a, x]. (21)

Taking a = 0 in (21), we get

(η1 − η2)(dB(b))dA(x) = 0. (22)

If dA is zero, then by (21)

[a, x] = [dA(a), dA(x)] = 0

for all a, x ∈ A. Hence, A is commutative and so A has the identity element. This
contradiction shows that dA is nonzero. Thus, θ = φ and by (22), η1dB = η2dB . ��

It is easy to see that if R is a prime ring, rs, s ∈ Z(R) and s is nonzero, then
r ∈ Z(R).

Proposition 3.6 Let η ∈ σ(B) and B be prime. If d is an element of Der(A ×φ,γ
θ B)

satisfying d((a, b) ·θ (x, y)) − (a, b) ·η (x, y) ∈ Z(A) × Z(B), then either θ = η or
A ×θ B is commutative. In both cases, dA maps A into rad(A).

Proof For every a, x ∈ A and b, y ∈ B, we have

dA(ax) + θ(b)dA(x) + θ(y)dA(a)

+ (θ − γ )(by)dA(u) − φ(dB(by))u

− (ax + η(b)x + η(y)a) ∈ Z(A) (23)
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and

dB(by) − by ∈ Z(B). (24)

Suppose that Z(B) = {0}. Then,

dB([b, y]) = [b, y] (25)

for all b, y ∈ B. Replacing y by yb in (25), we have

[b, y]dB(b) = 0.

The substitution dB(b)y for y in the above relation leads to

[b, dB(b)]ydB(b) = 0,

which yields [b, dB(b)] = 0 for all b ∈ B by primeness of B. Hence, dB is centralizing
on B. So either dB = 0 or B is commutative [24]. This and (25) imply that B is
commutative. Thus,

B = Z(B) = {0}.

This contradictions shows that Z(B) �= {0}. Choose a nonzero element in Z(B), say
b0. It follows from (24) that

dB(bb0) − bb0 ∈ Z(B) (26)

and

dB(bb20) − bb20 ∈ Z(B) (27)

for all b ∈ B. Since

dB(bb20) = dB(bb0)b0 + bb0dB(b0),

from (27) we have

(dB(bb0) − bb0)b0 + bb0dB(b0) ∈ Z(B).

This together with (26) follows that bdB(b0)b0 ∈ Z(B) and so bdB(b0) ∈ Z(B) for
all b ∈ B. That is,

dB(bb0) − dB(b)b0 ∈ Z(B)

for all b ∈ B. From this and (26), we infer that (dB(b) − b)b0 ∈ Z(B). Thus,

dB(b) − b ∈ Z(B). (28)
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This implies that dB is commuting. Hence, dB = 0 or B is commutative. In every
case, it follows from (28) that B is commutative.

On the hand, by (23) we find that

dA(ax) − ax ∈ Z(A) (29)

for all a, x ∈ A. Thus,

dA(u) − u ∈ Z(A).

This implies that

dA(u) = 0,

and so u is the identity of A. So (23) reduces to

θ(b)dA(x) + θ(y)dA(a) − (η(b)x + η(y)a) ∈ Z(A). (30)

Let us substitute in (30), y = 0. Then,

θ(b)dA(x) − η(b)x ∈ Z(A). (31)

In view of (29), we have

dA(x) − x ∈ Z(A) (32)

for all x ∈ A. Thus, dA is centralizing and so dA maps A into rad(A). From (32), we
also have

θ(b)dA(x) − θ(b)x ∈ Z(A)

for all x ∈ A and b ∈ B. By this and (31),

(η − θ)(b)x ∈ Z(A).

Therefore, η = θ or A is commutative. ��

4 Dependent Elements of Der(A×�,�
� B)

An element (a, b) ∈ A × B is said to be (η1, η2)-dependent on d ∈ Der(A ×φ,γ
θ B)

if

d(x, y) ·η1 (a, b) = (a, b) ·η2 (x, y)
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for all x ∈ A and y ∈ B. For the study of dependent elements on derivations of rings,
see [6,14,16].

Theorem 4.1 Let η1, η2 ∈ σ(b) and d ∈ Der(A ×φ,γ
θ B). If (a, b) is (η1, η2)-

dependent on d, then a = 0 and η(b) = 0 for all η ∈ σ(B).

Proof Let (a, b) be (η1, η2)-dependent on d. Then, b is dependent on dB . So for every
y ∈ B, we have

dB(y)b = by. (33)

Suppose that η ∈ σ(B) and η(b) �= 0. Then, by (33) we get

η(dB(y)) = η(y)

for all y ∈ B. Choose y0 ∈ B with η(y0) �= 0. Then,

η(y0)
2 = η(y20 ) = η(dB(y20 ))

= η(dB(y0))η(y0)

+ η(y0)η(dB(y0))

= 2η(y0)
2,

a contradiction. Hence, η(b) = 0. Since (a, b) is dependent on d, it follows that a is
dependent on dA. Thus,

dA(x)a = ax

for all x ∈ A. Thus,

a = au = dA(u)a.

Hence,

a = dA(u)dA(u)a = 0,

as claimed. ��

The following is an immediate consequence of Theorem 4.1.

Corollary 4.2 Let d ∈ Der(A×φ,γ
θ C). Then, zero is the only dependent element on d.
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5 Applications to Group Algebras

Let G denote a locally compact group with a fixed left Haar measure λ on G. Let
L∞(G) be the usual Lebesgue space as defined in [13] equipped with the essential
supremum norm ‖ · ‖∞ and L1(G) be the Banach space of integrable functions with
respect to λ. Then, with the norm ‖ · ‖1 and the convolution product “∗,” L1(G) is a
Banach algebra with a bounded approximate identity. Let us remark that L∞(G) is the
dual of L1(G) under the usual duality. This let us endow L∞(G)∗ with the first Arens
product. Hence, L∞(G)∗ with this product is a Banach algebra with a right identity;
see [12]. Let M(G) denote the measure algebra of G as defined in [13] endowed with
the convolution product “∗” and the total norm ‖ · ‖. Then, M(G) is a Banach algebra
with identity element δe, the Dirac measure at the identity element e ofG. Also, M(G)

is the dual of C0(G), the space of all continuous functions on G vanishing at infinity.

Proposition 5.1 Let A be M(G) or L1(G) and B be either M(G), L1(G) or C. If
d ∈ Der(A ×φ,γ

θ B), then d is (η, η)-inner for all η ∈ σ(B).

Proof First, we assume that d ∈ Der(M(G) ×φ,γ
θ B). It follows from Theorem 2.1

that

d(ν1, ν2) = (dM(G)(ν1) + (θ − γ )(ν2)dM(G)(δe)

− φ(dB(ν2))δe, dB(ν2))

= (dM(G)(ν1) − φ(dB(ν2))δe, dB(ν2))

for all ν1, ν2 ∈ M(G). Since

dM(G) ∈ Der(M(G)),

we have dM(G) : L1(G) → M(G) is a derivation. From [2,20], we infer that there
exists μ1 ∈ M(G) such that dM(G) = adμ1 on L1(G). Apply Theorems 2.9.53 and
3.3.40 of [9] to C0(G). Then, dM(G) = adμ1 on M(G). Similarly, dB = adμ2 on B.
So φdB = 0. Hence,

d(ν1, ν2) = (adμ1(ν1), adμ2(ν2))

for all ν1, ν2 ∈ M(G). Therefore, d is (η, η)-inner for all η ∈ σ(B).
Now, let d ∈ Der(L1(G) ×θ,θ

θ B). Then, by Proposition 2.5, there are derivations
d1 : L1(G) → Zt (L∞(G)∗) and d2 : B → Zt (B∗∗) such that for every f ∈ L1(G)

and g ∈ B

d( f , g) = (d1( f ) − θ(d2(g))u, d2(g)),

where u is a right identity of L∞(G)∗. It is well known from [18,21] that

Zt (B
∗∗) = B.
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Hence, d1 and d2 are derivations on L1(G) and B, respectively. So d1 = adμ1 and
d2 = adμ2 for some μ1, μ2 ∈ M(G). That is, d is (η, η)-inner for all η ∈ σ(B). ��

Let A(G) be the Fourier algebra of G as defined in [10] and recall that

σ(A(G)) = {εt : t ∈ G},

where εt denotes the evaluation functional at t .

Proposition 5.2 Let G be a locally compact group. Then, the following statements
hold.

(i) The only dependent element on derivations of A(G) is zero.
(ii) If G is abelian, the statement (i) holds for M(G) and L1(G) instead of A(G).

Proof Let B be either A(G), M(G) or L1(G), and let D : B → B be a derivation.
We define d : {0} × B → {0} × B by

d(0, b) = (0,D(b)).

It is easy to see that d ∈ Der({0} ×θ,θ
θ B). If ϑ ∈ B is dependent onD, then (0, ϑ) is

dependent on d. By Theorem 4.1, η(ϑ) = 0 for all η ∈ σ(B). It follows that ϑ = 0 in
the case where B = A(G). So (i) holds. For (ii), suppose that ϑ is a nonzero measure
in M(G). From Theorem 23.11 of [13], we infer that

∫
G

χ̄ dϑ �= 0

for some χ ∈ Ĝ, the character group of G. We define the mapping η0 : M(G) → C

by

η0(μ) =
∫
G

χ̄ dμ.

Then, η0 ∈ σ(M(G)) and η0(ϑ) �= 0; see Theorem 23.4 of [13]. Therefore, zero is
the only dependent element on derivations of M(G). The result is proved for L1(G)

similarly. ��
Before, we give some applications of our results to the Banach algebra L∞(G)∗, let

us recall that LUC(G) denotes the Banach space of all bounded continuous functions
f on G such that the mapping t 	→ ft from G into C(G) is continuous, where
ft (s) = f (ts) for all t, s ∈ G.

Theorem 5.3 Let η1, η2 ∈ σ(B) and d be an (η1, η2)-centralizing element of
Der(L∞(G)∗ ×φ,γ

θ B). Then, either η1 = η2 and θ = φ = γ or dL∞(G)∗ is zero
on L∞(G)∗.
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Proof Let d be an (η1, η2)-centralizing element of Der(L∞(G)∗ ×φ,γ
θ B). Then,

dL∞(G)∗ is centralizing on L∞(G)∗. Hence,

dL∞(G)∗(m)�m − m�dL∞(G)∗(m) ∈ Z(L∞(G)∗).

Replacing m by m + u in the above relation, we have

dL∞(G)∗(m) − u�dL∞(G)∗(m) ∈ Z(L∞(G)∗)

for all m ∈ L∞(G)∗. Thus,

dL∞(G)∗(m) − u�dL∞(G)∗(m) = u�dL∞(G)∗(m) − u�dL∞(G)∗(m).

So

dL∞(G)∗(m) = u�dL∞(G)∗(m)

for all m ∈ L∞(G)∗. This together with [23] yields that dL∞(G)∗ maps L∞(G)∗
into rad(u�L∞(G)∗). On the hand, by [12,19], the Banach algebra u�L∞(G)∗ is
isometrically isomorphic to the Banach algebra LUC(G)∗ and

LUC(G)∗ = M(G) ⊕ C0(G)⊥,

where

C0(G)⊥ := {H ∈ LUC(G)∗ : H |C0(G) = 0}.

Thus, LUC(G)∗/C0(G)⊥ is isomorphic to the semisimple Banach algebra M(G).
Hence,

rad(LUC(G)∗) ⊆ C0(G)⊥.

It follows that dL∞(G)∗ maps L∞(G)∗ into C0(G)⊥.
Now, let dL∞(G)∗ be nonzero on L∞(G)∗. Then, θ = φ = γ , because

dL∞(G)∗(u) = 0.

Suppose that η1 �= η2. For every m ∈ L∞(G)∗, we have

dL∞(G)∗(m) ∈ Z(L∞(G)∗)

by Corollary 3.3. Thus,

dL∞(G)∗(m) ∈ Zt (L
∞(G)∗) = L1(G).
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So

dL∞(G)∗(m) ∈ L1(G) ∩ C0(G)⊥ = {0}.

Therefore, dL∞(G)∗ = 0 on L∞(G)∗, a contradiction. ��
Let j be a fixed integer. The additive group of integers modulo j is denoted by Z j .

Proposition 5.4 Let G be a compact group and A = L∞(G)∗ in Proposition 3.6. Then,
θ = η or G is isomorphic with Z j1

⊕ · · · ⊕Z j� for some positive integer j1, . . . , j�.

Proof Let L∞(G)∗ × B be commutative. Then, L∞(G)∗ is commutative. Hence,
L1(G) is commutative and

L∞(G)∗ = L∞(G)∗�u = u�L∞(G)∗ = LUC(G)∗,

where u is a right identity of L∞(G)∗. So G is abelian and discrete. Since G is also
compact, it is a finite abelian group. Hence, G is isomorphic with Z j1

⊕ · · · ⊕Z j�
for some positive integer j1, . . . , j�. This fact and Proposition 3.6 prove the result. ��
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