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Abstract

We study the optimal fractional Trudinger—Moser inequalities on R when the inte-
grands have the form (e” W lu|?* for some a > 0. The equivalence of the
subcritical and critical fractional Trudinger—Moser inequalities is set up in the spirit
of Lam, Lu and Zhang. The existence of optimizers for the sharp subcritical fractional
Trudinger—Moser inequalities is also investigated.
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1 Introduction

The Trudinger—Moser inequalities are considered as the border line cases of the well-
known Sobolev embeddings. They have been studied widely in the last 40 years, and
there is a vast literature. Basically, the Trudinger—-Moser inequalities provide that in
the limiting case p = N > 2, the Sobolev space WO1 N (), 2 C RY is a smooth
bounded domain, can be embedded continuously into the Orlicz space L, (£2) where
on (1) = exp (a [1|N/N=D) — 1 for some o > 0. This was first studied independently
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by Pohozaev [18], Trudinger [20] and Yudovich [21] without the optimal constant.
This answers the question what the optimal target for the Sobolev embedding is when
p = N. Indeed, it is clear that in this case, Wé’N () — L4 (2) continuously for
all ¢ > 1. However, we could construct counterexamples to show that WOl N () g
L*>® ().

Motivated by the applications to the prescribed Gauss curvature problem, J. Moser
optimized in [17] the above embedding. More precisely, using symmetrization argu-
ments, he proved that

Theorem A Let Q be a domain with finite measure in Euclidean N-space RN, N > 2.
1

Then, there exists a constantay = N a)]'\\;i__l1 > 0, where wn—1 is the area of the surface
of the unit N-ball, such that

1 N
sup —/ exp(oleulm)dx < 00 (1.1)
Iuly<t 1921 Jo
Moreover, the constant ay is optimal in the sense that if we replace oy by any number
o > ay, then
1
sup —/ exp (a|u|%)dx=oo. (1.2)
Ivaly<t 1$21 Jo

The fact that vy is optimal was checked by Moser using the so-called Moser sequence:

1/N N1 "
(5) ()7 o=k=ef,
_ 1/N o
U (x) (a)NA_Iln) 10g <ﬁ), e N < x| <1,
0, x| = 1.

Moreover, from the Moser sequence, we can actually show that for any a > 0 :

1 N
sup —/ exp (ozN Iulel) lu|* dx = oo.
Ivuly=<t 182 Jo

Hence, the inequality (1.1) is indeed sharp in this sense.

When |2| = oo, (1.1) is meaningless. Thus, it becomes interesting and nontrivial
to extend such inequalities to domains of infinite volume. In this direction, we state
the following three such results in the Euclidean spaces that could be found in [1,3,6,
13,15,16,19]:

TheoremB Let 0 < o < ay. There hold

1
STM (&) := sup —N/ dN (a IulleI ) dx < oo. (1.3)
ueW'N (RN): |vuly<t lully JRY

™ := sup / on (aN |u|%>dx <oo. (14
ueWIN (RN [Vu| N 4[luf ¥ <1 /RY
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N

1 o (aw i)

TME = sup 5 / 5 dx < o0. (1.5)
ueWN (RN): [vuly<t lully JRY (1 + |u|ﬁ>

Here,

N_zlj
pn() =e =) —.
=0’

Moreover, the constant oy is sharp.

Another interesting question is that whether we can prove the Trudinger—-Moser
inequalities in the one-dimensional case, namely, the fractional Trudinger—Moser
inequality on R. In [7], the authors established the following results:

Theorem C Let p > 1 and

G

Then, for any interval I € R :

1 =
sup m/ (e”‘"'”' - 1) dx < oo;
1 p

~1 1
ueHP’17(I):/‘(—A)2Pu dx<1 1
I
1 o |u\l’,7:1 2a
sup m er — 1) |ul*dx = o0 foranya > 0;
~ a1 qp
ueHTl)”’(l):[‘(—A)Zﬁu dx<1 1
I
2
sup / (e’”‘ - 1) dx < oo;
2
ueH%*z(R):uuung (—A)%u <1R
2
and
su / |u|2" dx = o0 foranya > 1.  (1.6)
MGH2 ‘®R): llull3+ ‘( A)4M S 1R

The constants o, and 7w are sharp.

Motivated by results in [ 7], the main purpose of this article is to study the Trudinger—
Moser inequalities in the spirit of (1.6). Namely, we will investigate the problem where
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1486 D.T.Nguyen, T. A. Nguyenz

the integrand has the form (e” W _ 1) |u |2“ forsome a > 0. Of course in this situation,
some extra terms must be added in order to get the finiteness of the supremum. To
find out the terms that we should use, we will first study the asymptotic behaviors of
the sharp subcritical fractional Trudinger—Moser inequalities in the sense of [5,8,13].
More precisely, define

1
FSTM, (o) = sup o / (e — 1) (ot hul) ™ ax
2 u
ueH%’z(R):H(—A)ZIIu <1 2R
2
FTM,, = sup ||u||§“/ <e””2 - 1) (V7 lul)™ dx
2
ueH%'2<R>:||un§+‘(—A>iu <1 R
2

then we will prove that

Theorem 1.1 Foranya >0 :

)

_a)1+a forall0 <o < m.

FSTM, (o) <

(m
(1 _ g)a+1
FTM, < oo and FTM, = sup =
s

ae(0,m)

FSTM, () .

As a consequence of Theorem 1.1, we obtain the following weighted Trudinger—
Moser inequality that is somewhat related to versions of the Trudinger—Moser
inequalities in [4,12]:

Theorem 1.2 Lett > 0 and 0 < a < 7. Then, there exists C (t,a) > 0 such that for
all u - / ul? x|l dx < oo and H(—A)% uH2 <1:
R

o 2 C t
/ (e(t+l)2u _1> (va lul)™ x]f dx < —<¢ )‘?ﬂ, / uf? Jx" dx
R

Motivated by the results in [9—11,14], our next aim is to study the attainability of the
above Trudinger—Moser inequalities. Indeed, we will prove that

Theorem 1.3 Let a > 0. Then, FSTM,, (@) is attained for all 0 < o < m. Also, the
mapping FSTM, () : [0, m) — R7T is continuous.

2 Preliminary
Let s € (0,1). We consider Ly (R) the spaces of functions u € L}oc (R) such

that / ll'l‘;fl)lzs dx < oo. Then for a function u € L; (R), we define (—A)* u as a
R
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tempered distribution as follows:

(=A) u, p) = /u(—A)S pdx, eS8
R

For s € (0, 1) and p € [1, oo], we define the Bessel-potential space
H*P (R) = {u €LPR): (=AY uell (R)},
and with / € R is a bounded interval:
HP (1) = {u €LPR): (=A)>uel’R),u =OonR\I}.

We also equip these spaces with the norm

1
s pr
Il . = [nunﬁ + a2 ”H,,]

We note that this norm is equivalent to the smaller norm |[u|| s, = ” (—A)% u

HP ().
We also recall the following lemmata that can be found in [2]:

on
p

Lemma 2.1 Fors € (0, 1), there exists Cy > 0 such that
Ju(x) — u(y>|2
ol g f [

Now, for a measurable function u : R — R, we set |u|* : R — R to be its non-
increasing symmetric rearrangement. Then, we have the following properties:

Lemma 2.2 Given a measurable function F : R — R and a measurable function

u: R — R, there holds
/F(Iul) dx = /F(Iul*) dx

R R
Ifue H">(R) for0 <s < 1:

/((—Aﬁ _/‘(—A)%uzdx

R R
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1488 D.T.Nguyen, T. A. Nguyenz

3 Proof of Theorem 1.1 and Theorem 1.2

Theorem 1.1 will be proved via the following lemmata:

Lemma 3.1 FSTM, () < (UC;.E;ZI)M forall0 < a < m forsome C1 (a) > Odepending

only on a.

Proof We just need to consider the case % <« é 7. We first recall that by Lemma
2.1, there is a universal constant C1 > 0 such that
2

ot

_ 2
=2 / |u(x) u(y)l dxdy.

Cx—yP

2
Now, for u € H%’z (R) : H(—A)% qu < 1,wesetv(x) =u(Ax) where A = ||M||%.
Then,
lvll3 = 1;

st = it =
Rf (eavz - 1) (Ve [v])* dx = @Rf (e“”z - 1) (Va lul)* dx

Hence,

FSTM, (o) = sup f (e““2 — 1) (Ver [ul)™ dx
2

1 1
uer%R):‘(—mu <l: Jul}=1R
2

Moreover, by rearrangement arguments (Lemma 2.2), we can assume that u €
1 1 . . .

Hz2? (R) : H(—A)Z qu <1 ||u||% = 1 and u is even, non-increasing on [0, 00).

Note that in this case

1 1
w(x) < — [ u?(ydy < ——
x| | x|
—|x]
Now, we write for R = ﬁ% > % :
R
/(au _ )([|u| dx_/+ / (f|u|)2a
R —R  R\(=R.R)
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Then on R\ (—R, R), |u (x)| < 1 and

(eo“‘z - 1) (ﬁ|u|)2a dx < / aule’ (ﬁ|u|)2a dx

R\(~R.R) R\(~R.R)
< / we” (ﬁ)za u*dx

On I = (—R, R), we define a new function

_ Ju®x) —u(R)if |x] <R
“”_{ 0 if x| > R

Remind that « is non-increasing, we have fora.e. x € I :

_ 2 _ 2 . 2
/Iv(x) v(y)l d Z/IM(x) u(y)l dy+/|u(x) u(R)]| dy

lx — y? lx — yI? Ix — y|?

o [l —u(y)|2d
Ix —y|?

and fora.e. x € R\ :

@) — oGP [l — ()P
T o2 e T2
lx — vyl ; lx — ¥l

_ 2
- [u(x) u(zy)l dy.
|x — yl

Hence,
L2 L2
Jcartef, = Jeartal <t

Actually, v € H2? (I). Also,on I with e = % (Z-1

o

2 2 2 1 2
' (x) = ) +u(R)” = A +e)v” () + A+ 2u(R)
TH+a , T+a l  7w+a,

IS T S T
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Hence,
R
/ (e = 1) (Verlul)™ dx
—R
R a
< oz“/ <e$vz(ﬂ+a _ 1) (wvz (x) + 1) dx
2a
—R
R R
< 2%gde™ /e%vzmvza (x)dx + /e%vz(x)dx
R —R
Noting that with
a
C = max —
@) te(O,go) et
we have

C (a) T -
v (x) < ———exp [<—) v (x) |2} .
(%5%) 2

Also, we note that since v € H 32 (I), by the fractional Trudinger—Moser inequality

R
on R (Theorem C), there exists an absolute constant C > 0 such that / er v3(x) <CR
—R
R 4o, 2
and / e 2 V") < CR. Therefore,
—R
R
au? 2a
/ (e = 1) (Varlul)™ dx
—R
R R
< 23an,aen C (a) /eﬂvz(x) +22aﬂaen/e%vz(x)
N (r — )"
- —R
< 23anaen& + 22anaen CR
- (r —a)*
— 23anaen& + 22anaen Cln +a
(r —a)? 27—«
Ci(a)
— (r — a)tH-l
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for some Cy (a) > 0. O
Lemma 3.2 FTM, < oo. Moreover,
(1 . g)a+l
FTM, = sup ——2——FSTM, ().
ae(0,7) e
Proof Recall

FTM, = sup ||u||§“/ (e = 1) (V7 Iul)* dx
2

1, ) 1
ueH2 " (R):lull5+|(=A)4u

2

< 1.Seth = H(—A)%u

3.2 2 Lol?
Letu € H¥2 R) : ul? + H(—A)4 )
1—62
If% < 6 < 1, then we set

- Hence, lull3 <

u (Ax)
v(x) = 7
1-62
A= > 0.
92

We get

1 — 92
—_— :1
vl3 = || ul3 < i3y

Also, as above

o], =g femtal, =1
U2—92 l/t2— .

e /( 1) (V) d

< (1-¢?) [(e” w00 1) (V7 1 Goo)l)* d o)

| |
>»

/ enezvz(X) _ 1) (v 16v (x)|)2a dx
R

02
R

_(i- ez)“ L [ (e 1) (vaom o o) a
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1492
(1 _ 92)a+1 92)a+1 1
C(a) - e C ).

FSTM, (7102) < ( -

Bf—

It is also clear to see that when 0 < § <

||u||%“/ (e - 1) (V7 lul)* dx < C ().

R

Also, we can deduce that

_p2
2adx§(1 )

||u||§“f (e’”‘2 -~ 1) (V7 lul) 7

R
1« a+l
%FSTMQ (@).
b

Hence,
1 — g)a—i-l
FTM, < sup =
ae(0,7) T

2
< 1; [lul = 1. We define

Also, for any u € H32 (R) : H(—A)% qu

o o
v(x):\/;u(kx); A:n—a'

Then,
artol, = 2 feai],
i Pl “Ia
, al , al T —o
v = — — = —— =
vl nkllullz - -
[t oS+ i3 < &+ 20 =
— v v —+——=1.
2 2= g T A
Thus,

(R TR R
R
o /(env2<x) _ 1) (V7 v (0))* dx

T —
R

R
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o 1
2
=5 ||U||2a
T —a vl

/ (7@ = 1) (v v (o)™ dx

=<
T —o T —o
So
(1 _ g)a—i-l
FTM, > sup e FSTM,, ()
ae(0,m) T
In conclusion:
(1—2)!
FTM, = sup a FSTM,, ()
ae(0,m) T
Proof of Theorem 1.2 Set
) (y1711y)
v = u i .
=\ Y

Then,
%uz(x) 2a t
/(e«w —1) (Ve lu (0)])* 2 dx

f

R
V() 2a _t 1 1
(" =) [Va @+ D v o] VP Iy dy

R
=C(t,a)/(e“”2("’) - 1)(«/5|v(y)|)2“ dy
R

and

f|u|2 x| dx = C(t,a>/ lv ()1 dy.
R R

Also,

[catofi= = —'U(T; - zl(;”zdxd)’
IR R

1
_a 2yt :) 2,
(e“*”z" () 1) (va [ (7= 3)[) 1At s a (117

ly)
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2
| (1777 ) = wlly [T )
— d.xd
t+1ﬁ// x— P2 Y

1 u(z) — u(w)|?
t+1)2//|| 5+ Dzl dz @+ 1wl dw

2"z — lwl" w

o2

“

1 f/lu(z) —u(w)|? |z — wl? |z|f |w|fd

2 2
|z — w| llzI"z — lw|" w|
We note here that for all z, ¢

2
lz —wl* 2" lwl” < |1zl z — [w|’ ] (3.1

Indeed, set z = kw, then (3.1) is equivalent to

m—1FWV5“Wk—u2©(H—2k+QmV5ka?—mwk+1

& W24 1z K2 4 k) < (16172 = 1) (KI = 1) 2 0

Hence,

2

L2
W) 7 WOV 4z =H—AZ“<L
= ¢ el w=|(=A)Tu| =

Thus, by Theorem 1.1:

L 2'42()6) 2a | 1 _ avz(y) 2a
e (t+h —1) (Ve lu(x)])™ x]"dx = C (¢, a) e — 1) (W lv ()™ dy
R

yM/wwWM

(o
(’$M/||u|m

4 Proof of Theorem 1.3

We first recall that

FSTM, (&) = sup ! 2/ (e‘“’2 - 1) (Ve |u|)2a dx
R

1, e ||u||2
ueH?2 (R):H(—A)Zu

<1
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2
Letfixa € (0, ). We then can choose a sequence (u,,) € H%’z R) : H (—A)% Up )
1 such that

=

! 2/ (e = 1) (Varlual)* dx 1 FSTM, (@)

flun
2R
Moreover, by rearrangement arguments, we can also assume that u, is even, non-
increasing on [0, 00). Also, as in Lemma 3.1, we will assume ||u,, ||% = 1. Hence, we
can assume that

u,—u weakly in H%’2 (R).

AS a consequence,
1 2 2
H(—A)4 qu < land J|u)? < 1.

Noting that

x|

) L/ 2 1
Mn(x)§2|x| (»nd y§2| i

—|x]

we have that for any ¢ > 0 :
1
luy (x)] < eand |u (x)| < & when |x| > %
e

Now, we distinguish two cases:
Case a > 0 : Then, we write

/<aun_1)(f|un)2a _ / N / (eaug_l>(\/&|unl)2adx

I = / (eau,% _ 1) (v lun])* dx < (Vare) FSTMy (o) } O as & | 0.
R\(-%.4)

On the interval (— 21_5’ %), we have that

( auy _ 1) (Ve lun])™ — <e°‘"2 — 1) (Ver [ul)™ ae
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and for some ¢ Z 1 :

/ (e — 1) (Ve hnl)™ dx — / (e = 1) (Ve lul)™ dx

Letting n — oo and then ¢ |, 0, we get

FSTM,, () 5/(6“”2 - 1)(¢&|u|)2“ dx.

R

In other words, u # 0 and

FSTM, (a):/( )(f|u|)2“ dx < L[ (e“”2—1> (v |ul)™ dx

leell3
R 2R

Hence, ||u II% = 1 and u is a maximizer for FSTM,, («) .
Case a = 0. Then, we write

R/(e””‘%—l)dx_/( "= ol — 1) dx +a
/ / (eo‘uﬁ—au - )dx+a.

m‘_
m‘_
@
B~
~—

In this case,

< aazFSTMO (@) > 0ase | 0.

@ Springer
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With the same arguments as in the first case, we get

/ (e””"zl —ou’ — 1) dx — / (e‘”z —ou® — 1) dx

L
2£

(-2
R/(e —au? ~ 1) dx,

In conclusion, we have after letting n — oo and then ¢ | O :

k’\—

FSTM () < / (e"”‘z —aqu® — )dx +a.
R

Again, it means that # # 0. Hence,

1
FSTMy (o) < Tl /(e"”‘2 —au’ — 1) dx +«
ullyJ
— 12/(6“”2—1>dx.
llully
R

Equivalently, ||u II% = 1 and u is an optimizer for FSTMy («).
Now, let €, | 0 be an arbitrary sequence. We will now show that

FSTM, (¢ + ¢,) — FSTM, («) | O
and
FSTM,, (o) — FSTM,, (@ — &) | O

as n — oo. Then, we can conclude that FSTM,, (-) is continuous. Indeed, using the
fact the FSTM,, (x) is attained for all x € (0, ), we can find a sequence (u,) €

2
H%’z (R) : ”(—A)% Uy s < 1and ||un||% = 1 (and so we will assume u,, —u weakly

in H2°2 (R)) such that

FSTM, (e = [ (¢ —1) (Vs e o)) s

R

Moreover, again we will assume that u, is even, non-increasing on [0, 0o). Then, it is
clear that

0 < FSTM, (& + &,) — FSTM,, ()
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IA

B W ——

(e("“rsn)uﬁ - 1) (Ve + &, |u,,|)2a dx — / (e"”‘% — 1) (ﬁ|un|)2a dx

R

I:(e(oc-&-sn)u% _ 1) (V& T lunl)® — (eaui _ 1) (ﬁlunl)za] dx.

We will again consider two cases:
Case a > 0. We will use the same method as above and write the above integral as

f " / [(c o — 1) (Vo hual) ™ = (e = 1) (V& lunl)™ | d.
(-#4) ®(-%4)

Then, we have

N
v

(eterend — 1) (VT e lual)* = (e = 1) (Va lual) ™ 4 Oae.

and it is easy to see that there is some ¢ Z 1 such that
q
/ [<e<a+en)u% _ 1) (Vo T & lunl)™ = (eau% _ 1) (ﬁ|u,l|)2“] dx < Cla,a,q).
R
So
/ [(e(“"'g")"% - l) (»,/a + & Iunl)za - (e“"'z’ - l) (ﬁlu,ll)za] dx | 0Oasn — oo.

Also, by the Radial Lemma, we have for large n :

B
-

f I:(e(ﬂt+€n)14% _ 1) (mmn')h _ (eauﬁ _ 1) (\/alun|)2a:| dac
(-4 5)

2a
< («/a T 18) FSTM, <a er ”) + (Vae)* FSTM () — O as & — 0.

Hence, in this case
FSTM,, (¢ + ¢,) — FSTM, (@) | O.

Case a = 0. Then, we will write

/ [(e<a+en>uz _ 1) _ (eau;, _ 1)] dx

R
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/ [( (ke _ (a+¢,) u 1) — (e“”le - auﬁ - 1)i| dx + &,

/ / [(e(”‘”")”% — (@ +e)ul— l) - (e‘“"zl —au? - 1)] dx +é&p.
4) m(h)

N‘_.
N‘_.

Then, by the same arguments as above, we can also deduce that

FSTM,, (¢ + ¢,) — FSTM,, («) | 0.
The fact that

FSTM, (&) — FSTM,, (& — &) 4 0

can be proved similarly.

Hence, we now can conclude that the mapping FSTM, (-) is continuous.
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